Quantum positroids in the quantum grassmannian

Séminaire Lotharingien de Combinatoire 24 March 2025

Stéphane Launois (Université de Caen Normandie)

Quantum 2×2 matrices

The coordinate ring of quantum 2×2 matrices

$$\mathcal{O}_q(\mathcal{M}_2(\mathbb{C})) := \mathbb{C} \left[egin{array}{c} a & b \\ c & d \end{array}
ight]$$

is generated by four indeterminates a, b, c, d subject to the following rules:

$$ab = qba,$$
 $cd = qdc$
 $ac = qca,$ $bd = qdb$
 $bc = cb,$ $ad - da = (q - q^{-1})cb.$

The quantum determinant ad - qbc is a central element

The algebra of $m \times p$ quantum matrices.

$$R = O_q \left(\mathcal{M}_{m,p}(\mathbb{C}) \right) := \mathbb{C} \begin{bmatrix} Y_{1,1} & \dots & Y_{1,p} \\ \vdots & & \vdots \\ Y_{m,1} & \dots & Y_{m,p} \end{bmatrix},$$

where each 2 × 2 sub-matrix is a copy of $O_q(\mathcal{M}_2(\mathbb{C}))$.

 $O_q(\mathcal{M}_{m,p}(\mathbb{C}))$ is an iterated Ore extension with the indeterminates $Y_{i,\alpha}$ adjoined in the lexicographic order and so is a noetherian integral domain.

In the square case (m = p = n)

$$D_q = \sum_{\sigma \in S_n} (-q)^{l(\sigma)} Y_{1,\sigma(1)} \dots Y_{n,\sigma(n)}$$

is the quantum determinant. D_q is a central element.

Quantum minors of
$$R = \mathcal{O}_q(\mathcal{M}_{m,p}(\mathbb{C}))$$

They are the quantum determinants of square sub-matrices of $\mathcal{O}_q(\mathcal{M}_{m,p}(\mathbb{C})).$ More precisely, if $I \subseteq \llbracket 1, m \rrbracket$ and $\Lambda \subseteq \llbracket 1, p \rrbracket$ with $|I| = |\Lambda|$, the quantum minor associated with the rows I and columns A is

$$[I \mid \Lambda] := D_q(\mathcal{O}_q(M_{I,\Lambda}(\mathbb{C}))).$$

For example, $[12|23] = Y_{1,2}Y_{2,3} - qY_{1,3}Y_{2,2}$ is the quantum minor of R associated with the rows 1, 2, and the columns 2, 3.

The quantum grassmannian $\mathcal{G}_q(k,n)$

The quantum grassmannian $\mathcal{G}_q(k,n)$ is the subalgebra of $\mathcal{O}_q(\mathcal{M}(k,n))$ generated by the maximal $k \times k$ quantum minors

Denote by [I] the quantum minor $[1 \dots k|I]$.

Example $G_q(2,4)$ is generated by the six quantum minors [12], [13], [14], [23], [24], [34].

Most minors q^{\bullet} -commute, for example, [12] [34] = q^2 [34] [12], however, [13] [24] = [24] [13] + $(q - q^{-1})$ [14] [23] and there is a quantum Plücker relation

$$[12] [34] - q [13] [24] + q^2 [14] [23] = 0.$$

Noncommutative dehomogenisation:

$$\mathcal{G}_q(k,n)[[12...k]^{-1}] \simeq \mathcal{O}_q(\mathcal{M}(k,n-k))[Z^{\pm 1};\sigma]$$

Assume that $q \in \mathbb{C}^*$ is not a root of unity, and set $R := \mathcal{O}_q(\mathcal{M}_{m,p}(\mathbb{C})).$

• Goodearl-Letzter Prime ideals of R are (completely) prime.

The torus $\mathcal{H} := (\mathbb{C}^*)^{m+p}$ acts by automorphisms on R via :

 $(a_1,\ldots,a_m,b_1,\ldots,b_p).Y_{i,\alpha}=a_ib_{\alpha}Y_{i,\alpha}.$

This action of \mathcal{H} on R induces an action of \mathcal{H} on Spec(R). We denote by $\mathcal{H}\text{-}\text{Spec}(R)$ the set of those prime ideals in R which are $\mathcal{H}\text{-}\text{invariant}$.

• **Goodearl-Letzter** R has at most $2^{mp} \mathcal{H}$ -primes.

Note that 0 is always an \mathcal{H} -prime ideal.

By the Stratification Theorem of Goodearl-Letzter, \mathcal{H} -Spec(R) "controls" Spec(R).

Cauchon diagrams

A **Cauchon diagram** on an $m \times p$ array is an $m \times p$ array of squares coloured either black or white such that for any square that is coloured black the following holds: Either each square strictly to its left is coloured black, or each square strictly above is coloured black.

Here are an example and a non-example

Parametrisation of \mathcal{H} -Spec $(\mathcal{O}_q(\mathcal{M}_{m,p}(\mathbb{C})))$

• Cauchon (2003) There is a bijection between Cauchon diagrams on an $m \times p$ array and $\mathcal{H} - \operatorname{Spec}(\mathcal{O}_q(\mathcal{M}_{m,p}(\mathbb{C})))$.

If C is a Cauchon diagram, then we denote by J_C the unique \mathcal{H} -prime associated to C.

• L., Yakimov, Casteels $\mathcal H\text{-}\mathsf{primes}$ are generated by quantum minors.

• Dimensions of \mathcal{H} -strata and the poset of \mathcal{H} -primes are described through another parametrization.

The quantum grassmannian $\mathcal{G}_q(k,n)$

The quantum grassmannian $\mathcal{G}_q(k,n)$ is the subalgebra of $\mathcal{O}_q(\mathcal{M}(k,n))$ generated by the maximal $k \times k$ quantum minors

Denote by [I] the quantum minor $[1 \dots k|I]$. There is a torus action of $\mathcal{H} = (\mathbb{C}^*)^n$ given by column multiplication. There are finitely many \mathcal{H} -primes.

Example $G_q(2,4)$ is generated by the six quantum minors [12], [13], [14], [23], [24], [34].

Most minors q^{\bullet} -commute, for example, [12] [34] = q^2 [34] [12], however, [13] [24] = [24] [13] + $(q - q^{-1})$ [14] [23] and there is a quantum Plücker relation

$$[12] [34] - q [13] [24] + q2 [14] [23] = 0.$$

Partial order:

 $[i_1 < \cdots < i_k] \leq [j_1 < \cdots < j_k]$ whenever $i_s \leq j_s$ for all s.

Quantum Schubert variety corresp to [135]

Schubert cell: use noncommutative dehomogenisation at [135]

L, Lenagan and Rigal (2008) There is a bijection between $\mathcal{H} - \text{Spec}(\mathcal{G}_q(k, n))$ (ignoring the irrelevant ideal) and Cauchon-Le diagrams on Young diagrams that fit inside a $k \times (n-k)$ array

The theorem is proved by defining quantum algebras with a straightening law, quantum Schubert varieties, quantum Schubert cells, partition subalgebras of quantum matrices and using a non-commutative version of dehomogenisation.

Schubert cell for [135]

\mathcal{H} -prime in Schubert cell [135]

A few questions to consider:

Questions:

1. Can we specify the quantum Plücker coordinates in a given H-prime?

2. Are \mathcal{H} -primes generated by quantum Plücker coordinates?

3. Can we describe the poset of \mathcal{H} -primes in $\mathcal{G}_q(k,n)$? (Yakimov's conjecture)

The nonnegative world

TNN grassmannian

A point P in the grassmannian $\mathcal{G}_{kn}(\mathbb{R})$ is **totally nonnegative** if its Plücker coordinates can be represented by the $k \times k$ minors of a $k \times n$ matrix A such that each of these $k \times k$ minors are nonnegative.

Cells are specified by stating precisely which Plücker coordinates are zero. If Z is a subset of Plücker coordinates then S_Z° is the cell where minors in Z are zero (and those not in Z are nonzero, so positive).

• **Postnikov (arXiv:math/0609764)** There is a bijection between Le-diagrams (=Cauchon diagrams) on partitions that fit into a $k \times (n - k)$ array and non-empty cells S_Z° in $\mathcal{G}_{kn}^{\text{tnn}}$.

(A Young diagram representing a partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ fits inside a $k \times (n-k)$ array provided that $(n-k) \ge \lambda_1 \ge \lambda_2 \ge \lambda_k \ge 0$.)

Quantum Plücker coordinates in a given \mathcal{H} -prime

L-Lenagan-Nolan Let \mathcal{F} be a family of Plücker coordinates and \mathcal{F}_q the corresponding family of quantum Plücker coordinates. TFAE

• The totally nonnegative cell associated to ${\cal F}$ in ${\cal G}_{kn}^{\rm tnn}$ is non-empty.

• \mathcal{F}_q is the set of all quantum minors that belong to torusinvariant prime in $\mathcal{G}_q(k, n)$.

Strategy: Let C be a Cauchon-Le diagram of shape λ . Then we prove that $[I] \in J_C$ iff there are no vertex disjoint set of paths from $\lambda \setminus I$ to $I \setminus \lambda$ in the Postnikov graph. The case of quantum matrices was already known thanks to work of Casteels.

Consequence: We have an explicit description of these families thanks to work of Oh.

There is a vertex disjoint set of paths from $\{1,3\}$ to $\{2,4\}$ so [245] is not in the prime.

There is no vertex disjoint set of paths from $\{1,3\}$ to $\{4,6\}$ so [456] is in the prime.

Quantum Plücker coordinates generates \mathcal{H} -primes

L-Lenagan-Nolan Assume q is transcendental. Then torusinvariant primes in $\mathcal{G}_q(k,n)$ are generated by quantum Plücker coordinates.

In the proof, we make use of the above techniques as well as Gröbner basis techniques. In particular, we use a theorem of Casteels that asserts that torus-invariant primes in quantum matrices are generated by quantum minors and these quantum minors form a GB of the torus-invariant prime that they generate.

Quantum positroids in the quantum grassmannians: these are the quotients of $\mathcal{G}_q(k, n)$ by torus-invariant primes.

Applications

* We can explicitly described the quantum Plücker coordinates that generate \mathcal{H} -primes.

* Grassmann necklace: we can put different orders on the set of quantum Plücker coordinates. For each i with $1 \le i \le n$ we can define the *i*-ordering, denoted by $<_i$. In this ordering, we have

$$i <_i i + 1 <_i i + 2 <_i \dots <_i n <_i 1 <_i \dots <_i i - 1.$$

There is then an induced partial ordering on the quantum Plücker coordinates given by

$$[a_1 <_i \cdots <_i a_m] \leq_i [b_1 <_i \cdots <_i b_m]$$
f and only if $a_j \leq_i b_j$ for each $1 \leq j \leq m$.

Grassmann necklace

Consider the QGASL structure on $\mathcal{G}_q(k,n)$ determined by the poset Π_i . Let P be an \mathcal{H} -prime ideal of $\mathcal{G}_q(k,n)$. Then there is a unique quantum Plücker coordinate $[I_i]$ in Π_i with the property that $[I_i] \notin P$ but $[J] \in P$ for all $J \geq_i I_i$.

The sequence $Neck(P) := ([I_1], ..., [I_n])$ of quantum Plücker coordinates is called the Grassmann necklace of P.

Let P and Q are \mathcal{H} -prime ideals of $\mathcal{G}_q(k,n)$. Then

 $Q \subseteq P$ if and only if Neck $(Q) \leq$ Neck(P) (i.e. iff $J_i \leq_i I_i$ for each i = 1, ..., n.)

Yakimov conjecture

The following posets are isomorphic:

- 1. \mathcal{H} -Spec $\mathcal{G}_q(k, n)$ (endowed with inclusion);
- 2. the set of torus orbits of symplectic leaves in the grassmannian $SL_{n+1}(\mathbb{C})/P_I$ (ordered by closure);
- 3. $S_{W,I}$, where $W = S_{n+1}$ and W_I is the subgroup generated by $s_1, \ldots, s_{m-1}, s_{m+1}, \ldots, s_m$, and where the order (w, v) < (w', v') in $S_{W,I}$ is defined by

$$(w,v)<(w^\prime,v^\prime)$$
 iff

there exists $z \in W_I$ such that $w \ge w'z$ and $v \le v'z$.