Quasisymmetric polynomials revisited

Philippe Nadeau (CNRS & ICJ, Univ Lyon 1)

Joint work with Hunter Spink & Vasu Tewari (Toronto)

SLC 93, Pocinho, 24 March 2025

Fix $n \ge 1$, and define $\operatorname{Pol}_n := \mathbb{Q}[x_1, \dots, x_n]$.

Fix $n \ge 1$, and define $\operatorname{Pol}_n := \mathbb{Q}[x_1, \dots, x_n]$.

Definition. Let $f \in \text{Pol}_n$. Then f is quasisymmetric if for all $a_1, \ldots, a_k > 0$, for all i_1, \ldots, i_k such that $i_1 < \ldots < i_k$, Coeff of $x_1^{a_1} \cdots x_k^{a_k} = \text{Coeff of } x_{i_1}^{a_1} \cdots x_{i_k}^{a_k}$.

For n = 2, $f = x_1^2 x_2$. For n = 3, $f = x_1^2 x_2 + x_1^2 x_3 + x_2^2 x_3$.

Fix $n \ge 1$, and define $\operatorname{Pol}_n := \mathbb{Q}[x_1, \dots, x_n]$.

Definition. Let $f \in \text{Pol}_n$. Then f is quasisymmetric if for all $a_1, \ldots, a_k > 0$, for all i_1, \ldots, i_k such that $i_1 < \ldots < i_k$, Coeff of $x_1^{a_1} \cdots x_k^{a_k} = \text{Coeff of } x_{i_1}^{a_1} \cdots x_{i_k}^{a_k}$.

For
$$n = 2$$
, $f = x_1^2 x_2$.
For $n = 3$, $f = x_1^2 x_2 + x_1^2 x_3 + x_2^2 x_3$.

Motivation(s)

- Introduced in Stanley's thesis (1970), explicitly identified by Gessel (1984). They are the natural setting for certain generating functions for posets.
- Terminal object in a certain category of Hopf algebras.
- Relation to symmetric polynomials: create bases that refine symmetric bases, expand (quasi)symmetric polynomials in these bases,...

Fix $n \ge 1$, and define $\operatorname{Pol}_n := \mathbb{Q}[x_1, \dots, x_n]$.

Definition. Let $f \in \text{Pol}_n$. Then f is quasisymmetric if for all $a_1, \ldots, a_k > 0$, for all i_1, \ldots, i_k such that $i_1 < \ldots < i_k$, Coeff of $x_1^{a_1} \cdots x_k^{a_k} = \text{Coeff of } x_{i_1}^{a_1} \cdots x_{i_k}^{a_k}$.

For
$$n = 2$$
, $f = x_1^2 x_2$.
For $n = 3$, $f = x_1^2 x_2 + x_1^2 x_3 + x_2^2 x_3$.

Motivation(s)

- Introduced in Stanley's thesis (1970), explicitly identified by Gessel (1984). They are the natural setting for certain generating functions for posets.
- Terminal object in a certain category of Hopf algebras.
- Relation to symmetric polynomials: create bases that refine symmetric bases, expand (quasi)symmetric polynomials in these bases,...

Today: a new approach via operators and its consequences

We define operators that "detect quasisymmetry".

Definition. For $f \in Pol_n$ and i < n, define

$$\mathsf{R}_{i}(f(x_{1},...,x_{n})) := f(x_{1},...,x_{i-1},0,x_{i},x_{i+1},...,x_{n-1})$$

This is an algebra morphism $Pol_n \rightarrow Pol_{n-1}$.

We define operators that "detect quasisymmetry".

Definition. For $f \in Pol_n$ and i < n, define

 $\mathsf{R}_{i}(f(x_{1},...,x_{n})) := f(x_{1},...,x_{i-1},0,x_{i},x_{i+1},...,x_{n-1})$

This is an algebra morphism $Pol_n \rightarrow Pol_{n-1}$.

Lemma. $f \in QSym_n$ if and only if $R_1(f) = R_2(f) = \cdots = R_n(f)$.

This characterization is related to (Hivert, 2000).

Corollary. $QSym_n$ is a subalgebra of Pol_n .

We define operators that "detect quasisymmetry".

Definition. For $f \in Pol_n$ and i < n, define

 $\mathsf{R}_{i}(f(x_{1},...,x_{n})) \coloneqq f(x_{1},...,x_{i-1},0,x_{i},x_{i+1},...,x_{n-1})$

This is an algebra morphism $Pol_n \rightarrow Pol_{n-1}$.

Lemma. $f \in QSym_n$ if and only if $R_1(f) = R_2(f) = \cdots = R_n(f)$.

This characterization is related to (Hivert, 2000).

Corollary. QSym_n is a subalgebra of Pol_n .

We now define the main "trimming" operators T_i .

```
Definition. For f \in Pol_n and i < n,
```

$$\mathsf{T}_i = rac{\mathsf{R}_{i+1} - \mathsf{R}_i}{x_i}$$

We get $f \in \operatorname{QSym}_n$ if and only if $T_1 f = T_2 f = \cdots = T_{n-1} f = 0$.

Explicitly,

$$\mathsf{T}_{i}(f) = \frac{f(x_{1}, \dots, x_{i-1}, \mathbf{x}_{i}, 0, x_{i+1}, \dots, x_{n-1}) - f(x_{1}, \dots, x_{i-1}, 0, \mathbf{x}_{i}, x_{i+1}, \dots, x_{n-1})}{x_{i}}$$

$$T_{1}(x_{1}^{a}x_{2}^{b}) = \begin{cases} 0 & \text{if } ab > 0 \text{ or } a = b = 0\\ x_{1}^{a-1} & \text{if } a > 0 \text{ and } b = 0\\ -x_{1}^{b-1} & \text{if } b > 0 \text{ and } a = 0. \end{cases}$$

Explicitly,

$$\mathsf{T}_{i}(f) = \frac{f(x_{1}, \dots, x_{i-1}, x_{i}, 0, x_{i+1}, \dots, x_{n-1}) - f(x_{1}, \dots, x_{i-1}, 0, x_{i}, x_{i+1}, \dots, x_{n-1})}{x_{i}}$$

$$T_{1}(x_{1}^{a}x_{2}^{b}) = \begin{cases} 0 & \text{if } ab > 0 \text{ or } a = b = 0\\ x_{1}^{a-1} & \text{if } a > 0 \text{ and } b = 0\\ -x_{1}^{b-1} & \text{if } b > 0 \text{ and } a = 0. \end{cases}$$

Let $Pol := \mathbb{Q}[x_1, x_2, ...,] = \lim Pol_n$ and consider $T_i : Pol \rightarrow Pol$.

The T_i satisfy the relations of the Thompson monoid

$$\mathsf{T}_i\mathsf{T}_j=\mathsf{T}_j\mathsf{T}_{i+1} \text{ if } i>j.$$

Explicitly,

$$\mathsf{T}_{i}(f) = \frac{f(x_{1}, \dots, x_{i-1}, \mathbf{x}_{i}, 0, x_{i+1}, \dots, x_{n-1}) - f(x_{1}, \dots, x_{i-1}, 0, \mathbf{x}_{i}, x_{i+1}, \dots, x_{n-1})}{x_{i}}$$

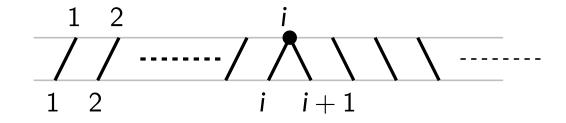
$$T_{1}(x_{1}^{a}x_{2}^{b}) = \begin{cases} 0 & \text{if } ab > 0 \text{ or } a = b = 0\\ x_{1}^{a-1} & \text{if } a > 0 \text{ and } b = 0\\ -x_{1}^{b-1} & \text{if } b > 0 \text{ and } a = 0. \end{cases}$$

Let $Pol := \mathbb{Q}[x_1, x_2, ...,] = \lim Pol_n$ and consider $T_i : Pol \rightarrow Pol$.

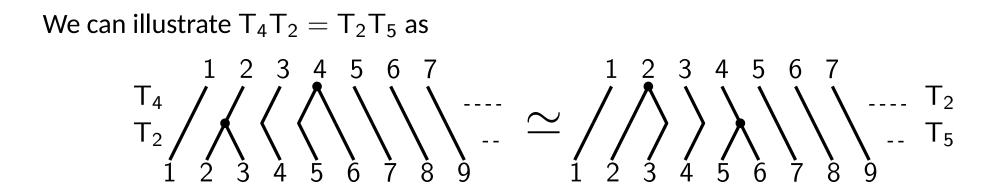
The T_i satisfy the relations of the Thompson monoid

$$\mathsf{T}_i\mathsf{T}_j=\mathsf{T}_j\mathsf{T}_{i+1}$$
 if $i>j$.

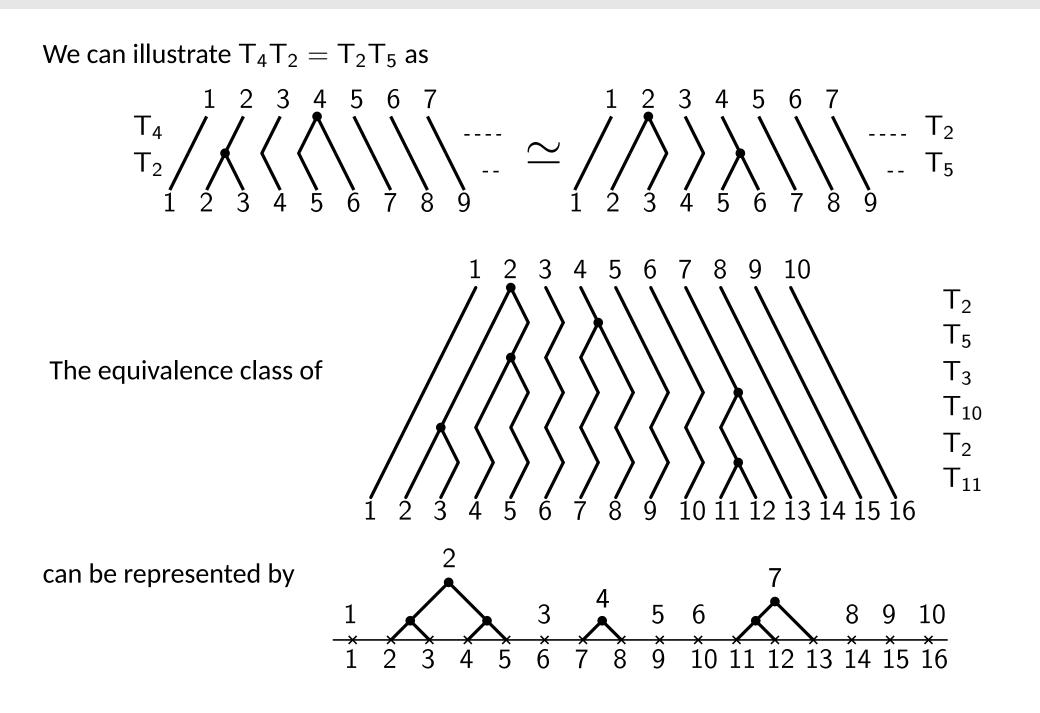
To study the combinatorics, associate to T_i the elementary diagram



Equivalence classes are certain forests

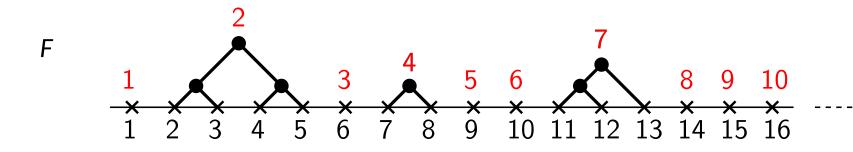


Equivalence classes are certain forests



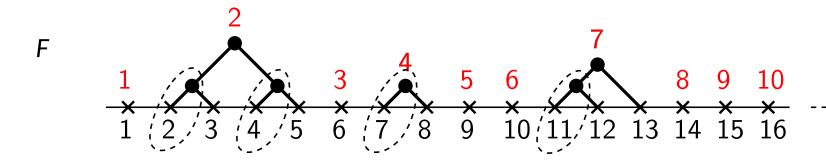
Combinatorics

Definition. An indexed forest *F* is a sequence of plane binary trees, eventually trivial.



Combinatorics

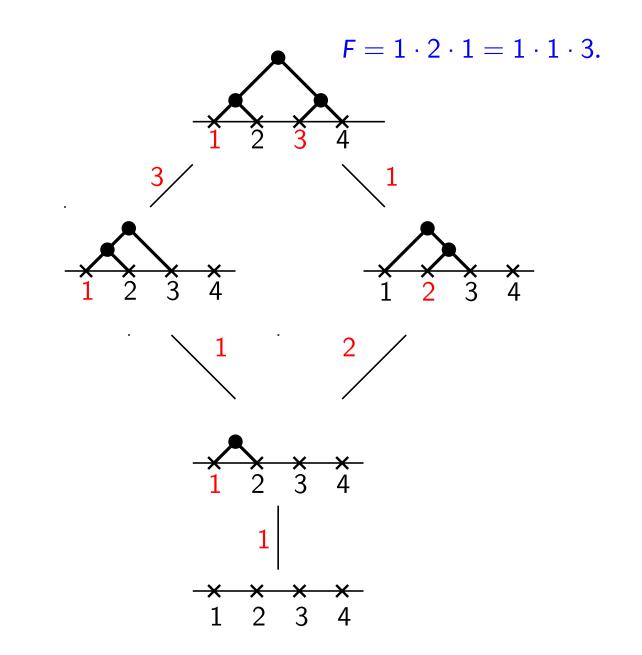
Definition. An indexed forest *F* is a sequence of plane binary trees, eventually trivial.



Let For be the set of indexed forests.

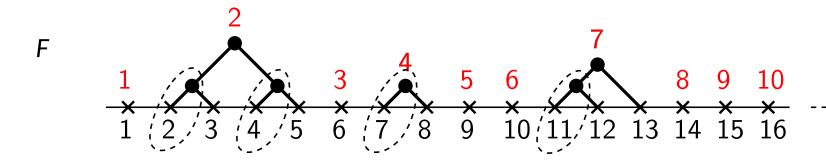
- LTer(F) is the set of left leaves i of a terminal node of F.
 Example LTer(F) = {2, 4, 7, 11} above
- $F \cdot i$ is given by adding a terminal node with left leaf *i*.
- F/i is the reverse of the above, only defined if $i \in LTer(F)$.

Example



Combinatorics

Definition. An indexed forest *F* is a sequence of plane binary trees, eventually trivial.

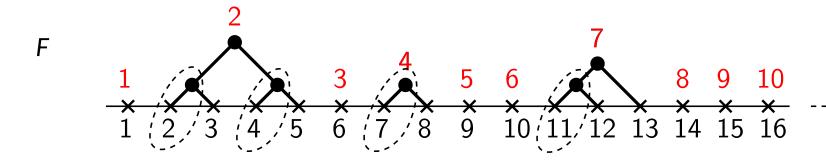


Let For be the set of indexed forests.

- LTer(F) is the set of left leaves i of a terminal node of F.
 Example LTer(F) = {2, 4, 7, 11} above
- $F \cdot i$ is given by adding a terminal node with left leaf *i*.
- F/i is the reverse of the above, only defined if $i \in LTer(F)$.

Combinatorics

Definition. An indexed forest *F* is a sequence of plane binary trees, eventually trivial.



Let For be the set of indexed forests.

- LTer(F) is the set of left leaves i of a terminal node of F.
 Example LTer(F) = {2, 4, 7, 11} above
- $F \cdot i$ is given by adding a terminal node with left leaf *i*.
- F/i is the reverse of the above, only defined if $i \in LTer(F)$.

Proposition. Define $F \cdot G =$ the forest *H* obtained by identifying the leaves of *F* with the roots of *G*. Then For \simeq Thompson monoid.

 \Rightarrow We can define $T_F = T_{i_1} \cdots T_{i_k}$ by taking any decomposition $F = i_1 \cdots i_k$.

Definition-Theorem[N.-Spink-Tewari '24] The forest polynomials \mathfrak{P}_F for $F \in$ For are the unique family of homogeneous polynomials such that $\mathfrak{P}_{\emptyset} = 1$ and

$$\mathsf{T}_i(\mathfrak{P}_{\mathsf{F}}) = egin{cases} \mathfrak{P}_{\mathsf{F}/i} & ext{if } i \in \mathsf{LTer}(\mathsf{F}) \ 0 & ext{otherwise.} \end{cases}$$

Definition-Theorem[N.-Spink-Tewari '24] The forest polynomials \mathfrak{P}_F for $F \in$ For are the unique family of homogeneous polynomials such that $\mathfrak{P}_{\emptyset} = 1$ and

$$\mathsf{T}_i(\mathfrak{P}_{\mathsf{F}}) = egin{cases} \mathfrak{P}_{\mathsf{F}/i} & ext{if } i \in \mathsf{LTer}(\mathsf{F}) \ 0 & ext{otherwise.} \end{cases}$$

Proof. Uniqueness by induction on |F|. For existence, we can give a direct combinatorial definition in terms of certain colorings of F, and check that it works...

Definition-Theorem[N.-Spink-Tewari '24] The forest polynomials \mathfrak{P}_F for $F \in$ For are the unique family of homogeneous polynomials such that $\mathfrak{P}_{\emptyset} = 1$ and

$$\mathsf{T}_i(\mathfrak{P}_{\mathsf{F}}) = egin{cases} \mathfrak{P}_{\mathsf{F}/i} & ext{if } i \in \mathsf{LTer}({\mathsf{F}}) \ 0 & ext{otherwise.} \end{cases}$$

Proof. Uniqueness by induction on |F|. For existence, we can give a direct combinatorial definition in terms of certain colorings of *F*, and check that it works... By iteration one gets:

Corollary. (Duality) For $F, G \in$ For, we have

Constant term of
$$\mathsf{T}_{\mathsf{F}}(\mathfrak{P}_{\mathsf{G}}) = egin{cases} 1 & ext{if } \mathsf{G} = \mathsf{F} \ 0 & ext{otherwise} \end{cases}$$

Definition-Theorem[N.-Spink-Tewari '24] The forest polynomials \mathfrak{P}_F for $F \in$ For are the unique family of homogeneous polynomials such that $\mathfrak{P}_{\emptyset} = 1$ and

$$\mathsf{T}_i(\mathfrak{P}_{\mathsf{F}}) = egin{cases} \mathfrak{P}_{\mathsf{F}/i} & ext{if } i \in \mathsf{LTer}(\mathsf{F}) \ 0 & ext{otherwise.} \end{cases}$$

Proof. Uniqueness by induction on |F|. For existence, we can give a direct combinatorial definition in terms of certain colorings of F, and check that it works... By iteration one gets:

Corollary. (Duality) For $F, G \in$ For, we have

Constant term of
$$\mathsf{T}_F(\mathfrak{P}_G) = egin{cases} 1 & ext{if } G = F \\ 0 & ext{otherwise.} \end{cases}$$

Explicit construction of \mathfrak{P}_F : Let $\phi_F(v) =$ label of the leaf at the end of its left branch of $v \in IN(F)$, an internal node. Then

$$\mathfrak{P}_{\mathsf{F}} \coloneqq \sum_{f: \mathrm{IN}(\mathsf{F}) \to \mathbb{Z}_{>0}} \prod_{\mathsf{v} \in \mathrm{IN}(\mathsf{F})} \mathsf{x}_{f(\mathsf{v})}$$

where the sum is over all f whose values are weakly increasing down left edges, strictly increasing down right edges, and such that $f(v) \le \phi_F(v)$ for all v.

Back to Example

Some polynomials \mathfrak{P}_F $x_1^2 x_2 + x_1^2 x_3$ 3 2 1 3 x_{1}^{2} $\mathbf{X}_1 \mathbf{X}_2$ × 4 ★ 4 × 3 × 2 × 3 2 2 1 **X**₁ ×− 4 × 3 × 2 1 1 3

ightarrow Nice bases of various spaces:

• \mathfrak{P}_F is quasisymmetric in x_1, \ldots, x_n if and only F has a unique terminal node at i = n.

Proposition. If so, \mathfrak{P}_F is a fundamental quasisymmetric polynomial $F_{\alpha}(x_1, \dots, x_n)$.

ightarrow Nice bases of various spaces:

• \mathfrak{P}_F is quasisymmetric in x_1, \ldots, x_n if and only F has a unique terminal node at i = n.

Proposition. If so, \mathfrak{P}_F is a fundamental quasisymmetric polynomial $F_{\alpha}(x_1, \dots, x_n)$.

• $(\mathfrak{P}_F)_F$ is an integral basis of Pol. More precisely, they form a basis of Pol_n if $F \in \operatorname{For}$ has all terminal nodes $\leq n$.

\rightarrow Nice bases of various spaces:

• \mathfrak{P}_F is quasisymmetric in x_1, \ldots, x_n if and only F has a unique terminal node at i = n.

Proposition. If so, \mathfrak{P}_F is a fundamental quasisymmetric polynomial $F_{\alpha}(x_1, \dots, x_n)$.

- $(\mathfrak{P}_F)_F$ is an integral basis of Pol. More precisely, they form a basis of Pol_n if $F \in \operatorname{For}$ has all terminal nodes $\leq n$.
- Let $\operatorname{QSym}_n^+ \subset \operatorname{Pol}_n^-$ be the ideal generated by the $f \in \operatorname{QSym}_n^-$ with f(0) = 0.

 $\{1, ..., n\}.$

Proposition. The \mathfrak{P}_F for $F \in \operatorname{For}_n$ project to a basis of the coinvariant space $\operatorname{Pol}_n/\operatorname{QSym}_n^+$. This means that all nontrivial leaves are in

ightarrow Nice bases of various spaces:

• \mathfrak{P}_F is quasisymmetric in x_1, \ldots, x_n if and only F has a unique terminal node at i = n.

Proposition. If so, \mathfrak{P}_F is a fundamental quasisymmetric polynomial $F_{\alpha}(x_1, \dots, x_n)$.

- $(\mathfrak{P}_F)_F$ is an integral basis of Pol. More precisely, they form a basis of Pol_n if $F \in$ For has all terminal nodes $\leq n$.
- Let $\operatorname{QSym}_n^+ \subset \operatorname{Pol}_n^-$ be the ideal generated by the $f \in \operatorname{QSym}_n^-$ with f(0) = 0.

 $\{1, ..., n\}.$

Proposition. The \mathfrak{P}_F for $F \in \operatorname{For}_n$ project to a basis of the coinvariant space $\operatorname{Pol}_n/\operatorname{QSym}_n^+$. This means that all nontrivial leaves are in

ightarrow Positivity results

- By their combinatorial definition, the \mathfrak{P}_F have positive coefficients.
- The structure constants $\mathfrak{P}_F \mathfrak{P}_G = \sum_H d_{FG}^H \mathfrak{P}_H$ are positive. This can be proved combinatorially.

(**Key**: Leibniz rule $T_i(fg) = T_i(f)R_{i+1}(g) + R_i(f)T_i(g)$.)

Schubert polynomials

The Schubert polynomials \mathfrak{S}_w form a basis in $\mathbb{Z}[x_1, x_2, ...]$, indexed by permutations. **Ex** ($w \in S_3$) $\mathfrak{S}_{123} = 1$ $\mathfrak{S}_{213} = x_1$ $\mathfrak{S}_{321} = x_1^2 x_2$ $\mathfrak{S}_{231} = x_1 x_2$ $\mathfrak{S}_{231} = x_1 x_2$

Schubert polynomials

The Schubert polynomials \mathfrak{S}_w form a basis in $\mathbb{Z}[x_1, x_2, ...]$, indexed by permutations.

Ex $(w \in S_3)$ $\mathfrak{S}_{213} = x_1$ $\mathfrak{S}_{321} = x_1^2 x_2$ $\mathfrak{S}_{123} = 1$ $\mathfrak{S}_{213} = x_1$ $\mathfrak{S}_{321} = x_1^2 x_2$ $\mathfrak{S}_{132} = x_1 + x_2$ $\mathfrak{S}_{312} = x_1^2$ $\mathfrak{S}_{231} = x_1 x_2$

Origin: \mathfrak{S}_w encodes the (Chow/cohomology) class of the Schubert subvariety X_w (inside the full flag variety). (Lascoux-Schützenberger)

Schubert polynomials

The Schubert polynomials \mathfrak{S}_w form a basis in $\mathbb{Z}[x_1, x_2, ...]$, indexed by permutations.

Ex $(w \in S_3)$ $\mathfrak{S}_{213} = x_1$ $\mathfrak{S}_{321} = x_1^2 x_2$ $\mathfrak{S}_{123} = 1$ $\mathfrak{S}_{213} = x_1$ $\mathfrak{S}_{321} = x_1^2 x_2$ $\mathfrak{S}_{132} = x_1 + x_2$ $\mathfrak{S}_{312} = x_1^2$ $\mathfrak{S}_{231} = x_1 x_2$

Origin: \mathfrak{S}_w encodes the (Chow/cohomology) class of the Schubert subvariety X_w (inside the full flag variety). (Lascoux-Schützenberger)

 $S_{\infty} = \lim_{n} S_{n} = \{ \text{Permutations } w \text{ of } \{1, 2, ...\} \text{ such that } w(i) = i \text{ for } i \text{ large enough} \}.$ Define the divided difference $\partial_{i} = \frac{\text{id} - s_{i}}{x_{i} - x_{i+1}}$ on Pol.

Definition-Theorem. The Schubert polynomials \mathfrak{S}_w for $w \in S_\infty$, are the unique family of homogenous polynomials in Pol such that $\mathfrak{S}_{id} = 1$ and

$$\partial_i \mathfrak{S}_w = egin{cases} \mathfrak{S}_{\mathsf{w}\mathsf{s}_i} & ext{if } i \in \mathsf{Des}(w), \ 0 & ext{otherwise}. \end{cases}$$

Positivity of Schubert polynomials

A direct check shows:

$$\mathsf{T}_i=\mathsf{R}_i\partial_i$$

Now for $f \in \text{Pol with } f(0) = 0$,

$$f = \sum_{i=1}^{\infty} (R_{i+1}(f) - R_i(f)) + R_1(f)$$

= $\sum_{i=1}^{\infty} x_i T_i(f) + R_1(f) = \sum_{i=1}^{\infty} x_i R_i \partial_i(f) + R_1(f)$

Choose $f = \mathfrak{S}_w$ with $w \neq id$

$$\mathfrak{S}_w = \sum_{i \in \mathsf{Des}(w)} x_i \mathsf{R}_i(\mathfrak{S}_{ws_i}) + \mathsf{R}_1(\mathfrak{S}_w).$$

Positivity of Schubert polynomials

A direct check shows:

$$\mathsf{T}_i=\mathsf{R}_i\partial_i$$

Now for $f \in \text{Pol with } f(0) = 0$,

f

$${\sf F} = \sum_{i=1}^{\infty} ({\sf R}_{i+1}(f) - {\sf R}_i(f)) + {\sf R}_1(f)$$

 $= \sum_{i=1}^{\infty} x_i {\sf T}_i(f) + {\sf R}_1(f) = \sum_{i=1}^{\infty} x_i {\sf R}_i \partial_i(f) + {\sf R}_1(f)$

Choose $f = \mathfrak{S}_w$ with $w \neq id$

$$\mathfrak{S}_w = \sum_{i \in \mathsf{Des}(w)} x_i \mathsf{R}_i(\mathfrak{S}_{ws_i}) + \mathsf{R}_1(\mathfrak{S}_w).$$

- This is a **new recurrence**.
- Probably the simplest proof that \mathfrak{S}_w has positive coefficients.
- Can be interpreted combinatorially on pipe dreams.