Young–Fibonacci Character Tables

Soichi OKADA (Nagoya University)

93rd Séminaire Lotharingien de Combinatoire Pocinho, March 24, 2025

Motivation

- Stanley introduced the notion of differential posets, as a generalization of Young's lattice of integer partitions.
- \bullet Young's lattice $\mathbb Y$ and the Young–Fibonacci lattice $\mathbb Y\mathbb F$ are the extreme examples of differential posets.
- \bullet Young's lattice $\mathbb {Y}$ is associated with
 - symmetric groups,
 - ring of symmetric functions,
 - character rings of symmetric groups.

Question Are there similar algebraic structures associated with the Young–Fibonacci lattice YF?

Plan

- 1. Differential posets
- 2. Properties of character table of symmetric groups
- 3. Young–Fibonacci algebras and $\mathbb{Y}\mathbb{F}\text{-analogue}$ of the ring of symmetric functions
- 4. \mathbb{YF} -character tables
- 5. \mathbb{YF} -character rings

Notations

Let (P, \leq) be a partially ordered set (poset for short).

- Let $x, y \in P$. We say that x is covered by y, denoted by $x \lt y$, if $x \lt y$ and there is no $z \in P$ such that $x \lt z \lt y$.
- For $x \in P$, we put

 $C^+(x) = \{y \in P : x \lessdot y\}, \qquad C^-(x) = \{y \in P : y \lessdot x\}.$

Differential posets

Definition (Stanley) A poset P is called differential if it satisfies the following three conditions:

(1) P is a graded poset with $\#P_n < \infty$ for n = 0, 1, 2, ..., and has the minimum element $\widehat{0}$.

(2) If $x \neq y$ in P, then $\#(C^+(x) \cap C^+(y)) = \#(C^-(x) \cap C^-(y))$. (3) If $x \in P$, then $\#C^+(x) = 1 + \#C^-(x)$.

Let P be a graded poset satisfying Condition (1) above. Let $\mathbb{C}P$ be the complex vector space with a basis P and define linear maps $U, D : \mathbb{C}P \to \mathbb{C}P$ by

$$Ux = \sum_{y \in C^+(x)} y, \quad Dx = \sum_{z \in C^-(x)} z.$$

Proposition (Stanley)

P is differential $\iff DU - UD = I$.

Young's lattice $\ensuremath{\mathbb{Y}}$

We define a partital ordering \geq on the set $\mathbb {Y}$ of all partitions by

 $\lambda \ge \mu \iff \lambda_i \ge \mu_i (i = 1, 2, \dots) \iff D(\lambda) \supset D(\mu).$

The resulting poset \mathbb{Y} , called Young's lattice, is a differential poset.

Young–Fibonacci lattice \mathbb{YF}

The Young–Fibonacci lattice is the set \mathbb{YF} of all finite words of 1 and 2, with the partial order given by the following covering relations:

$$C^{-}(1v) = \{v\}, \quad C^{-}(2v) = C^{+}(v).$$

Then \mathbb{YF} is a differential poset.

Remark $\# \mathbb{YF}_n$ is the *n*th Fibonacci number.

Representation theory of symmetric groups

Let \mathfrak{S}_n be the symmetric group of n letters $\{1, 2, \ldots, n\}$. It is classically known that

• The irreducible representations of \mathfrak{S}_n over \mathbb{C} are indexed by partitions of n:

$$\operatorname{Irr}(\mathfrak{S}_n) \longleftrightarrow \mathbb{Y}_n, \qquad [S^{\lambda}] \longleftrightarrow \lambda,$$

where $Irr(\mathfrak{S}_n)$ is the set of isomorphism classes of irrducible repsentations of \mathfrak{S}_n , and \mathbb{Y}_n is the set of partitions of n.

- dim $S^{\lambda} = f^{\lambda}$ = number of standard tableaux of shape λ .
- The restriction of S^λ to the subgroup $\mathfrak{S}_{n-1}=\{\sigma\in\mathfrak{S}_n:\sigma(n)=n\}$ is decomposed as

$$\operatorname{Res}_{\mathfrak{S}_{n-1}}^{\mathfrak{S}_n} S^{\lambda} \cong \bigoplus_{\mu \lessdot \lambda} S^{\mu}.$$

Ring of symmetric functions

Let $R(\mathfrak{S}_n)$ be the Grothendieck group of representations of \mathfrak{S}_n :

$$R(\mathfrak{S}_n) = \bigoplus_{\lambda \in \mathbb{Y}_n} \mathbb{Z}[S^{\lambda}]$$

The direct sum of the Grothendieck groups

$$R(\mathfrak{S}_{\bullet}) = \bigoplus_{n \ge 0} R(\mathfrak{S}_n)$$

has a structure of commutative, associative, graded ring with respect to

$$[V] \circ [W] = \left[\operatorname{Ind}_{\mathfrak{S}_m \times \mathfrak{S}_n}^{\mathfrak{S}_{m+n}}(V \boxtimes W) \right],$$

where V and W are representations of \mathfrak{S}_m and \mathfrak{S}_n respectively. Moreover, the graded ring $R(\mathfrak{S}_{\bullet})$ is isomorphic to the ring Λ of symmetric functions via the correspondence $[S^{\lambda}] \mapsto s_{\lambda}$ (Schur function).

 $R(\mathfrak{S}_{\bullet}) \cong \Lambda, \qquad [S^{\lambda}] \longleftrightarrow s_{\lambda}.$

Character table of symmetric groups

The character table $(\chi_{\alpha}^{\lambda})_{\alpha,\lambda\in\mathbb{Y}_n}$ is the transition matrix between Schur functions $\{s_{\lambda}\}_{\lambda\in\mathbb{Y}_n}$ and power-sum functions $\{p_{\alpha}\}_{\alpha\in\mathbb{Y}_n}$:

$$p_{\alpha} = \sum_{\lambda \in \mathbb{Y}_n} \chi_{\alpha}^{\lambda} s_{\lambda}.$$

If we define U and $D: \Lambda \to \Lambda$ by

$$Us_{\lambda} = \sum_{\mu \geqslant \lambda} s_{\mu}, \quad Ds_{\lambda} = \sum_{\nu \lessdot \lambda} s_{\nu},$$

and $m_1(\alpha)$ denotes the multiplicity of 1 in a partition α , then

$$Up_{\alpha} = p_{\alpha \cup (1)}, \quad Dp_{\alpha} = m_1(\alpha)p_{\alpha \setminus (1)}.$$

Moreover, we have

$$\langle s_{\lambda}, s_{\mu} \rangle = \delta_{\lambda,\mu}, \quad \langle p_{\alpha}, p_{\beta} \rangle = \delta_{\alpha,\beta} z_{\alpha},$$

where $z_{\alpha} = \prod_{i \ge 1} i^{m_i} m_i!$ for $\alpha = 1^{m_1} 2^{m_2} \cdots$.

Properties of character table of symmetric groupsPropositionWe have

$$\sum_{\alpha \in \mathbb{Y}_n} \frac{1}{z_{\alpha}} \chi_{\alpha}^{\lambda} \chi_{\alpha}^{\mu} = \delta_{\lambda,\mu}, \quad \sum_{\lambda \in \mathbb{Y}_n} \chi_{\alpha}^{\lambda} \chi_{\beta}^{\lambda} = \delta_{\alpha,\beta} z_{\alpha},$$

and

$$\frac{n!}{z_{\alpha}} \in \mathbb{N}, \quad \sum_{\alpha \in \mathbb{Y}_n} \frac{n!}{z_{\alpha}} = n!,$$

where \mathbb{N} is the set of nonnegative integers.

Proposition

$$g_{\lambda,\mu}^{\nu} = \sum_{\alpha \in Y_n} \frac{1}{z_{\alpha}} \chi_{\alpha}^{\lambda} \chi_{\alpha}^{\mu} \chi_{\alpha}^{\nu} \in \mathbb{N},$$

and the degree n part Λ_n has a structure of fusion algebra at algebraic level with structure constants $g_{\lambda,\mu}^{\nu}$ with respect to Schur functions $\{s_{\lambda}\}_{\lambda\in\mathbb{Y}_n}$.

Fusion algebra at algebraic level (1/2)

Definition (Bannai) Let \mathcal{A} be an commutative associative algebra over \mathbb{C} with basis a_1, \ldots, a_r and structure constants $A_{i,i}^k$ defined by

$$a_i a_j = \sum_{k=1}^r A_{i,j}^k a_k.$$

We call \mathcal{A} a fusion algebra at algebraic level if the following four conditions are satisfied:

(a) A^k_{i,j} ∈ ℝ;
(b) There exists an involutive bijection [r] ∋ i ↦ i ∈ [r] such that
A^k_{i,j} = A^k_{i,j}, A^k_{i,j} = Aⁱ_{k,j};

(c) a₁ is the identity element of A;

(d) There exists a linear representation $\Delta : \mathcal{A} \to \mathbb{C}$ such that $\Delta(a_i)$ are positive real number for all $i \in [r]$.

Fusion algebra at algebraic level (2/2)

A fusion algebra \mathcal{A} is called strictly integral if

$$A_{i,j}^k \in \mathbb{N}, \quad \Delta(a_i) \in \mathbb{N}.$$

Let $\mathcal{A} = \langle a_1, \ldots, a_r \rangle$ and $\mathcal{B} = \langle b_1, \ldots, b_s \rangle$ be two fusion algebras. An algebra homomorphism $F : \mathcal{A} \to \mathcal{B}$ is called a homomorphism of fusion algebras if

• If $F(a_j) = \sum_{i=1}^{s} F_{i,j} b_i$, then $F_{i,j} \in \mathbb{R}$ and $F_{\widehat{i},\widehat{j}} = F_{i,j}$; • $\Delta_{\mathcal{B}} \circ F = \Delta_{\mathcal{A}}$.

We say that F is integral if \mathcal{A} and \mathcal{B} are strictly integral and $F_{i,j} \in \mathbb{N}$ for all i and j.

Character rings of finite groups

For a finite group G, let $R_{\mathbb{C}}(G)$ be the (complexified) Grothendieck group of finite-dimensional representations of G. Then $R_{\mathbb{C}}(G)$ is a strictly integral fusion algebra with respect to

- the product given by $[V] * [W] = [V \otimes_{\mathbb{C}} W];$
- the basis consisting of the classes of irreducible representations of G;
- the homomorphism Δ given by $\Delta([V]) = \dim V$.

The structure constants are given by

$$A_{[V],[W]}^{[U]} = \frac{1}{\#G} \sum_{g \in G} \chi_V(g) \chi_W(g) \chi_U(g^{-1}).$$

Moreover, if H is a subgroup of G, then the restriction map

$$\operatorname{Res}: R_{\mathbb{C}}(G) \to R_{\mathbb{C}}(H), \quad [V] \mapsto \left[\operatorname{Res}_{H}^{G} V\right]$$

is an integral homomorphism of fusion algebras.

Young–Fibonacci algebra

Theorem (Okada) Let \mathcal{F}_n be the associative algebra over \mathbb{C} defined by the following presentation:

generators :
$$E_1, E_2, \dots, E_{n-1}$$
,
relations : $E_i^2 = x_i E_i \ (i = 1, \dots, n-1)$,
 $E_{i+1} E_i E_{i+1} = E_{i+1} \ (i = 1, \dots, n-2)$,
 $E_i E_j = E_j E_i \ (\text{if } |i-j| \ge 2)$.

where $x = (x_1, x_2, ...)$ are complex parameters. If the parameters x are generic, then we have

(1) The algebra \mathcal{F}_n is a semisimple algebra of dimension n!, and its irreducible representations are indexed by words in \mathbb{YF}_n :

$$\begin{aligned}
\operatorname{Irr}(\mathcal{F}_n) &\longleftrightarrow & \mathbb{YF}_n \\
[V_v] &\longleftrightarrow & v
\end{aligned}$$

(2) For the inclusion $\mathcal{F}_{n-1} = \langle E_1, \ldots, E_{n-2} \rangle \subset \mathcal{F}_n$, we have

$$\operatorname{Res}_{\mathcal{F}_{n-1}}^{\mathcal{F}_n} V_v \cong \bigoplus_{u \lessdot v} V_u.$$

Direct sum of Grothendieck groups for $\mathbb{Y}\mathbb{F}\text{-algebras}$

Let $R(\mathcal{F}_n)$ be the Grothendieck group of representations of \mathcal{F}_n :

$$R(\mathcal{F}_n) = \bigoplus_{v \in \mathbb{YF}_n} \mathbb{Z}[V_v].$$

Then the direct sum of the Grothendieck groups

$$R(\mathcal{F}_{\bullet}) = \bigoplus_{n \ge 0} R(\mathcal{F}_n)$$

has a structure of associative graded ring with respect to

$$[V_u] \circ [V_v] = \left[\operatorname{Ind}_{\mathcal{F}_m \otimes \mathcal{F}'_n}^{\mathcal{F}_{m+n}} (V_u \boxtimes V'_v) \right],$$

where V_u and V_v are irreducible representations of \mathcal{F}_m and \mathcal{F}_n respectively, and V'_v is the corresponding irreducible representation of $\mathcal{F}'_n = \langle E_{m+1}, \ldots, E_{m+n-1} \rangle$.

$\mathbb{Y}\mathbb{F}\text{-analogue}$ of Schur functions

Let $R = \mathbb{Z}\langle X, Y \rangle$ be the noncommutative polynomial ring in two variables X and Y, which is equipped with a graded ring structure $R = \bigoplus_{n \ge 0} R_n$ given by $\deg X = 1$ and $\deg Y = 2$. We define \mathbb{YF} -Schur functions $s_v \in R$ inductively as follows:

$$s_{\emptyset} = 1, \quad s_{1v} = s_v X - \left(\sum_{z \leqslant v} s_z\right) Y, \quad s_{2v} = s_v Y.$$

Then $\{s_v : v \in \mathbb{YF}\}$ is a \mathbb{Z} -basis of $\mathbb{Z}\langle X, Y \rangle$,

Theorem (Okada) The correspondence $[V_v] \mapsto s_v$ ($v \in \mathbb{YF}$) gives a graded ring isomorphism $\varphi : R(\mathcal{F}_{\bullet}) \to R = \mathbb{Z}\langle X, Y \rangle$:

$$\begin{array}{rcl} R(\mathcal{F}_{\bullet}) &\cong & \mathbb{Z}\langle X, Y \rangle \\ [V_v] &\longmapsto & s_v \end{array}$$

Note that $\varphi([V_1]) = X$ and $\varphi([V_2]) = Y$.

$\mathbb{Y}\mathbb{F}\text{-analogue of power-sum functions}$

We define \mathbb{YF} -power-sum functions $p_v \in R$ inductively as follows:

 $p_{\emptyset} = 1$, $p_{1v} = p_v X$, $p_{2v} = p_v (X^2 - (m(v) + 2)Y)$, where m(v) is the number of 1's at the head of v. **Proposition** We have

 $Up_v = p_{1v}, \quad Dp_{1v} = m(1v)p_v, \quad Dp_{2v} = 0,$

where $U, D: R \rightarrow R$ are linear maps defined by

$$Us_v = \sum_{w \geqslant v} s_w, \quad Ds_v = \sum_{u \lessdot v} s_u.$$

Proposition If we define a bilinear form \langle , \rangle on R by $\langle s_{\lambda}, s_{\mu} \rangle = \delta_{\lambda,\mu}$, then we have

$$\langle p_{\alpha}, p_{\beta} \rangle = \delta_{\alpha, \beta} z_{\alpha, \beta}$$

where

$$z_{\alpha} = m_1!(m_2 + 2)m_2!\cdots(m_{r+1} + 2)m_{r+1}!$$

for $\alpha = 1^{m_1} 2 1^{m_2} 2 \cdots 2 1^{m_r+1}$.

$\mathbb{Y}\mathbb{F}\text{-analogue}$ of the character table

We define a "YF-character table" $X_n = (\chi^v_\alpha)_{\alpha, v \in YF_n}$ by

$$p_{\alpha} = \sum_{v \in \mathbb{YF}_n} \chi^v_{\alpha} s_v.$$

Example If n = 5, then

	221	212	2111	122	1211	1121	1112	11111	
221	/ 1	-1	-1	0	0	-1	1	1 λ	١
212	0	1	—1	-1	1	0	-1	1	
2111	-2	-1	-1	3	3	2	1	1	
122	0	0	0	1	-1	0	-1	1	
1211	0	0	0	-1	-1	2	1	1	
1121	-1	1	1	0	0	-1	1	1	
1112	0	-2	2	-1	1	0	-1	1	
11111	$\sqrt{8}$	4	4	3	3	2	1	1 ,	/

Note that this "character table" does not come from any finite groups.

Properties of YF-character table

Proposition The \mathbb{YF} -character table X_n satisfies the orthogonality relations:

$$\sum_{\alpha \in \mathbb{YF}_n} \frac{1}{z_\alpha} \chi^v_\alpha \chi^w_\alpha = \delta_{v,w}, \quad \sum_{v \in \mathbb{YF}_n} \chi^v_\alpha \chi^v_\beta = \delta_{\alpha,\beta} z_\alpha.$$

Moreover we have

$$\frac{n!}{z_{\alpha}} \in \mathbb{Z}, \quad \sum_{\alpha \in \mathbb{YF}_n} \frac{n!}{z_{\alpha}} = n!.$$

Remark We define $F(\sigma) \in \mathbb{YF}_n$ ($\sigma \in \mathfrak{S}_n$) inductively as follows. Let $F(e) = \emptyset$ for $e \in \mathfrak{S}_0$, F(e) = 1 for $e \in \mathfrak{S}_1$, and $\int F(\sigma_2 \dots \sigma_n) 1$ if $\sigma_1 < \sigma_2$,

$$F(\sigma_1 \sigma_2 \dots \sigma_n) = \begin{cases} (\sigma_2 \dots \sigma_n) \\ F(\sigma_3 \dots \sigma_n) 2 & \text{if } \sigma_1 > \sigma_2. \end{cases}$$

Then we have

$$\#\{\sigma \in \mathfrak{S}_n : F(\sigma) = \alpha\} = \frac{n!}{z_\alpha} \quad (\alpha \in \mathbb{YF}_n).$$

YF-fusion ring (YF-analogue of the character ring)

Using the $\mathbb{YF}\text{-charcter}$ table, we define $\mathbb{YF}\text{-}\mathsf{Kronecker}$ coefficients $g^w_{u,v}$ by

$$g_{u,v}^w = \sum_{\alpha \in \mathbb{YF}_n} \frac{1}{z_\alpha} \chi_\alpha^u \chi_\alpha^v \chi_\alpha^w.$$

Theorem (Okada) The degree n part R_n of $R_{\mathbb{C}} = \mathbb{C}\langle X, Y \rangle$ admits a structure of strictly integral fusion algebra with product

$$s_u * s_v = \sum_{w \in \mathbb{YF}_n} g_{u,v}^w s_w.$$

In particular, \mathbb{YF} -Kronecker coefficients $g_{u,v}^w$ are nonnegative integers. Moreover,

$$D: R_n \to R_{n-1}, \quad s_v \mapsto \sum_{u \lessdot v} s_u$$

is a surjective integral homomorphism of fusion algebras.

Reflection-extension of fusion algebras

Theorem (Okada) Let $\mathcal{A} = \langle a_1, \ldots, a_r \rangle$ and $\mathcal{B} = \langle b_1, \ldots, b_s \rangle$ be fusion algebras, and $F : \mathcal{A} \to \mathcal{B}$ be a surjective homomorphism of fusion algebras. Then the direct sum

$$\mathcal{C} = \mathcal{A} \oplus \mathcal{B}$$

admits a structure of fusion algebra with product defined by

$$(a,0) \cdot (a',0) = (aa',0), \quad (a,0) \cdot (0,b) = (0,F(a)b), (0,b) \cdot (0,b') = (F^*(bb'), (FF^* - I)(bb')),$$

where $F^* : \mathcal{B} \to \mathcal{A}$ is the linear map given by $F^*(b_i) = \sum_{j=1}^r F_{i,j}a_j$ with $F(a_j) = \sum_{i=1}^s F_{i,j}b_i$. Moreover, the map

$$G: \mathcal{C} \to \mathcal{A}, \quad G(a, b) = a + F^*(b)$$

is a surjective homomorphism of fusion algebras.