Commuting graphs of completely 0-simple semigroups

Tânia Paulista

NOVA FCT

The 93rd Séminaire Lotharingien de Combinatoire

CENTER FOR MATHEMATICS + APPLICATIONS

CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR

This work is funded by National Funds through the FCT - Fundação para a Ciência e a Tecnologia, I.P., under the scope of the projects UIDB/00297/2020 and UIDP/00297/2020 and the studentship 2021.07002.BD.

Let S be a finite non-commutative semigroup.

The **commuting graph** of *S*, denoted $\mathcal{G}(S)$, is the simple graph such that:

• $S \setminus Z(S)$ is the set of vertices, where

$$Z(S) = \{x \in S : xy = yx \text{ for all } y \in S\}.$$

• $\{x, y\}$ is an edge if and only if $x \neq y$ and xy = yx.

Completely 0-simple semigroups

Theorem (Rees–Suschkewitsch Theorem)

A semigroup S is completely 0-simple if and only if there exist a group G, index sets I and Λ , and a regular $\Lambda \times I$ matrix P with entries from G^0 such that $S \simeq \mathcal{M}_0[G; I, \Lambda; P]$. Let G be a group, I and Λ be index sets, and P be a regular $\Lambda \times I$ matrix with entries from G^0 .

Let $p_{\lambda i}$ be the (λ, i) -th entry of P.

A 0-**Rees matrix semigroup over a group**, denoted $\mathcal{M}_0[G; I, \Lambda; P]$, is the set $(I \times G \times \Lambda) \cup \{0\}$ with the multiplication

$$(i, x, \lambda)(j, y, \mu) = egin{cases} (i, x p_{\lambda j} y, \mu) & ext{if } p_{\lambda j} \neq 0, \ 0 & ext{if } p_{\lambda j} = 0, \end{cases}$$

$$0(i, x, \lambda) = (i, x, \lambda)0 = 00 = 0.$$

Lemma

Let P and Q be regular $\Lambda \times I$ matrices with entries from G^0 . If for all $i \in I$ and $\lambda \in \Lambda$ we have $p_{\lambda i} = 0$ if and only if $q_{\lambda i} = 0$, then the graphs $\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])$ and $\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; Q])$ are isomorphic.

Example

Let $e, g, h \in G$.

Reordering columns and rows implies isomorphism

Lemma

Let Q be the matrix obtained from P by reordering the columns and rows of P. Then the graphs $\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])$ and $\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; Q])$ are isomorphic.

$|I| = |\Lambda| = 1$: characterization of $\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])$

- $\mathcal{M}_0[G; I, \Lambda; P] \simeq G^0$.
- Suppose that G is non-abelian. Then the graphs G(M₀[G; I, Λ; P]) and G(G) are isomorphic.

|I| > 1 or $|\Lambda| > 1$, P has no zeros: connectedness

- $Z(\mathcal{M}_0[G; I, \Lambda; P]) = \{0\}.$
- $\mathcal{M}_0[G; I, \Lambda; I]$ is non-commutative.

Theorem (P., 2024)

- $\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])$ is not connected.
- The connected components of G(M₀[G; I, Λ; P]) are the graphs induced by {i} × G × {λ}, i ∈ I, λ ∈ Λ.
- Let C be a connected component of $\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])$. Then

$$\mathcal{C} \simeq egin{cases} \mathcal{K}_{|G|} & \mbox{if G is abelian,} \ \mathcal{K}_{|Z(G)|}
abla \mathcal{G}(G) & \mbox{if G is non-abelian.} \end{cases}$$

|I| > 1 or $|\Lambda| > 1$, *P* has zeros: connectedness

Theorem (P., 2024)

The following conditions are equivalent:

- $\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])$ is connected.
- For all $i \in I$ and $\lambda \in \Lambda$ the 0-closure starting at (λ, i) is P.
- For some $i \in I$ and $\lambda \in \Lambda$ the 0-closure starting at (λ, i) is P.

Identifying connected components of $\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])$

Identifying connected components of $\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])$

The subgraph induced by $\{2,4\} \times G \times \{1,3,4\}$ is a connected component of $\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P]).$

The subgraph induced by $\{2,4\} \times G \times \{1,3,4\}$ is a connected component of $\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P]).$

The subgraph induced by $(\{1\} \times G \times \{1,3,4\})$ $\cup (\{2,4\} \times G \times \{2\})$ is a connected component of $\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P]).$

The subgraph induced by $(\{1\} \times G \times \{1,3,4\})$ $\cup (\{2,4\} \times G \times \{2\})$ is a connected component of $\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P]).$

Identifying connected components of $\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])$

Example (cont.)

The subgraph induced by $\{2\} \times G \times \{7\}$ is a connected component of $\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])$.

Identifying connected components of $\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])$

Example (cont.)

The subgraph induced by $\{2\} \times G \times \{7\}$ is a connected component of $\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])$.

|I| > 1 or $|\Lambda| > 1$, P has zeros: diameter

Let H = (V, E) be a simple graph.

• The **diameter** of *H*, denoted diam(*H*), corresponds to the maximum distance between vertices of *H*, that is,

$$\max\{d(u,v): u, v \in V\}.$$

• The diameter of *H* is finite if and only if *H* is connected.

Theorem (P., 2024) Suppose that $\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])$ is connected. Then

 $\operatorname{diam}(\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])) = \max\{\zeta(\lambda, i) : i \in I, \ \lambda \in \Lambda \text{ and } p_{\lambda i} = 0\}.$

|I| > 1 or $|\Lambda| > 1$, P has no zeros: clique number

Let H = (V, E) be a simple graph.

- A clique is a subset K ⊆ V such that {u, v} ∈ E, for all distinct u, v ∈ K.
- The clique number of H, denoted ω(H), is the largest integer r such that H has a clique K such that |K| = r.

Theorem (P., 2024)

$$\omega(\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])) = \begin{cases} |G| & \text{if } G \text{ is abelian,} \\ \omega(\mathcal{G}(G)) + |Z(G)| & \text{if } G \text{ is non-abelian.} \end{cases}$$

|I| > 1 or $|\Lambda| > 1$, *P* has zeros: clique number

Theorem (P., 2024)

• Suppose that G is abelian. If

$$\begin{bmatrix} \times & 0 & 0 \\ 0 & \times & 0 \\ 0 & 0 & \times \end{bmatrix}$$

is a submatrix of P and

$$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

are not submatrices of P, then

 $\omega(\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])) = 3|G|.$

|I| > 1 or $|\Lambda| > 1$, *P* has zeros: clique number

Theorem (cont.) (P., 2024)

• Suppose that G is abelian. If

$$\begin{bmatrix} \times & 0 \\ 0 & \times \end{bmatrix}$$

is a submatrix of P and

$$\begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

are not submatrices of P, then

$$\omega(\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])) = 2|G|.$$

|I| > 1 or $|\Lambda| > 1$, *P* has zeros: clique number

Theorem (cont.) (P., 2024)

• For the remaining cases, we have

 $\omega(\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])) = |G| \cdot \max\{nm : 0_{n \times m} \text{ is a submatrix of } P\}.$

Let H = (V, E) be a simple graph.

• The chromatic number of H, denoted $\chi(H)$, is the minimum number of colours necessary to colour the vertices of H in such a way that no adjacent vertices have the same colour.

Theorem (P., 2024)

$$\chi(\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])) = \begin{cases} |G| & \text{if } G \text{ is abelian,} \\ \chi(\mathcal{G}(G)) + |Z(G)| & \text{if } G \text{ is non-abelian.} \end{cases}$$

|I| > 1 or $|\Lambda| > 1$, P has zeros: chromatic number

Theorem (P., 2025)

• Suppose that $\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])$ is connected. Then

 $\chi(\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])) \leqslant |G| \cdot |\{(i, \lambda) \in I \times \Lambda : p_{\lambda i} = 0\}|.$

• Suppose that $\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])$ is not connected. Then

$$\chi(\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])) \\ \leqslant |G| \cdot \max\{2, z_1, \dots, z_n\},$$

where for each $i \in \{1, \ldots, n\}$

$$z_{i} = \left| \{ (i, \lambda) \in I \times \Lambda : p_{\lambda i} = 0 \\ and p_{\lambda i} \text{ is an entry of } A_{i} \} \right|$$

|I| > 1 or $|\Lambda| > 1$, P has no zeros: girth

Let H = (V, E) be a simple graph.

• The **girth** of *H*, denoted girth(*H*), is the length of a shortest cycle contained in *H*.

Theorem (P., 2024) $\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])$ has cycles if and only if $|G| \ge 3$, in which case

 $\operatorname{girth}(\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])) = 3.$

|I|>1 or $|\Lambda|>1$, P has zeros: girth

Theorem (P., 2024)

• Suppose that $|G| \ge 3$. Then

 $girth(\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])) = 3.$

 Suppose that |G| = 2. Then G(M₀[G; I, Λ; P]) contains cycles if and only if P contains more than one zero entry, in which case

 $girth(\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])) = 3.$

|I| > 1 or $|\Lambda| > 1$, P has zeros: girth

Theorem (cont.) (P., 2024)

 Suppose that |G| = 1. Then G(M₀[G; I, Λ; P]) contains cycles if and only if at least one of the following matrices is a submatrix of P.

$$\operatorname{girth}(\mathcal{G}(\mathcal{M}_{0}[G; I, \Lambda; P])) = 3$$
$$\begin{bmatrix} 0 & 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & \times & 0 \\ 0 & 0 & \times \end{bmatrix}$$

$$\operatorname{girth}(\mathcal{G}(\mathcal{M}_{0}[G; I, \Lambda; P])) = 4$$

$$\begin{bmatrix} 0 & 0 & \times \\ \times & \times & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & \times \\ 0 & \times \\ \times & 0 \\ \times & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & \times \\ 0 & 0 \\ \times & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & \times \\ 0 & 0 \\ \times & 0 \end{bmatrix}$$

Let S be a finite non-commutative semigroup.

- A path $a_1 a_2 \cdots a_k$ in $\mathcal{G}(S)$ is called a **left path** if $a_1 \neq a_k$ and $a_1a_i = a_ka_i$, for all $i \in \{1, \dots, k\}$.
- Suppose G(S) has a left path. The knit degree of S, denoted kd(S), is the length of a shortest left path in G(S).

Theorem (P., 2024) $\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])$ contains no left paths.

|I| > 1 or $|\Lambda| > 1$, P has zeros: knit degree

Theorem (P., 2024)

 $\mathcal{G}(\mathcal{M}_0[G; I, \Lambda; P])$ contains left paths if and only if at least one of the following conditions is satisfied:

- |G| > 1.
- At least one of the following matrices is a submatrix of P.

$$\begin{bmatrix} 0 & 0 \end{bmatrix} \quad \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

In this case,

$$kd(\mathcal{M}_0[G; I, \Lambda; P]) = 1.$$

Theorem (Rees-Suschkewitsch Theorem)

A semigroup S is completely 0-simple if and only if there exist a group G, index sets I and A, and a regular $\Lambda \times I$ matrix P with entries from G^0 such that $S \simeq \mathcal{M}_0[G; I, \Lambda; P]$.

Commuting graph of completely 0-simple semigroups

Theorem (P., 2024)

- For each $n \in \mathbb{N}$, there is a completely 0-simple semigroup S such that $\omega(\mathcal{G}(S)) = n$.
- For each $n \in \mathbb{N}$, there is a completely 0-simple semigroup S such that $\chi(\mathcal{G}(S)) = n$.
- For each n ∈ N such that n ≥ 2, there is a completely 0-simple semigroup S such that diam(G(S)) = n.
- Let S be a finite non-commutative completely 0-simple semigroup. If $\mathcal{G}(S)$ contains cycles, then $\operatorname{girth}(\mathcal{G}(S)) \in \{3,4\}$.
- Let S be a finite non-commutative completely 0-simple semigroup. If $\mathcal{G}(S)$ contains left paths, then kd(S) = 1.

Thank you!