
Set-Valued Analysis 10: 165–183, 2002.
© 2002 Kluwer Academic Publishers. Printed in the Netherlands.

165

Linearized Elasticity as �-Limit of Finite Elasticity

G. DAL MASO1, M. NEGRI1 and D. PERCIVALE2

1International School for Advanced Studies (SISSA), Via Beirut 2, 34014 Trieste, Italy
2Università degli Studi di Genova, Dipartimento di Metodi e Modelli Matematici,
Piazzale Kennedy, 16129 Genova, Italy

(Received: 18 December 2001)

Abstract. Linearized elastic energies are derived from rescaled nonlinear energies by means of
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1. Introduction

The stored energy of a hyperelastic material can be written in terms of the defor-
mation gradient ∇v as∫

�

W(x, ∇v) dx, (1.1)

where � ⊂ Rn is the reference configuration, and the energy density W(x, F ) is
a function defined for x ∈ � and F in the space Mn×n of n × n matrices. The stress
tensor corresponding to the deformation gradient ∇v is then given by T (x, ∇v) =
∂F W(x, ∇v).

By frame indifference we can express W(x, ∇v) in terms of the right Cauchy–
Green strain tensor C(v) := ∇vT∇v or, equivalently, in terms of the Green–
St. Venant tensor 1

2 (C(v) − I ), where I is the identity matrix. Thus we can write
W(x, ∇v) = V (x, 1

2(C(v) − I)) for a suitable function V (x, E) defined for x ∈ �

and E in the space Mn×n
sym of symmetric n × n matrices.

We prefer to express these quantities in terms of the displacement u, defined by
u(x) := v(x) − x. As ∇v = I + ∇u the Green–St. Venant tensor 1

2(C(v) − I ) can
be written as E(u) := e(u)+ 1

2C(u), where e(u) := 1
2 (∇uT+∇u) is the symmetric

part of the displacement gradient.
We assume that the reference configuration is stress free, i.e., T (x, I ) = 0, and

thus ∂F W(x, I ) = ∂EV (x, 0) = 0. As W(x, ·) and V (x, ·) are defined up to an
additive constant, it is not restrictive to assume also that W(x, 0) = V (x, 0) = 0.
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Since the displacement u = 0 is an equilibrium configuration when no external
loads are applied, it is natural to expect small displacements for small external
loads. It is then convenient to rescale the variables and to write the load as ε� and
the displacement as εu for a suitable (adimensional) small parameter ε > 0. Thus
we have v(x) = x+εu(x), and the equilibrium configurations are stationary points
of the total energy∫

�

W(x, I + ε∇u) dx − ε2
∫

�

�u dx. (1.2)

As

W(x, I + ε∇u) = V
(
x, εe(u) + 1

2ε2C(u)
)
, (1.3)

if ∇u is bounded we have, by Taylor expansion,

W(x, I + ε∇u) = ε2 1
2∂2

EV (x, 0)[e(u), e(u)] + o(ε2), (1.4)

where ∂2
EV (x, ·) denotes the second derivative of V (x, ·) on Mn×n

sym , and o(ε2) is
uniform with respect to x. The tensor A(x) := ∂2

EV (x, 0) is called the elasticity
tensor, and the linearized elastic energy is then defined as

1

2

∫
�

A(x)[e(u), e(u)] dx.

The previous discussion shows that, if we rescale the total energy given by (1.2),
we obtain

lim
ε→0

1

ε2

(∫
�

W(x, I + ε∇u) dx − ε2
∫

�

�u dx

)

= 1

2

∫
�

A(x)[e(u), e(u)] dx −
∫

�

�u dx (1.5)

for every Lipschitz function u. This equality is usually considered as the main
justification of linearized elasticity.

Note that this argument does not prove that the minimizers uε of (1.2), sat-
isfying suitable boundary conditions, actually converge to the minimizer of the
corresponding limit problem

1

2

∫
�

A(x)[e(u), e(u)] dx −
∫

�

�u dx.

Indeed we shall see that this is not always true (see Example 3.5).
In this paper, given a load � ∈ L2(�, Rn), a boundary value g ∈ W 1,∞(�, Rn),

and a closed subset ∂�D of ∂� with Hn−1(∂�D) > 0, we consider the minimum
problems

min
u∈H 1

g,∂�D

{∫
�

W(x, I + ε∇u) dx − ε2
∫

�

�u dx

}
, (1.6)
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where H 1
g,∂�D

denotes the closure in H 1(�, Rn) of the space of functions u ∈
W 1,∞(�, Rn) such that u = g on ∂�D. Suppose that, for every ε > 0, there exists
a solution uε of (1.6) which satisfies the orientation preserving condition det(I +
ε∇uε) > 0. Under some natural hypotheses on the function V , we prove that uε

converges weakly in H 1(�, Rn) to the (unique) minimizer u0 of the problem

min
u∈H 1

g,∂�D

{
1

2

∫
�

A(x)[e(u), e(u)] dx −
∫

�

�u dx

}
.

Moreover, we prove the convergence of the rescaled energies, i.e.,

lim
ε→0

1

ε2

{∫
�

W(x, I + ε∇uε) dx − ε2
∫

�

�uε dx

}

= 1

2

∫
�

A(x)[e(u0), e(u0)] dx −
∫

�

�u0 dx. (1.7)

More generally, the same results hold if det(I + ε∇uε) > 0 and∫
�

W(x, I + ε∇uε) dx − ε2
∫

�

�uε dx = Jε + o(ε2),

where Jε is the (possibly not attained) infimum of problem (1.6). This provides
a full variational justification of linearized elasticity.

These results are proved under the following additional hypotheses on V :

(a) inf|E|�ρ infx∈� V (x, E) > 0 for every ρ > 0;
(b) there exist α > 0 and ρ > 0 such that infx∈� V (x, E) � α|E|2 for every

|E| � ρ;

(c) lim inf|E|→+∞
1

|E| inf
x∈�

V (x, E) > 0.

These conditions say that 0 is the unique minimizer of V (x, ·) (with a uniform
estimate with respect to x) and that V (x, ·) grows more than quadratically near the
origin and more than linearly at infinity.

If (c) is replaced by the slightly stronger condition

(c′) lim inf
|E|→+∞

1

|E|p inf
x∈�

V (x, E) > 0

for some exponent p > 1, then we prove also that uε converges to u0 strongly in
W 1,q(�, Rn) for every q < 2.

The proof is obtained in two steps. First we show that the sequence uε is com-
pact in the weak topology of H 1(�, Rn), using a recent lemma proved by Friesecke,
James and Müller [4]. Then we prove that the functionals

Fε(u) = 1

ε2

∫
�

V
(
x, εe(u) + 1

2ε2C(u)
)

dx

�-converge to the functional

F (u) = 1

2

∫
�

A(x)[e(u), e(u)] dx.
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These two facts lead to the weak convergence of the solutions in H 1(�, Rn) and
to the convergence of the rescaled energies expressed by (1.7). The strong conver-
gence in W 1,q(�, Rn) for q < 2 is obtained from (1.7).

2. The Main Results

Let the reference configuration be an open, bounded, connected domain � ⊂ Rn,
for n � 2, having Lipschitz boundary. Let |F |2 = ∑

i,j |Fij |2 be the norm in the
space Mn×n and let SO(n) be the subset of rotations (orthogonal matrices with
positive determinant).

We will assume that the material is hyperelastic, i.e., there exists a stored energy
density W : � × Mn×n → [0, +∞] such that for a.e. x ∈ � we have

W(x, F ) = +∞ if det F � 0 (2.1)

(orientation preserving condition), and such that for a.e. x ∈ �

W(x, F ) < +∞ (2.2)

for F in a neighborhood U of the identity I independent of x (so that small defor-
mations of the reference configuration have finite energy). By frame indifference
the stored energy density can be written as

W(x, F ) = V
(
x, 1

2 (F TF − I )
)

(2.3)

for every F with det F > 0, where F T denotes the transpose of the matrix F . We
suppose that V : � × Mn×n

sym → R is Ln × Bn-measurable (where Ln and Bn are
the σ -algebras of Lebesgue measurable and Borel measurable subsets of Rn) and
that, for some δ > 0, the function B → V (x, B) is of class C2 for |B| < δ and
for a.e. x ∈ �. Moreover, we will assume that the reference configuration has zero
energy and is stress free, which means that for a.e. x ∈ �

V (x, 0) = 0, ∂EV (x, 0) = 0. (2.4)

Finally we require the coercivity assumptions (a), (b), (c) and for a.e. x ∈ � the
upper bound

|∂2
EV (x, E)[T , T ]| � 2γ |T |2 for |E| < δ and T ∈ Mn×n

sym , (2.5)

for some constant γ > 0 independent of x.
From (2.4) it is easy to deduce by Taylor expansion that for a.e. x ∈ �

V (x, E) = 1

2
∂2

EV (x, tE)[E, E] (2.6)

for some t ∈ (0, 1) depending on x, hence,

|V (x, E)| � γ |E|2 ∀E ∈ Mn×n
sym with |E| < δ. (2.7)
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Let A(x) := ∂2
EV (x, 0). From (2.6) and (b) it follows that for a.e. x ∈ �

A(x)[E, E] = ∂2
EV (x, 0)[E, E] � 2α|E|2 ∀E ∈ Mn×n

sym . (2.8)

Finally for every x ∈ � and F ∈ Mn×n let Fsym = (F + F T)/2 and

Wε(x, F ) := 1

ε2
W(x, I + εF ) = 1

ε2
V

(
x, εFsym + 1

2ε2F TF
)
. (2.9)

It is easy to see that for a.e. x ∈ �

lim
ε→0

Wε(x, F ) = 1

2
∂2

F W(x, I )[F, F ]

= 1

2
∂2

EV (x, 0)[Fsym, Fsym] = 1

2
A(x)[Fsym, Fsym]. (2.10)

We consider the functional Fε: H 1(�, Rn) → [0, +∞] defined as

Fε(u) =
∫

�

Wε(x, ∇u) dx, (2.11)

and the functional F : H 1(�, Rn) → [0, +∞) given by

F (u) = 1

2

∫
�

A(x)[e(u), e(u)] dx. (2.12)

Let ∂�D a closed subset of ∂� with Hn−1(∂�D) > 0 and let g ∈ W 1,∞(�, Rn).
Let H 1

g,∂�D
be the closure in H 1(�, Rn) of the space of functions u ∈ W 1,∞(�, Rn)

such that u = g on ∂�D. By strong (resp. weak) topology in H 1
g,∂�D

we mean the
restriction of the strong (resp. weak) topology of H 1(�, Rn). Let L: H 1(�, Rn) →
R be a continuous linear operator, representing the work of the (rescaled) loads. We
define the functionals Gε, G: H 1

g,�D
→ [0, +∞] as Gε(u) = Fε(u) − L(u) and

G(u) = F (u) − L(u).
The main convergence results, proved in Section 5, are the following:

THEOREM 2.1. Assume that V : � × Mn×n
sym → [0, +∞] satisfies conditions (a),

(b), (c), (2.1), (2.4), and (2.5). If uε satisfies

G(uε) = inf
u∈H 1

g,∂�D

Gε(u) + o(1) (2.13)

then uε converges weakly to the (unique) solution u0 of

min
u∈H 1

g,∂�D

G(u).

THEOREM 2.2. Under the hypotheses of the previous theorem, if condition (c′) is
satisfied then uε converges to u0 strongly in W 1,q(�, Rn) for 1 � q < 2.
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The proof follows basically from the following results, contained in Sections 3
and 4 respectively.

PROPOSITION 2.3. If εj → 0 and uεj
∈ H 1

g,∂�D
is a sequence such that

Gεj
(uεj

) � C < +∞,

then uεj
is equibounded in H 1(�, Rn).

PROPOSITION 2.4. Let εj → 0. The functionals Gεj
�-converge to G in the weak

topology of H 1
g,∂�D

.

3. Compactness

From conditions (a), (b) and (c) it follows easily that there exists a nondecreasing,
continuous function φ(t), of the form

φ(t) =



αt2 for 0 � t � c,
αc2 for c � t � d,
(αc2d−1)t for d � t ,

such that φ(|E|) � V (x, E) for a.e. x ∈ � and every E ∈ Mn×n
sym . For a positive β

let ψ(t) be the function defined as

ψ(t) =
{

αt2 for 0 � t � β,

(2αβ)t − (αβ2) for t � β.
(3.1)

It is easy to check that ψ(t) is increasing, C1, and convex. Moreover, since

lim
β→0

2αβ = 0,

for β sufficiently small we have ψ(t) � φ(t) and then

V (x, E) � ψ(|E|) (3.2)

for a.e. x ∈ � and every E ∈ Mn×n
sym .

LEMMA 3.1. Let ε > 0 and uε ∈ H 1(�, Rn). Denote the rescaled deformation
x + εuε(x) by vε(x). Then there exists a function Rε: � → SO(n) such that∫

�

|∇vε − Rε|2 dx � Cε2Fε(uε), (3.3)

where C depends only on the function ψ (in particular it does not depend on ε

or vε).
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Proof. We may assume Fε(uε) < +∞, so that det ∇vε > 0 a.e. in � by (2.1).
Considering that

Fε(uε) =
∫

�

Wε(x, ∇uε) dx = 1

ε2

∫
�

V
(
x, 1

2 (∇vT
ε ∇vε − I )

)
dx (3.4)

and using (3.2) we get∫
�

ψ
(

1
2 |∇vT

ε ∇vε − I |) dx �
∫

�

V
(
x, 1

2(∇vT
ε ∇vε − I )

)
� ε2Fε(uε). (3.5)

As det ∇vε > 0 a.e. in � by polar decomposition (see for instance [2]) for a.e.
x ∈ � there exists a rotation Rε and a symmetric positive definite matrix Uε such
that ∇vε = RεUε. In particular ∇vT

ε ∇vε = U 2
ε , hence,

|∇vT
ε ∇vε − I | = |U 2

ε − I |. (3.6)

Since Uε is symmetric and positive definite, using an orthonormal basis in which
Uε is diagonal, we can prove that

|Uε − I | � |U 2
ε − I |.

Thus, by the definition of ψ , it follows that for 1
2 |U 2

ε − I | � β

α

4
|Uε − I |2 = ψ

(
1
2 |U 2

ε − I |).
Moreover, for a suitable constant c1, depending on β,

c1|Uε − I |2 � |U 2
ε − I | for 1

2 |U 2
ε − I | � β.

Indeed, using again the diagonal form, we can write

n∑
i=1

(λi − 1)2 �
n∑

i=1

λ2
i + n

=
n∑

i=1

(λ2
i − 1) + 2n

β
β �

(
1 + n

β

) n∑
i=1

|λ2
i − 1|.

Moreover, there is a constant c2 such that 2c2t � ψ(t) for t � β, hence, for
1
2 |U 2

ε − I | � β

c1c2|Uε − I |2 � c2|U 2
ε − I | � ψ

(
1
2 |U 2

ε − I |).
By this inequality and by (3.5) and (3.6) there exists a constant c3, depending only
on ψ , such that∫

�

|Uε − I |2 dx � c3ε
2Fε(uε).
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Finally considering that for a.e. x ∈ � we have ∇vε = RεUε we can write∫
�

|∇vε − Rε|2 dx =
∫

�

|Uε − I |2 dx � c3ε
2Fε(uε)

which is the required estimate. ✷
The following lemma (for which we refer to [4]) will be crucial in our proof.

LEMMA 3.2. Let � ⊂ Rn be an open bounded set with Lipschitz boundary. There
exists a constant C such that for every v ∈ H 1(�, Rn) there exists a constant
rotation R ∈ SO(n) such that∫

�

|∇v(x) − R|2 dx � C

∫
�

dist(∇v(x), SO(n))2 dx, (3.7)

where dist(F, SO(n)) denotes the distance from the matrix F to the set SO(n).

Moreover we will need the following result.

LEMMA 3.3. Let S ⊂ Rn be a bounded Hm-measurable set with 0 < Hm(S) <

+∞, for some m > 0. Then

|F |S :=
(

min
ζ∈Rn

∫
S

|Fx − ζ |2 dHm(x)

)1/2

is a seminorm on Mn×n.
Let S0 be the set of points x ∈ S such that Hm(S ∩ Bρ(x)) > 0, and let aff(S0)

be the smallest affine space containing S0. Let K ⊂ Mn×n be a closed cone such
that for every F ∈ K with F �= 0

dim(ker(F )) < dim(aff(S0)). (3.8)

Then there exists a constant C > 0 such that

C|F | � |F |S (3.9)

for every F ∈ K.
Proof. It is not difficult to check that |F |S is a seminorm and the minimum is

attained for ζ = ∫
SFx dHm. We will prove (3.9) by contradiction. Suppose that

for every integer k it is possible to find a matrix Fk ∈ K with |Fk| = 1 such that

1

k
= 1

k
|Fk|2 >

∫
S

|Fkx − ζk|2 dHm � 0, (3.10)

with ζk := ∫
SFkx dHm. It is not restrictive to assume that Fk converges to F ∈ K,

with |F | = 1. Then by (3.10) and by continuity it follows that∫
S

|Fx − ζ |2 dHm = 0
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for ζ = ∫
SFx dHm. Then Fx = ζ for Hm-a.e. x ∈ S and, hence, for every x ∈ S0.

By continuity and linearity Fx = ζ for every x ∈ aff(S0). Then dim(ker(F )) �
dim(aff(S0)) and thus, by (3.8), F = 0. This is clearly impossible because
|F | = 1. ✷

Now we are ready to prove the following compactness result.

PROPOSITION 3.4. Let uε be a sequence in H 1
g,∂�D

. Then∫
�

|∇uε|2 dx � CFε(uε) + C

∫
∂�D

|g|2 dHn−1, (3.11)

where C depends only on ψ , �, and ∂�D.
Proof. By Lemma 3.1 we have∫

�

dist(∇vε(x), SO(n))2 dx � Cε2Fε(uε)

and by Lemma 3.2 there exists a constant rotation Rε such that∫
�

|∇vε(x) − Rε|2 dx � Cε2Fε(uε). (3.12)

If ζε = ∫
�(vε(x) − Rεx) dx, then by the Poincaré inequality

‖vε(x) − Rεx − ζε‖2
H 1(�,Rn)

� C

∫
�

|∇vε(x) − Rε|2 dx � Cε2Fε(uε).

Moreover, by the continuity of the traces∫
∂�D

|vε(x) − Rεx − ζε|2 dHn−1 � C‖vε(x) − Rεx − ζε‖2
H 1(�,Rn)

� Cε2Fε(uε).

Considering that on ∂�D we have vε(x) = x + εg(x) we can write∫
∂�D

|x − Rεx − ζε|2 dHn−1 � Cε2Fε(uε) + Cε2
∫

∂�D

|g|2 dHn−1. (3.13)

Let K be the closed cone generated by SO(n) − I , which is the union of the cone
generated by SO(n) − I and of the space of antisymmetric matrices. Therefore,
dim(ker(F )) < n−1 if F ∈ K and F �= 0. Let S := ∂�D. As S is contained in the
Lipschitz manifold ∂� and Hn−1(S) > 0, we have Hn−1(S0) > 0. This implies
that dim(aff(S0)) � n − 1 and thus condition (3.8) is satisfied. Using Lemma 3.3
and the previous inequality we obtain

|I − Rε|2 � C|I − Rε|2S = C

∫
∂�D

|x − Rεx − ζε|2 dHn−1
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and thus by (3.13)∫
�

|I − Rε|2 dx � Cε2Fε(uε) + Cε2
∫

∂�D

|g|2 dHn−1. (3.14)

By (3.12) and (3.14) we have easily∫
�

|∇vε − I |2 dx � Cε2Fε(uε) + Cε2
∫

∂�D

|g|2 dHn−1.

Substituting ∇vε = I + ε∇uε in the previous inequality we get (3.11). ✷
Proof of Proposition 2.3. Using Proposition 3.4 we have∫

�

|∇uεj
|2 dx � CFεj

(uεj
) + C

∫
∂�D

|g|2 dHn−1.

Hence, we can write∫
�

|∇uεj
|2 dx � C(Gεj

(uεj
) + L(uεj

) + 1),

and by the Poincaré and the Holder inequality it follows that

‖uεj
‖2

H 1(�,Rn)
� C + C‖uεj

‖H 1(�,Rn),

which gives the boundedness of uεj
in H 1(�, Rn). ✷

Finally we remark that for n = 2 and for a sequence uεj
∈ H 1

0 (�, R2) we can
prove the compactness result in a more elementary way without using Lemma 3.2.
Indeed for every εj let Rεj

: � → SO(2) be given by Lemma 3.1. Define Mεj
=

(Rεj
− I )/εj . Then, substituting ∇vεj

= I + εj∇uεj
in (3.3), we get∫

�

|∇uεj
− Mεj

|2 dx � C1Fεj
(uεj

).

Note that Mεj
has the form

Mεj
=

(
aεj

−bεj

bεj
aεj

)

for some real functions aεj
and bεj

. Denote the components of u by ui . By a linear
combination we obtain∫

�

∣∣∇1u
1
εj

− ∇2u
2
εj

∣∣2
dx

=
∫

�

∣∣(∇1u
1
εj

− aεj
) − (∇2u

2
εj

− aεj
)
∣∣2

dx � C2Fεj
(uεj

),∫
�

∣∣∇2u
1
εj

+ ∇1u
2
εj

∣∣2
dx

=
∫

�

∣∣(∇2u
1
εj

+ bεj
) + (∇1u

2
εj

− bεj
)
∣∣2

dx � C3Fεj
(uεj

).
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Moreover, being n = 2, we can write∫
�

|∇uεj
|2 dx =

∫
�

|∇1u
1
εj

− ∇2u
2
εj

|2 dx +
∫

�

|∇2u
1
εj

+ ∇1u
2
εj

|2 dx +

+ 2
∫

�

det ∇uεj
dx.

As uεj
∈ H 1

0 (�, R2) we have (see, e.g., [2])∫
�

det ∇uεj
dx = 0.

Then by the previous inequalities we get∫
�

|∇uεj
|2 dx =

∫
�

|∇1u
1
εj

− ∇2u
2
εj

|2 dx +
∫

�

|∇2u
1
εj

+ ∇1u
2
εj

|2 dx

� CFεj
(uεj

)

and thus uεj
is bounded in H 1

0 (�, R2). ✷
The following example shows that, if other potential wells are present, with the

same value of the energy, we might lose compactness of solutions.

EXAMPLE 3.5. Let � = (−1, 1) × (−1, 1), � = 1 and w ∈ H 1
0 (�, R2) defined

as w1(x1, x2) = − max{|x1|, |x2|} + 1 and w2(x1, x2) = 0. Let εj → 0, wεj
(x) =

w(x)/εj and vεj
(x) = x + εj wεj

(x). Then ∇vεj
= I + εj∇wεj

= I + ∇w

does not depend on εj and takes only four values, denoted by F1, . . . , F4. Let
Ei = 1

2 (F T
i Fi − I ), for i = 1, . . . , 4. Let V be the function satisfying conditions

(b) and (c) and such that V (x, 0) = V (x, Ei) = 0 for i = 1, . . . , 4. Then

inf{Gεj
(u) : u ∈ H 1

0 (�)} � 1

ε2
j

∫
�

V
(
x, 1

2(∇vT
εj

∇vεj
− I )

)
dx −

∫
�

wεj
dx

= − 1

εj

‖w‖L1(�,Rn).

If uεj
is a sequence satisfying (2.13) then

− 1

εj

‖w‖L1(�,Rn) + o(1) � Gεj
(uεj

) � −‖uεj
‖L1(�,Rn),

hence, ‖uεj
‖L1(�,R2) diverges.
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4. �-Convergence

For x ∈ � and E ∈ Mn×n
sym let |E|A(x) be the norm defined by

|E|A(x) = {
1
2 A(x)[E, E]}1/2 = {

1
2∂2

EV (x, 0)[E, E]}1/2
. (4.1)

Note that by (2.5) and (2.8) we have

α|E|2 � |E|2A(x) � γ |E|2. (4.2)

If 8: � → Mn×n
sym is a measurable map, the function x �→ |8(x)|A(x) is denoted

by |8|A.
Let us fix a sequence εj → 0. By Proposition 2.3 the functionals Gεj

are
equicoercive in H 1

g,∂�D
and by Proposition 8.10 in [3] we can characterize the

�-limit in the weak topology of H 1
g,∂�D

in terms of weakly converging sequences.
In particular we have

G′(u) := �- lim inf
εj →0

Gεj
(u) = inf

{
lim inf
j→+∞

Gεj
(uj ) : for uj ⇀ u in H 1

g,∂�D

}
,

G′′(u) := �- lim sup
εj→0

Gεj
(u) = inf

{
lim sup
j→+∞

Gεj
(uj ) : for uj ⇀ u in H 1

g,∂�D

}
.

We will prove that for every function u ∈ H 1
g,∂�D

we have G′′(u) � G(u) �
G′(u), from which Proposition 2.4 follows.

PROPOSITION 4.1. For every u ∈ H 1
g,∂�D

we have G′′(u) � G(u).
Proof. Consider first the case u ∈ W 1,∞(�, Rn). By (2.10) it follows that for

a.e. x ∈ �

lim
εj →0

Wεj
(x, ∇u) = 1

2 A(x)[e(u), e(u)].
Using the upper bound (2.7) we deduce that Vεj

(x, ∇u) is equi-bounded in L∞(�).
Then taking the sequence uεj

= u, by dominated convergence it follows that

lim sup
εj →0

Gεj
(uεj

) = lim
εj →0

∫
�

Vεj
(x, ∇u) dx − L(u)

= 1

2

∫
�

A(x)[e(u), e(u)] dx − L(u). (4.3)

If u /∈ W 1,∞(�, Rn) by the definition of H 1
g,∂�D

there exists a sequence uk in
W 1,∞(�, Rn), which satisfy the boundary condition uk = g on ∂�D and converge
to u strongly in H 1(�, Rn). Since, by (4.3), G′′(uk) � G(uk), the lower semiconti-
nuity of the �- lim sup and the continuity of G respect to strong convergence imply
that

G′′(u) � lim inf
k→∞

G′′(uk) � lim inf
k→∞

G(uk) = G(u)

and the proof is concluded. ✷
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LEMMA 4.2. Let εj → 0 be a decreasing sequence. For every k ∈ N there exist
an increasing sequence of Carathéodory functions V k

j : � × Mn×n
sym → [0, +∞)

and a measurable function µk: � → (0, +∞) such that V k
j (x, ·) is convex for a.e.

x ∈ � and satisfies

V k
j (x, E) � V (x, εj E)/ε2

j ∀E ∈ Mn×n
sym , (4.4)

V k
j (x, E) =

(
1 − 1

k

)
|E|2A(x) for |E|A(x) � µk(x)/εj . (4.5)

Proof. By Taylor’s formula, from (2.4) and (4.2) it follows that for a.e. x ∈ �

and every k ∈ N there exists rk(x) > 0 such that(
1 − 1

k

)
|E|2A(x) � V (x, E) for |E|A(x) � rk(x). (4.6)

Let us consider the function hk: � × Mn×n
sym → R defined by

hk(x, E) =
{

(1 − 1
k
)|E|2A(x) for |E|A(x) � rk(x),

ψ(γ − 1
2 |E|A(x)) for |E|A(x) > rk(x),

which is less than or equal to V (x, E) by (4.6), (4.2), and (3.2).
For a suitable choice of µk(x) > 0 the function

φk(x, t) =
{

(1 − 1
k
)t2 for 0 � t � µk(x),

2(1 − 1
k
)µk(x)t − (1 − 1

k
)(µk(x))2 for t � µk(x),

is convex in t and satisfies φk(x, |E|A(x)) � hk(x, E) � V (x, E). To conclude
the proof it is enough to define V k

j (x, E) := φk(x, εj |E|A(x))/ε2
j . From the special

form of φk(x, ·) it is easy to see that V k
j (x, ·) is increasing with respect to j and that

(4.5) holds, while (4.4) follows from the inequality φk(x, |E|A(x)) � V (x, E). ✷
LEMMA 4.3. Let gj : � × Rm → [0, +∞) be Carathéodory functions such that
gj (x, ·) is convex. Let gj (x, ξ) be increasing in j and pointwise converging to
a function g(x, ξ). If wj converges weakly to w in L1(�, Rm), then∫

�

g(x, w) dx � lim inf
j→+∞

∫
�

gj (x, wj ) dx. (4.7)

Proof. As gi(x, wj ) � gj (x, wj ) for j � i, by the lower semicontinuity of the
functional

∫
�

gi(x, v) dx we have∫
�

gi(x, w) dx � lim inf
j→+∞

∫
�

gi(x, wj ) dx � lim inf
j→+∞

∫
�

gj (x, wj ) dx,

which proves (4.7) for i → ∞. ✷
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PROPOSITION 4.4. For every u ∈ H 1
g,∂�D

and every sequence uj ∈ H 1
g,∂�D

weakly converging to u, we have the �- lim inf inequality

1

2

∫
�

A(x)[e(u), e(u)] dx � lim inf
εj →0

Gεj
(uj ), (4.8)

from which it follows that G(u) � G′(u).
Proof. For every k ∈ N let V k

j (x, E) be the sequence given by Lemma 4.2. Note
that by (4.5) for every E ∈ Mn×n

sym we have

lim
j→+∞ V k

j (x, E) =
(

1 − 1

k

)
|E|2A(x). (4.9)

Then inequality (4.4) gives

Wεj
(x, ∇uεj

) = 1

ε2
j

V
(
x, εj e(uεj

) + 1
2ε2

j∇uT
εj

∇uεj

)
� V k

j

(
x, e(uεj

) + 1
2εj∇uT

εj
∇uεj

)
.

Since ∇uεj
⇀ ∇u in L2(�, Mn×n) we have that εj∇uT

εj
∇uεj

→ 0 strongly in

L1(�, Mn×n), hence e(uεj
)+ 1

2εj∇uT
εj

∇uεj
⇀ e(u) weakly in L1(�, Mn×n). Then

by Lemma 4.3 and (4.9) for every k ∈ N we have

lim inf
εj→0

∫
�

Wεj
(x, ∇uεj

) dx

� lim inf
j→+∞

∫
�

V k
j

(
x, e(uεj

) + 1
2εj∇uT

εj
∇uεj

)
dx

� 1

2

∫
�

(
1 − 1

k

)
A(x) [e(u), e(u)] dx. (4.10)

Taking the supremum as k → ∞ and considering the weak continuity of L we
deduce inequality (4.8). ✷

5. Convergence of Minimizers

We are now in a position to prove Theorem 2.1.

Proof of Theorem 2.1. It is enough to prove the statement for every sequence
εj → 0. Since Gεj

(g) � C < +∞, we have Gεj
(uεj

) � C < +∞, then by Propo-
sition 2.3 uεj

is equibounded in H 1(�, Rn). Thus there exists a subsequence uεk

converging weakly to some limit w ∈ H 1
g,∂�D

. By �-convergence we know that w

must be the minimizer u0 of the limit functional G (see, e.g., [3], Corollary 7.17).
Finally, as the limit w depends neither on the subsequence wεk

nor on the
sequence εj , the whole sequence wε converges weakly to u in H 1

g,∂�D
. ✷
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In the sequel we will assume that V (x, E) satisfies conditions (a), (b), and (c′).
It is not restrictive to assume that 1 < p < 2. Let α be the constant appearing in
(b). From (a), (b), and (c′) it follows that there exists a nondecreasing, continuous
function φ(t) of the form

φ(t) =



αt2 for 0 � t � c,
αc2 for c � t � d,
(αc2d−p)tp for d � t ,

for 0 < c < d,

such that φ(|E|) � V (x, E) for a.e. x ∈ �. Consider the function ψp(t) defined as

ψp(t) =
{

αt2 for 0 � t � µ,
a(t − b)p for µ � t ,

(5.1)

for a = α p−p 2p µ2−p and b = (1 − p

2 )µ. It is not difficult to check that ψp(t) is
increasing, C1, and convex. As 1 < p < 2, we have

lim
µ→0

αp−p2pµ2−p = 0, (5.2)

thus for µ sufficiently small ψp(t) � φ(t) for every t � 0 and then ψp(|E|) �
V (x, E) for a.e. x ∈ � and every E ∈ Mn×n

sym . ✷
LEMMA 5.1. Let εj → 0. For every k ∈ N there exists an increasing sequence
of Carathéodory functions V k

j : � × Mn×n
sym → [0, +∞) and a measurable function

µk: � → (0, +∞) such that for a.e. x ∈ � the function V k
j (x, ·)1/p is convex and

(4.4) and (4.5) hold.
Proof. We follow the proof of Lemma 4.2, with ψ replaced by ψp, and we

consider the functions

φk
p(x, t) =

{
(1 − 1

k
)t2 for 0 � t � µk(x),

a(x)(t − b(x))p for t � µk(x).

Note that φk
p(x, t)1/p is convex for a(x) = (1 − 1

k
)2pp−p(µk(x))2−p and b(x) =

(1 − p

2 )µk(x). By (5.2) for µk(x) sufficiently small we have that

φk
p(x, |E|A(x)) � V (x, E)

for a.e. x ∈ � and every E ∈ Mn×n
sym . Then the sequence defined by V k

j (x, E) :=
φk

p(x, εj |E|A(x))/ε2
j satisfies (4.4) and (4.5), is increasing with respect to j , and

V k
j (x, ·)1/p is convex for a.e. x ∈ �. ✷

LEMMA 5.2. Let 8n ⇀ 8 weakly in L1(�, Mn×n) such that |8n|A converges to
|8|A in measure. Then 8n converges to 8 in measure.
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Proof. By passing to a subsequence and to a suitable measurable subdomain,
it is not restrictive to suppose that 8(x) �= 0 for every x ∈ � and that |8n|A
converges to |8|A pointwise.

By (4.2) and by weak convergence we have∫
�

〈
8

|8|A , 8n − 8

〉
A

dx −→ 0, (5.3)

where 〈·, ·〉A is the scalar product associated with the norm | · |A, i.e.,

〈>1, >2〉A = 1
2 A(x)[>1(x), >2(x)].

Moreover by the Schwarz inequality∫
�

(〈
8

|8|A , 8n − 8

〉
A

)+
dx �

∫
�

(|8n|A − |8|A)+ dx.

As |8n|A is equiintegrable and converges to |8|A in measure, it converges also in
L1(�). Thus∫

�

(〈
8

|8|A , 8n − 8

〉
A

)+
dx −→ 0.

Then by (5.3) 〈 8
|8|A , 8n−8〉A → 0 in L1(�) and, up to a subsequence, it converges

for a.e. x ∈ �, hence 〈 8
|8|A , 8n〉A → |8|A pointwise a.e. in �.

Considering the identity

|8n − 8|2A = l

〈
8

|8|A , 8n − 8

〉2

A

+ |8n|2A −
〈

8

|8|A , 8n

〉2

A

,

we deduce that |8n − 8|2A → 0 pointwise for a.e. x ∈ �.
Since for every subsequence of 8n we can find a further subsequence converg-

ing pointwise to 8, it follows that 8n converges to 8 in measure. ✷
PROPOSITION 5.3. Let εj → 0+ and let uj ⇀ u weakly in H 1(�, Rn) such that

1

ε2
j

∫
�

V (x, εj e(uj ) + 1
2ε2

jC(uj )) dx −→ ∫
�

|e(u)|2A dx. (5.4)

Then uj → u strongly in W 1,q (�, Rn) for 1 � q < 2.
Proof. For every k let V k

j (x, E) be the sequence given by Lemma 5.1. Denote
e(uj ) + 1

2εj C(uj ) by 8j . By (4.4) for every k and every j we have

V k
j (x, 8j ) � 1

ε2
j

V
(
x, εj e(uj ) + 1

2ε2
j C(uj )

)
. (5.5)
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By (5.4) it follows that, for every k, V k
j (x, 8j )

1/p is bounded in Lp(�) uniformly
with respect to j and k. Being p > 1, by a diagonal argument there exists a se-
quence jm → ∞ such that for every k

V k
jm

(x, 8jm
)1/p ⇀ wk weakly in Lp(�), (5.6)

for a suitable function wk ∈ Lp(�). Moreover, by the weak convergence of uj

it follows that 8j converges weakly to e(u) in L1(�, Mn×n). Since the functions
V k

j (x, ξ)1/p are convex in ξ , by Lemma 4.3 and by (4.5) for every Borel set B ⊂ �

we have(
1 − 1

k

)1/p ∫
B

|e(u)|2/p

A dx � lim inf
m→∞

∫
B

V k
jm

(x, 8jm
)1/p dx =

∫
B

wk dx.

Thus

wk �
(

1 − 1

k

)1/p

|e(u)|2/p

A a.e. in �. (5.7)

Moreover, by the weak lower semicontinuity of the norm, from (5.4), (5.5), and
(5.6) it follows that∫

�

(wk)p dx �
∫

�

|e(u)|2A dx. (5.8)

Being p > 1, there exists w ∈ Lp(�) and a subsequence of wk which converges
weakly to w in Lp(�). Then passing to the limit in (5.7) we get

(w)p � |e(u)|2A
for a.e. x ∈ �, and by (5.8) we have∫

�

wp dx �
∫

�

|e(u)|2A dx.

These inequalities imply that w = |e(u)|2/p

A . Being the limit independent of the
subsequence, we have proved for whole sequence wk that

wk ⇀ |e(u)|2/p

A weakly in Lp(�). (5.9)

Let µk(x) be the functions defined in Lemma 5.1. As µk > 0 a.e. in �, there exists
a decreasing sequence of constants ηk such that

meas({x ∈ � : µk(x) < ηk}) � 1

k
. (5.10)

Considering that V k
jm

(x, 8jm
)1/p is bounded in Lp(�) uniformly with respect to m

and k, and, hence, we can use a metric equivalent to the weak topology, by (5.6)
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and (5.9) we can extract a subsequence ik of jm such that, writing for simplicity εk

instead of εik , we have

ηk

εk

> k and V k
ik
(x, 8ik )

1/p ⇀ |e(u)|2/p

A weakly in Lp(�). (5.11)

Then by (5.4) and (5.5) we have

lim sup
k→∞

∫
�

V k
ik
(x, 8ik ) �

∫
�

|e(u)|2A dx.

By the uniform convexity of the Lp(�) space this implies that

V k
ik
(x, 8ik )

1/p −→ |e(u)|2/p

A strongly in Lp(�).

Then we have

V k
ik
(x, 8ik ) −→ |e(u)|2A

strongly in L1(�) and a.e. in �.
Now we can prove that |e(uik )|A converges in measure to |e(u)|A. Indeed, for

every δ > 0 the set {||e(uik )|A − |e(u)|A| > δ} is contained in{∣∣|e(uik )|A − ∣∣e(uik ) + 1
2εkC(uik )

∣∣
A

∣∣ >
δ

2

}

∪
{∣∣∣∣e(uik ) + 1

2εkC(uik )
∣∣
A

− |e(u)|A
∣∣ >

δ

2

}
. (5.12)

The first set is contained in {| 1
2εkC(uik )|A > δ

2 }, whose measure tends to zero since
εkC(uik ) → 0 in L1(�, Mn×n). Note that for x ∈ {µk(x) > ηk} if∣∣e(uik ) + 1

2εkC(uik )
∣∣
A

< k

then by (4.5) and (5.11) we have

V k
ik
(x, 8ik ) = k − 1

k

∣∣e(uik ) + 1
2εkC(uik )

∣∣2
A
.

Then the second set in (5.12) is contained in

{µk(x) < ηk} ∪ {∣∣e(uik ) + 1
2εkC(uik )

∣∣
A

> k
}

∪
{∣∣∣∣

(
k

k − 1
V k

ik
(x, 8ik )

)1/2

− |e(u)|A
∣∣∣∣ >

δ

2

}
.

The measure of all these sets tends to zero as k → +∞. The first one by (5.10),
the second one since |e(uik ) + 1

2εkC(uik )|A is equibounded in L1(�), and the third
one because ( k

k−1V k
ik
(x, 8uk

))1/2 → |e(u)|A pointwise. This concludes the proof of
the convergence in measure of |e(uik )|A to |e(u)|A.
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Then by Lemma 5.2 it follows that e(uik ) converges in measure to e(u). As e(uik )

is bounded in L2(�, Mn×n), we deduce that e(uik ) converges strongly to e(u) in
Lq(�, Mn×n) for 1 � q < 2. Since the limit does not depend on the subsequence
we have that e(uj ) converges strongly to e(u) in Lq(�, Mn×n).

By the Korn inequality (see, e.g., [6]) there exists a constant Cq such that∫
�

|∇(u − uj )|q dx � Cq

∫
�

|e(u − uj )|q dx + Cq

∫
�

|u − uj |q dx.

As e(uj ) converges strongly to e(u) in Lq(�, Mn×n) and uj converges strongly
to u in Lq(�, Rn) by the Rellich theorem, we deduce that uj converges to u in the
strong topology of W 1,q (�, Rn). ✷

Proof of Theorem 2.2. Let εj → 0. By Proposition 2.3 uεj
converges weakly

to u in H 1(�, Rn) and by �-convergence we have G(uεj
) → G(u) (see, e.g., [3],

Corollary 7.17). By weak continuity we have L(uεj
) → L(u), so that (5.4) holds.

The conclusion follows from Proposition 5.3. ✷
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