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O. Introduction 

It is very common, both in pure and applied mathematics, to have to deal with 
a family of problems depending on a parameter e > 0, being interested in the 
asymptotic behavior of the problems as e - ,  0. Typically, in the calculus of 
variations we are given a family of minimum problems 

min{~(u): u ~ X} (0.1) 

and we are interested in finding a "limit problem" 

min{~-(u): u e X}. (0.2) 

Of course, from the point of view of the calculus of variations, the limit problem 
must be such that its minimizers are closely related to the possible limit points of 
minimizers {u~}~ of problem (0.1). 

A notion of convergence for functionals, which is very well suited to the 
variational setting, is the well-known F-convergence, introduced by De Giorgi 
[DF].  In fact, if a functional ~ is the F-limit of the ~ and if u s are minimizers 
of ~ and u s ~ u, then u is a minimizer of ~ (see Section 1 for a precise statement). 
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Roughly speaking, we have 

{limits of minimizers} ~ {minimizers of the F-limit}, (0.3) 

where the inclusion may well be proper, as we can see by very simple and natural 
examples. Hence the F-limit, though very useful, fails in general to characterize 
comple te ly  the asymptotic behavior of the family ~ .  

Our remark is that in fact the F-limit is only the first step toward the 
description of the asymptotic behavior o f ~ ,  and that we may try to pursue further 
the description looking for an asymptotic development 

= o~(o) + e , ~  1) + e2y(a)  + . . .  + eko~(k) + o(sk), (0.4) 

where the first-order term ff(o) is just the F-limit Y of the family Y~ and each 
one of the higher-order terms y (0  is a functional defined by a natural recursive 
procedure on the space ~,~-1) of the minimizers of ff(~-l)(see the following 
section). When a development as in (0.4) holds, then we have the following 
situation: 

{limits of minimizers} c {minimizers of ~(k)} 

c {minimizers of c~ (k- 1)} C ' ' "  C {minimizers of ~,~t0)}. (0.5) 

This may provide a considerable improvement of (0.3), and in some cases may 
give a complete characterization of the asymptotic behavior of ~ .  

In Section 1 we give the general definitions and theorems about the notion 
of asymptotic development of a family of functionals. In Section 2 we illustrate 
the general theory by a simple but not completely obvious example, related to the 
well-known example by Modica and Mortola [MM]. It was in fact in the context 
of this example that we first got the idea of characterizing the asymptotic behavior 
through a sequence of functionals j~(k) defined on nested spaces. The idea that the 
functionals o~(k) could be thought formally as an asymptotic development (written 
as in (0.4)) was suggested by an incidental remark by De Giorgi. On the other 
hand, the fact that some notion of asymptotic development by F-convergence 
could be useful, must have been known more or less explicitly by many people 
working in the field. For instance, something which is close to an asymptotic 
development can be found in a work by Buttazzo and Pereivale [BP], and a first 
attempt at a definition can be found at the end of a paper by Modica [M]. After 
all, even the scaling of the functionals in the first paper by Modica and Mortola 
[MM] may be thought of as an unconscious order-one development. 

1. The Asymptotic Development of a Family of Functionals by F-Convergence 

Let X be a topological space for which the first axiom of countability holds, and let 

~ : X ~ R  

be a family of functionals, with 8 a positive parameter. 
For such a family the following definition of the F-limit is well known (see 

[DF] and [DM]). 
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Definition 1.1. A functional ~(o): X ~ I] is said to be the F(X-)-limit of the family 
.~  at a point fie X iffthe following statements are fulfilled for each sequence es ] O: 

(i) For  each sequence {@ = X with u s ~ ~ we have 

lim inf ~,(us) > ~(o)(~). 
]--, + ce 

(ii) There exists a sequence {us} ~ X with u s --* fi and 

lim sup ~(us)  <_ ~m)(fi). 
j--, + ~ 

In this situation we write 

F(X-)  lim ~(~)  = ym)(fi). 
e--~O 

Definition 1.2. We write 

F(X-)  lim ~ = g(o) in E ~ X 
~+ 0 

if ~(o) is the F(X-)-limit of ~ at each point fie E. 

When no confusion may arise we often omit the specification of the space X. 
The introduction of F-convergence in the calculus of variations is justified by the 
following well-known result, whose easy proof can be found in the papers quoted 
above. 

Theorem 1.1. Let  e s ~ 0 be a f i xed  sequence, let {us} c X be such that ~ , (u j )  = 
min{~(u):  u ~ X} .  I f  ~ ~~ is the F-limit o f  ~ on the whole space X and uj ~ f~ in 

X ,  then fi is a minimizer o f  ~<o) and we have 

lim ~,(us) = ff(o)(fi). 
j ~ + c e  

Unfortunately, we may well have many minimizers of the F-limit, which are 
not limit points of minimizers of the functionats ~ .  A trivial example of such a 
phenomenon is the following one. 

Example 1.1, Consider the case X = R and 

~ ( u )  = ~lul .  

We can easily check that the functions .~(u) F-converge to the constant function 
y~o) _ 0. Clearly, every point in R is a minimum point of y{0~, white the only 
limit point of the minimizers of ~ is the point u = 0. 

Now, the idea is that of introducing a notion of "asymptotic expansion" 

= ~ o )  + ~ y , )  + . . .  + ~k~(k~ + O(ek) 
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of a family J~(u) in such a way that the knowledge of the functionals ~(k) gives 
additional information on the limit points of minimizers. Precisely: any limit point 
of a sequence of minimizers us will also be a minimizer of each one of the 
functionals ~(k) appearing in the development above. Just by construction, the 
sequence of sets 

~//k = {minimizers of ~(k)} 

will be nonincreasing, and we may hope that in some cases the minimizers of 
some term ~-(k) of the development are exactly all the possible limit points of 
minimizers u~. 

Now, let us discuss how to define a suitable notion of asymptotic development. 
For instance, suppose we want to give meaning to the expression 

= y(o) + ~ ( 1 )  + o(8). (1.1) 

Naively, we should like to say that (0,I) is equivalent to 

lim _ ~(i) ,  
s~O 8 

where the limit should be taken in the sense of F-convergence. Unfortunately such 
a definition makes little sense, as we can convince ourselves by trying to apply it 
to simple situations. For example, it may happen that ~ and j~(o) are finite on 
disjoint domains (see the case in [MM]). However, it turns out that we can give 
a simple and very good substitute for the naive definition: 

Set 

~-(o) = F - lim ~ in X 
e~O 

(we assume the the F-limit exists) and also set 

m o = inf ~(o), ~o  = {u ~ X: ~(~ = too}. 
X 

Definition 1.3. 
We say that the first-order asymptotic development 

= ~(o) + s~(1) + o(e) 

holds, if we have 

F - lira ~ - m~ - ~(1) in ago. 
~ 0  8 

With the notation above, assume that m o < + oo and 0g o # ~ .  

(1.2) 

From now on we use the notation 

~ , )  = ~% - m 0  

8 

The definition (1.2) is motivated mainly by the following very simple results. 
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Theorem 1.2. Suppose the first-order asymptotic development (1.2) holds, and let 
ej .[ 0 be a sequence for which there exists a sequence {u j} = X, uj ~ fi in X,  and 
~ ( u j )  = min{Y~,(v): v ~ X}. Then ~t ~ ago and ft minimizes ~(1) in ago. Moreover, if 
m~ denotes the infimum of ~ on X and m 1 denotes the infimum of ~ (1) on ago we have 

m~ =mo + ejml + o(ej). (1.3) 

Proof. The fact that  ~ e ago is a consequence of Theorem 1.1. Let v e ago and let 
{@ c X be a sequence converging to v in X such that  ~(1)(v.~--, ff(1)(v): from 
the F-convergence of @~1) it follows that  such a sequence exists. Fo r  each fixed 
index j we have that ~j~(1)(Va)>_ ff{~)(u.~j, a,, and so the F-convergence yields 

f i re(v)  lim ~(:)" ' = ~ j  (~;~ >_ l iminf  ~(1) .  ~ (~;I >- ~-(1)(~). 
j ~ + ~  j ~ + m  

In part icular  we have 

j~+co  

This reads limj~ + o~[(m~j- mo)/ej - m:J = 0, which implies (1.3). []  

Remark.  Note  that  (1.3) in general is true only for sequences ea $ 0 for which there 
is compactness  for minimizers: in particular,  it is false that 

m~ = m o + em 1 q- o(e), (1.4) 

as the following example shows. 

Let X = R, and consider the following family of functionals 

f 0 if  u = 0, 

.7~(u) = - e  1/2 if u = 1/e and ~ is rational, 
{e 2 otherwise in R. 

Of course each functional ~ has a unique minimizer, which is 0 if e is irrational 
and is 1/e if e is rational. The only limit point  of minimizers is O, and we have 
compactness only for sequences ej $ 0 such that ej is definitively irrational. In 

~21/2 particular, (1.4) is false for a rat ional sequence ej J. 0, for in this case m,, = - v j  , 
while y(o)  _ 0 and ~.~-(1) _= 0. 

The process above can be iterated in the following way. Suppose the asympto-  
tic development  of the first order  (1.1) holds, recall that mi = inf,4/o ~(~), set 

d~ 1 = {U E 0~r ff(1)(U) = m l }  , 

and suppose m a < + oo and ag~ r ~ .  Then consider the family of functionals 
.~-(1) 

g 

If we have 

y(2)  = F - lim f f ~ )  in agl, 
e-+ 0 
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then we say that the asymptotic development of the second order 

• ~ ( 0 )  ~_ g~(1 )  _[_ g2~(2)  _}_ O(g2) 

holds. 
Obviously, in this situation the analogs of Theorems 1.2 and 1.3 hold, so that 

the limit points of the minimizers of the functionals ~ must minimize the 
functional ~ 2  on the set d//1. 

The definition of the asymptotic development of order k is obtained simply 
by recursion in the above process: if the asymptotic development of order k - 1 
holds, we set mk_ ~ =inf{~(k-*)},  ~//k-1 = {us~#k-2: 5~(k-1)(u) =ink_l} and, 
assuming m k_ 1 < + cc and ~ k -  ~ V: ~ ,  

If 

y(k) = F - lim ~-(f) in q/k-~, 
~--~0 

we write 

= ~(o) + ~ ( 1 )  + ... + ~k~(k) + o(~k), 

the development of order k. Of  course, a limit point of minimizers of the family 
.~  has to be a minimizer of ~(k) in ~(k-1) and 

gg/ej = H'/O -~- ~jml  -t . . . . .  "~ ~km k -'~ O(/3~). 

We conclude this section by giving a few very simple examples of asymptotic 
developments of families of functionals, showing how the above theoretical setting 
can give useful information in some situations. A more complex example is treated 
in Section 2. 

We also give an example which show that our method may need improve- 
ments for more general classes of functionals. 

Example 1.2. Consider the family of functionals in Example 1.1. We have shown 
that ~~ = 0 is the F-limit of order 0, and so m o = 0 and ~?l ~ = R. On the other 
hand, Y(1)(u) = lul, and so m I = 0 and ~ = {0}. 

This way we already have the complete information about the limit points of 
minimizers by arresting our development to the first-order term. 

If we consider a sequence of the form 

~ (u )  = d I u I, 

we have that all the terms of the asymptotic developments of order < k are zero 
functional, while the asymptotic development of order k is [u I + o(~k), and so we 
need to compute k F-limits in order to have the complete information on the limit 
points of minimizers. 

Of course, in this particular case this phenomenon is due to a bad choice of 
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the parameter e: if we consider e ~ as a new parameter we reach this information 
in one step only. The following example shows that it is not always so. 

Example 1.3. Let X = [ -  1, 1-] c R, and consider the following family of func- 
tionals: 

< ( u )  = 0 if u = 0 i 1 1 1 
e k if j U[ ~ '  2 k- 1 " 

For the development of order zero we have the same situation as before: 
F-converges to y(0) _ 0, and so q/o = [ _  1, 1], mo = 0 and we have no informa- 
tion at all. We have 

{0 ifu=~ l ~l ) (u )  = 1 1 
e k-1 if lul~ ,2 ~ . 

On the set ~//o the family y~l) F-converges to the following functional: 

.T/1)(u) = {01 if u ~ [-�89189 
otherwise in ~o. 

Hence we have oR* = I-_21_, �89 and m 1 = 0. By induction on the above process we 
get ~k = [ _  1/2k, 1/2a], mk= 0, and 

y{k)(u)={01 if Ixl<_l/2 k, 
otherwise in ogk- 1. 

As ~ff=~ q/k = {0}, only the complete asymptotic development of Y, gives us the 
desired information about the limit points of minimizers. 

Example 1.4. In some cases our process does not work: this, we believe, is 
essentially due to the necessity of the right choice of scaling in our family. For 
instance, if we modify the family of Examples 1.1 and 1.2 as follows: 

~(u)  = e-ll~lul, 

we have that all the terms of the asymptotic development are the functional 
constantly equal to zero, and so with this ill-omened scaling we cannot hope to 
get any information at all. 

A similar situation is the following: 

1 
g~(u )  = l ul  + - .  g 

In this case the F-limit is constantly equal to + az, and so we cannot develop 
our family further. 
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Of course a simple rescaling obtained by multiplying the functionais by o; 
eliminates the problem, but in general determination of the right scaling is far 
from easy. 

Remark. A situation as that of Example 1.5 may arise if we have a countable 
sequence of functionals {YJ} instead of a continuous family. 

In this case, once we have defined the functional ~-(o) as the F-limit of the 
family, we may define ~(~) as the F-limit of the sequence 

o)j 

where coj is a suitable vanishing sequence. In this case we do not have a natural 
scaling given by the parameter e, and we must carefully choose a sort of "order 
of zero" for the sequence ~ .  

2. A Concrete Example of Asymptotic Development in a 
Problem Related to Phase Transitions 

In this section we study a family ~ of functionals very closely related to those 
already considered by Modica and Mortola [MM],  and afterwards studied in 
many papers, also in view of their physical meaning in the theory of phase 
transitions, see, for example, [MI] ,  [M2], IS], [FT],  [B], [ABV], and [BB]. 

In the papers quoted above, the information about the asymptotic behavior 
of the minimizers of the family of functionals was obtained simply by computing 
the F-limit of a suitable rescaling of the family itself: in the setting we established 
in the previous section this corresponds to the first-order asymptotic development 
of the family. In this section we show that, in dimension one, the second-order 
development of ~7 can also be computed and that this gives further information 
about the asymptotic behavior of the minimizers. We show, furthermore, with an 
example, that in higher dimensions the seemingly most natural conjecture for the 
second F-limit 2 (27 is indeed false. For the moment we are not able to conjecture 
the correct form of g(2) in dimension greater than or equal to 2. 

Throughout this section we have X = L~(f~), with .q c R n a bounded open 
set with C2-regular boundary. In the second part of the section we restrict ourselves 
t o n = l .  

Suppose we have a function (o: R -~ [0, + oo) with the following properties: 

(i) ~o e C~ 
(ii) Z = { u : ( p ( u ) = 0 } = [ a , b ] u [ c , d ]  w i t h a < b < c < d .  

(iii) There is a K > 0 such that (p(u) decreases for u < - K ,  but increases for 
u > K .  

a b c d 
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Let g: ~?fl -* [a, d] be a lipschitz-continuous function, and define our family 
of functionals as follows: 

~ ( u ) = I e 2 f n , D u l 2 d x + f n c p ( u ) d x  if u~H~(~) ,u ,on=g,  

+ Go otherwise in Ll(f~). 

Up to rescaling our family of functionals is the same as in the paper by Modica 
and Mortola, but in our case the function (p vanishes in two intervals instead of 
two points. We shall see that this difference makes it possible and interesting to 
compute a step more in the asymptotic development. Here we also have a 
boundary condition which is not present in [MM],  but this makes only a technical 
difference. 

We remark that each functional ~ has at least one minimizer in L~(f~) and 
that, under suitable hypothesis on the growth of q) at infinity (a superlinear growth 
is enough), each family of minimizers {u~}~ is relatively compact in Ll(f~) (see [M1], 
[FT-1, and [B]). Hence we are lawfully allowed to speak of "limit points of 
minimizers." 

Theorem 2.1. We have F - l im~o ~ = if(o) in Ll(f~), where 

g~~ = ~ ~(u(x)) dx. 
J~ 

Proof We fix a sequence ej i 0 and a function u ~ L~(~). 
First step. We must show first that, for each sequence {uj} c LI(f~) with uj ~ u 

in Ll(f~), the following inequality holds: 

lim inf ~j(uj) >_ J(~ 
j~+o~ 

This follows easily from Fatou's lemma. 
Second step. We must construct a sequence {uj} c L~(~) with uj ~ u in L~(fl) 

and such that 

lim ~j(uj) -- ~(~ 
j ~ + ~  

To do this, we first choose a sequence {vj} ~ W 1' ~(~) such that vj converge to u 
in L~(f~) and almost everywhere in f~. We may suppose that vjl~, = g (this can be 
obtained by modifying the original sequence vj on small neighborhoods of ~?fl). 

If u is bounded, {v j} can also be taken uniformly bounded in L ~~ and we 
obviously have 

lim fa ~o(vj) dx = fn ~o(u) dx. 
j ~ + ~  

If u is not bounded, we can obtain the same result by approximating the 
truncations 

W~(X} = max{--m, min{u(x), m}} 
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of u, and by taking a suitable diagonal sequence. This is possible by property (iii) 
of q~. 

If the following inequality holds 

fDvj[ 2 ~ -  (2.1) 
~j 

our claim is proved. 
This is obtained simply by "slowing down" the convergence of the sequence 

{@: the sequence {@ is obtained from {@ simply by repeating each term Vk 
many times in order to have the estimate (2.1). [] 

The F-limit (or the asymptotic development of order zero, which is the same) 
does not tell us very much about the asymptotic behavior of the minimizers of 
the family ~.~ as z ~ 0. In fact the only thing we can say at this point is that a 
limit point of minimizers has to be a minimizer of y(o), that is an element of the 
very large space 

~/o = {u c Ll(f2): u(x) ~ Z for almost all x c f2}. 

Hence we look for higher-order developments, according to the definitions 
established in Section 1. 

By using the notation of the previous section we have 

too= inf ~ ~  
ucLl(~) 

~ ( u )  - mo 
Y ~ ) ( u )  - 

[ D u ] 2 d x +  - q)(u)dx if u e H t ( f ] ) ,  u = g o n ~ ? ~ ,  

, + oo otherwise. 

We remark that the functionals ~ ) ,  apart from the boundary condition, are the 
same ones considered in [MM]. 

We use the following notation: 

.~(t) = f]  q;/2(s) ds, co = f f  q;/2(s) ds = ~(c). 

I f u s N  ~ we set 

A,, = {x c ~: u(x) e [c, d]}. 
Notice that in this case 

r = COZA,, 
(. 

j alD(q~(u))[ = Co Pn(Au), 

where Pa(A,) is the perimeter of the set A, (see [G]). 
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We consider the functional ~o) defined on 4 ̀ 0 as follows: 

(2coPa(Au) + 2 f IcI)(u) - (I)(g)[ d~Vf"-i if Pn(Au) < + ~ ,  
~(1)(U) 

L + oe otherwise in 4`(0), 

where (l)(u) denotes the trace of (I)(u) on Of~, which is well defined whenever the 
perimeter of A, is finite. 

Theorem 2.2. We have 

F - lira -~(~) = ~ o )  in 4`0. 
~;-*0 

Proof  Fix ej ~ 0 and u ~ 4`0. 
First step. We show that, for each sequence uj -* u in Ll(f~), we have 

lira inf ~(t)-  ~ j  ( - ;  > 5 ( " @ .  
j~+oc 

Without loss of generality, we can restrict ourselves to the case {@ c Hl(f~) with 
ust~ = g, and we can also assume that the limit 

lim ~-o). , 
j-~ + oe 

exists and is finite. In particular we may assume that ~ (.jj _< C. 
From the inequality 

fn  f a  1 fn  f~ 
~slDu~l ~ + - ~0(uj) ~ 2 IDujl~'~(us) = 2 IV(q~(uJx)))l 

gj 

and the lower semicontinuity of the total variation we get that �9 o u e BV(D). In 
particular, the trace of (q~ o u) on 8~ is defined. Applying again the same inequality 
we obtain 

infY~))(uj) >_ 2 lim inf t ]D(~ o u i)[ lim dx 
S ~ + o o  j ~ + o e  d f~ 

_> 2 ]D(qbou)[ + [O(u) - q)(g)l d~/f"-~ = ~(1)(u) . 

The last inequality is a consequence of the lower semicontinuity in L~(f2) of the 
functional 

fnlDvl+fo ]v-hld~~ 
defined for v ~ BV(f~) and with h s Ll(Of~) fixed (see [G]). 

Second step. We must exhibit a sequence {uj} converging to u in L~(f~) such 
that 

lim ~ o ) .  5'qq (uj) = /~(1)(U). 
j~+o~ 

The other case being obvious, we can assume that ~~ < + oc. 
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We can reduce the proof to a situation in which the set ~?*A u is regular and 
intersects Off transversally: to do that we can use approximation results as in [BB], 
[B], and [OS]. 

As in the proof of Theorem 2.1 we can get a sequence {fj} c W 1, ~(f~) such 
that fjlo~ = 9,fj  --' u in Ll(fl) and a.e., and such that the following estimate holds: 

IIDf~llL~ --< C~/4. 
Consider the following partition of n:  

Aj = {x ~ A.: d(x, A c) > Kej and d(x, 3n) > K@,  

V~ = {x ~ A.: d(x, A c) <_ K @  w {x ~ fi: d(x, On) <_ Kej}, 

Bj = n\(A  Vj), 

where K is a suitable positive constant. We now define 

u~(x) = max{min{f~(x), b}, a} if x e B~, 

uj(x) = max{min{fj(x), d}, c} if x E Aj. 

Finally, we may extend the function uj with functions constructed as in [B], 
[BB], and [OS]:  these functions are responsible, at the limit, for the perimeter 
and the boundary integral which appear in ~-(~). On the other hand, the integrals 
on A: and Bj vanish. 

A simplified discussion of the ideas used in the papers above can be found 
in a remark on p. 186, of [ABV], where the proof  of case n = 1 is outlined. []  

With this last F-limit we have gained further information on the asymptotic 
behavior of the minimizers of our family of functionals, in particular, we can now 
say that, for a limit point u of minimizers, the set A u has minimal boundary. In 
other words, by employing the usual notation we have 

q/1 = {u ~q/o: A~ minimizes H(A)}, 

where 

H(A):= 2coPn(A) + 2 ( ICo;~a - qb(g)[ d~, , -~  
.J o 9Z 

is defined on the subsets of ~ with finite perimeter and 

m~ -- inf ~(*~ = min H(A). 
a 

As we have said before, we are able to compute a further step in the asymptotic 
development of o~ when ~ is an open interval of R, for example, n = (0, 1). 

Put 

)Cu o if x = 0, 
g(x) 

u 1 if x = l ,  
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with u0 e (a, b) and Ul e (c, d). In this case we have 

m 1 = inf ~ ( i )  = 2Co, 
q/o 

ag* = {u e a//~ A, is of  the type (2, 1) with 2 ~  [0, 1]}. 

We define 

c ~ 2 ) ( U )  - -  ~ 1 ) ( u )  - -  '~1 

8 

and 

I f n  (u') 2 dx if u e ~/~, ~(2>(u) = \{~) 

V + co otherwise in q/~, 

where 

"J~ ~- (U e d~/1 with 2 # 0 and 2 # I, u ~ HI(Au) ~ Hl(f~\Au), 

u(0) = Uo, u(1) = ul, u - (2)  = b, u+(2) = c}. 

Here  u- (2)  and u+(2) denote  the traces of u f rom the left and f rom the right at 
the point  2. 

Theorem 2.3. I f  fl  = (0, 1) c R, we have 

F - lira ~ 2 )  = y(2)  in qll. 
8--+0 

Proof. As usual, fix ej $ 0 and u E q/1. 
First step. We show that  for each sequence uj--+ u in Ll(f~) we have the 

inequali ty 

lira inf ~-(~2)(uj) _> ~,~(2)(u). 
j ~ + o o  

With no loss of generality, we m a y  suppose that  the limit 

lim ~ ' (2)  . X ~j (Ufl  
j-~ + oo 

exists and is finite. In par t icular  we assume .~~2)(uj) < C < + o0. 
The set A u is of  the form (2, 1], with 2 ~ [-0, 1]. Suppose for the m o m e n t  that  

2 e (0, 1), later we shall see that  if this is not  the case we must  have 

lira inf o~(2). ~/ (uj~ = + oo.  

j-+ + oo 
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Next put 

X 1 = ess sup{x ~ [-0, 1]: u(x)  < b}, 

x 2 = ess inf{x e [0, 1]: u(x) > c}. 

Of course, x I < ~ < x z.  

As a consequence of our position, for each 6 > 0 there exists a a > 0 
and a subset of positive measure of (x2, x2 + 8) such that u(x)  > c + or. As uj 
can be supposed to converge to u almost everywhere in ~, we can find a point 
x~ ~ (Xz, x 2 + 6) such that uj{x*) > c for j large enough. 

For  the same reason, for every 6 > 0 there is a point x* e (xl - (5, Xx) such 
that uj(x* ) < b for j large enough. 

By denoting I* the interval Cx* x *~ 1 ~ 21  w e  h a v e  

= - -  ,~j Ai- -- ~O(Uj) --  m I + (U))2 + 25 r 
- - "  ej ', ,I; ~'J '~J ,) ~\I,~ C,j \ i~  

(2.2) 

The expression between the square brackets is positive: in fact, the sum of the two 
integrals is greater than or equal to 

2 f ~  I D(~o uj) l, 

and this last expression is greater than rnl because uj(xT) < b and uj(x*)  > c. 

Because the last integral of (2.2) is also positive, we get the estimate 

i (u)) 2dx<C,  
,J f l \ l~ '  

hence as c5 is arbitrary and the constant C does not depend on 6 we get that 
u ~ Ha(fl\({xl} w {2} w {x2})) and that the L2-norm of the derivative on this open 
set is dominated by the constant C (recall that the function u is indeed constant 
in the intervals (Xl, 2) and (2, x2) ). 

To conclude the proof in the case 2E(0, 1) we only need to show that 
u+(x2) = c and u - ( x  0 = b. In fact, this implies that u s ~##, while (2.2) gives the 
desired estimate on the minimum limit of the sequence g~(2)~ (,jj.. 

Suppose by contradiction that u+(x2)= c + h with h > 0. By using the 
regularity of u proved above we have that there exists a constant fl > 0 such that 
u(x)  > c + ~h in (x2, x 2 + fl) and u(x) < c in (x 2 - fl, x2). As the uj converge to u 
almost everywhere, for each fixed k ~ N we can find an index Jk and two points 
Z'k, Z;, ~ (X 2 --  l / k ,  x2 + 1/k) with z~, < z{ such that Jk -~ + 0% c < Uj~(Z'k) < C + �89 
and ujk(z'i ) > c + 3h. In this situation we have the estimate 

~j, j ~ > - -  2 [D(~ouj~)ldx + (u~) 2dx. 
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The par t  between the square brackets  is positive because uj~(z'k) > c, while the last 
integral is greater  than or equal  to 

, [ h/3 ,~2 hZk 
1~" 

As the last expression goes to + oe as k ~ + oe we get a contradict ion with the 
assumpt ion  that  

lira inf ~-~)(uj) < + ~ .  
j ~ + ~  

With a similar p roof  we can show that  i f2  = 0 or 2 = 1 we necessarily have 

lira inf ~(2) 
j---~ § cO 

and the first step of the p roof  is complete.  
Second step. We exhibit  a sequence {us} such that  uj ~ u in LI(~)  and 

lim ~ E ( 2 )  . '~ 

j-~ + oo 

We can assume ff(2)(u) < + oc, because otherwise the construct ion is trivial, and 
so we have usHl(f~\{2}) and u(O) = u o, u(1) = ul, u-(2)  = b, u+(2) = c. 

We define 

f u(x) if 0 ~ x < 2 ,  

uj(x)= tlj(X- 2) if 2 _ < x _ < 2 + ~ j ,  

l (u 1-2-~j1-2 ( x - 2 - r  if 2+~y<x<_l .  

The functions r/j and the sequence Ca are defined in the following lemma. 

L e m m a  2.4. It is possible to find increasing solutions of the following sequence of 
differential problems: 

~/1) = qr + @j,  
(P~) lt/~(0) = b, r/j(~j) = c, 

with ~j --, O. The sequence 6 i above is defined by 

fi~ = meas({s z [b, c]" (p~12(s) <_ z)/2}). 

Obviously, g)) -~ O. 

Proof Consider  a solution of the Cauchy  p rob lem corresponding to (P j) without  
the condit ion t/j(~j) = c. The solution of this p rob lem is globally defined and is 
strictly increasing. We call ~i the t ime this solution takes to reach the value c. 
More  precisely we put ~j = (inf{t ~ R: t/j(t) = c}). 
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We have to show that the sequence {j goes 
Ej = {se [b, c]: (pl/2(s) > e)/2}. We have 

f /  ~j ds 
~J = e l / 2 ( S )  -~ gj6j 

- rE] gj ds f[  gj ds 
- -  q ) l /2 (S)  + g~jtSj AV b,c]kEj ~01/2(S) -}- Ej6j 

meas([b - c]\Ej) <_ e)/2(c - b) + 
aj 

~- F.1/2(C -- b) + @ 

As the last expression vanishes as j --+ + so the lemma is proved. 

to zero as j -~  +oo, Put 

D 

We are now ready to conclude the second step of the proof of Theorem 2.3, 
by estimating the maximum limit of o~2)(uj) (of course the sequence uj converges 
to u in Ll)f~)). 

On (0, 1)\[2, 2 + ~j] we get 

lira sup (@2 + ~ p(ufl dx 
j ~ + o o  .) (0 , I ) \ [ s  + {AL ~;j _1 

_< lim sup ~ (u)) 2 dx + lira sup @2 dx = u') z dx. 
j ~ + a o  ,j 0 j ~ + o o  d 2 + { i  d(O, 1)\{s 

Finally, on (2, s + {fl we have the estimate 

g~ ~+r 1 1 2 f [  t lim s u p | |  /(u)) 2 + 25 ~o(uj) dx - - @/2(s) ds 
j + + m  kJ~ L gj gj 

= lim sup ffJ[(tl'j)z + l~ q~(tlj) - 2 q'jq~l/2(~lj)] dx 
j--+ + ae gj 

= l i m s u p  ('e~[, qr 2 -  - dx 

s = lim sup a~ dx = O. 
j-+ + oo 

By adding these estimates we get the claim, and the proof is complete. [] 

In the more general situation fl c R" with n > 1, the simplest generalization 
of the limit functional would be 

ffn ,Vu] 2dx if uEr 
k + oo otherwise in ~1, 
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where 

~U = {u ~ ~gl c~ BV(f~): (Du - DUle,A, ) ~ L2(~); (I)(u) = (I)(g) ~ " -  1-a.e. 

whenever  9 e  [a, b[ u ]c, d]; u - (x)  = b and 

u+(x) = c ~ " -  1-a.e. on 8A,}. 

Here  u -  and u § denote  the traces of u on the two sides of 0*u. We remark  that  
in the case where 0A, is closed we simply have 

= {u ~ J#~ c~ H~(f~\0A=): O(u) = q~(g) ~ " -  ~-a.e. whenever g e Ea, b[  w ]c, d]; 

u - (x)  = b and u+(x) = c ~ " -  1-a.e. on ~A,}. 

The following example  shows that  this functional Z (=) cannot  be the F-limit 
of the sequence Z~  ~). 

Example  2.1. Let ~ =  { x ~ R 2 : l x ]  < 1} and g ( y ) = c t  on 0f~, ~ ( b , c ) .  On the 
integrand cp we make  the further assumpt ion  that  ~ q)-1/2(s)ds < + oo (this is 
essentially an assumpt ion  of the order  of zero of (o at c). 

If  we choose e ~ (b, e) in such a way that  O(c) - O(~) < ~(c 0, we have 

~,(1) = {u e Ll(f~): u(x) e Ec, d] a.e. in f~}. 

m 1 = 4rc(O(c) - (I)(~)). 

In  part icular ,  the function u~ - c is in ~/(1). Wha t  we do now is build a sequence 
{uj} c HI(F~) with u s -= g on 8f~ and u s ~ uo~ in LI (~)  such that  Y(2)(u.~ = - f l ,  
with fi > 0. This shows that  the positive functional ~(2) cannot  be the F-limit  of 
the sequence Z~  2). 

Let us consider the solution of the following Cauchy  problem:  

{~ ' ( t )  = e ( 1 / 2 ) ( ~ ( t ) ) ,  (2.3) 
v(O) = c~. 

v(t) is a strictly increasing function on the interval [0, K]  with K = S~ q)- t/z(s) ds, 
and v(K) = c. If  h(x) denotes the distance of x ~ f~ f rom 0s we define 

otherwise in f~. 

By using tubular  ne ighborhood  coordinates,  observing that  

O(c) - , (~)  = Jo , , , , ~ ; / / ~  ~ c/r, 
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and recalling (2.3) we get 

j ~ C.TJ.t gsj 

=2~zff~J{[  dv/t\'2L~) +~51 q~ 
ej \ \ e j / / J  

ej \ \ej// & kej/) 

-- 4~ ~[ K'jo t -ejlqot/2(v(t-~)dv(~)\ \ej//dt dt 

= - -47C  zq) i/2(V(Z')) ~ V('C) dz --= --4re zq0(v(z)) dr = -/3. 

It is heuristically convincing that sequences of this kind can be constructed 
whenever Of] has a curved portion, or whenever u jumps on a curved surface, and 
the negative term we get seems to depend on some manner on an integral of 
the curvatures of the surface itself. In particular, a similar phenomenon may occur 
around the intersections between interior jumps and the boundary of .Q, where 
we may think there is some concentrated curvature of c3A,. Anyhow, we have no 
generally reliable conjecture about the correct form of the second F-limit in a 
dimension higher than one. 
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