© S Math. Pures Appl.,
74, 1995, p. 549 & 578

THE NONLINEAR MEMBRANE MODEL
AS VARIATIONAL LIMIT OF NONLINEAR
THREE-DIMENSIONAL ELASTICITY

By Hervé LE DRET and Annie RAOULT

ABSTRACT. —We consider a cylindrical three-dimensional nonlinearly hyperelastic body and we let its thickness
g0 to zero. We show, under appropriate hypotheses on the applied loads, that the deformations that minimize the
total energy weakly converge in a Sobolev space toward deformations that minimize a nonlinear membrane. energy.
The nonlinear membrane encrgy is obtained by computing the I-Timit of the sequence of three-dimensional energies.

Resumt. — On considére un corps tridimensiennel cylindrique formé d'un matériau hyperéiastique non linéaife
dont on fait tendre I'épaisseur vers zéro. On montre, sous des hypotheses -approprices sur 'ordre de grandeur
des forces appliquées, que ies déformations qui mininsisent l’energm totale convergent vers des déformations qui
minimisent une énergie de membrane non linéaite. La convergence a lien an sens de la topologie faible d’un
espace d¢ Sobolev. L'énergie de membrane non linéaire est obtenue en calculant la T-limite de la suite des

énergies tridimensionnelles,

1. Introduction

The purpose of this article is to derive nonlinear membrane models from genuine
three-dimensional nonlinear elasticity by means of a rigorous convergence result. More
specifically, we consider a sequence of three-dimensional cylindrical bodies which are

~ made of the same hyperelastic material and are submitted to given loadings and boundary

_ conditions of place on the lateral surface. We show that, in a rescaled sense, the deformations
that minimize the total energy, or almost minimize it as the case may be, weakly converge
in a Sobolev space towards deformations that minimize a nonlinear membrane energy as
the thicknéss goes to zero. The expression of the nonlinear membrane energy is obtained
by I'-convergence arguments.

The main impetus for our work was provided by an article of Acerbi, Buttazzo and
Percivale [1] which contains a result, the first one to the best of our knowledge to give
firm grounds to lower dimensional models in nonlinear elasticity through a convergence
analysis. We must also mention, in a quite different direction, the work of Mielke [1}, who

, rigorously derives nonlinear rod models from nonlinear three-dimensional elasticity via
center manifold arguments. There are numerous works on the formal derivation of lower
dimensional models for rods, plates, shells and so on, but convergence results were only
available in the case if linear elasticity, ¢f Destuynder [1] and Ciarlet and Kesavan [13, up :
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550 H. LE DRET AND A. RAQULT

to the article of Acerbi, Buttazzo and Percivale. These authors deal with strings, i.e., one

dimensional models, and use the tools of I'-convergence theory to obtain their convergence

result. For the two-dimensional models we consider here, nonlinear membranes, little

- seemed to be known concerning an asymptotic derivation, apart from the work of Fox,
" Raoult and Simo [1], [2]. In this work, Fox, Raoult and Simo obtain among other results a
nonlinear membrane model for the Saint Venant-Kirchhoff material by formal asymptotic
-expansions in powers of the thickness. It turns out, and it is very surprising, that such
‘natyral formal expansions do not always yield the right result, as the application of our
convergence theorem to the Saint Venant-Kirchhoff material shows.

The article is as follows. In Section 2, we state the three-dimensional problem and
describe the rescaling that makes it amenable to the I-convergence analysis we perform
in Section 3. In Acerbi, Buttazzo and Percivale [1], the limit model is one-dimensional
so that convexity arguments can be used. Here, the limit model is two-dimensional,
hence it involves the more complicated notion of quasiconvexity, see Morrey [1] and also
Pipkin [1] for elastic membranes. In Section 4, the ['-convergence result is translated in
terms of convergence of the rescaled energy minimizers and we discuss the nonlinear
membrane model thus obtained. Section 5 is devoted to. an analysis of the consequences
of material frame-indifference for nonlinear membranes. We show that the nonlincar
membrane model is frame-indifferent, a property shared by geometrically exact model,

"¢f. Antman [1], Naghdi [1], but often enough not satisfied by limit models obtained via an
asymptotic procedure. A striking consequence of frame-indifference is that, if the reference
configuration is a natural state and an absolute minimizer of the stored emergy function
of the three-dimensional bodies, then the corresponding nonlinear membranes. offer no
resistance to crumpling. This is an empirical fact, witnessed by anyone who ever played
with a deflated balloon. Material symmetries are also considered. Finally, we close the
article by giving an explicit formula for the nonlinear membrane energy corresponding to
a Saint Venant-Kirchhoff material. :

The results of this article were announced in Le Dret and Raoult [1], [2].

2. Therthree-dimensional and rescaled problems

Forall ¢ > 0, let Q. = {z € R?; (z1, 22) € w, {z3| < £}, where w is an open, bounded
. subset of R? with Lipschitz boundary. Let M; be the space of real 3 x 3 matrices endowed
~ with the usual Euclidean norm |[F|| =.\/tr(FT F). For all z; € R*, i =1, 2, 3, , we

note (21|z2|23) the matrix whose ¢-th colimn is z;. Let W : M3 — R be a continuous
function that satisfies the following growth and coercivity hypotheses:

o { 3C>0, dpel, oo, VFEM, [W(F)|<CL+IF|?),
da>0, I=20, VFc M, W {F) > «|F|F - 5.

We assume that (2. is the reference configuration of a hyperelastic homogeneous three-

dimensional body whose stored energy function is W. We do not consider here the more

physical case of a function W such that W (F) = +oc if det F < 0 and W (F) — +co
when det ' — 0%, This case will be treated in a further work.
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NONLINEAR MEMBRANES AND THREE-DIMENSIONAL ELASTICITY 551

We assume for simplicity that the bodies are submitted to the action of dead loading
body force densities f* & L7(€2:; R®) and surface traction densities g° € L7 (S,; R*)
on 5. = w x {#¢}, the top and bottom surfaces of .. For the sake of definiteness, we
assume that ¢ = r and 1/p + 1/q = 1, but other choices are indeed possible at no extra
cost. Let I'e = dwx| — €, [ be the lateral surface of §2.. We assume that the deformations
of the bodies satisfy a boundary condition of place on T'.. The equilibrium problem may
be formulated as a minimization problem:

(2) find ¢° € &, such that I, (¢°) = ¢ié1§ I (¢),

where the total energy I, is

3) W= [ W (V) do- [ R R
Q. Q. Se
and the set of admissible deformations is

@) @ = {p € WH?(Q,; R®); () =z onT.}.

See Wang and Truesdell [1], Marsden and Hughes [1] or Ciarlet [1], among others, for
general references on three-dimensional nonlinear elasticity. A key-ingredient in existence

*.proofs using the direct method in the calculus of variations is the sequential weak lower

semi-continuity of the energy functionat I, on W1 ? (,; R®). Under the assumptions (1),
it is known that the energy functional I, in problem (2) is sequentially weakly lower
semi-continuous on W'? (£2.; R?) if and only if the function W is quasiconvex, i.e.

() VFeMs, YoeWy™(D;R?, f W (F+V ¢(z))dz > (measD) W (F),
: D

where I is any bounded domain of R®, see Morrey 1], Acerbi- and Fusco [1], Dacorogna
{1]. Problem (2) was solved in the case W (F) = 400 if det # < 0 and W (F) ~ +co

~ when det I' — 0t by Ball [1], under an assumption of polyconvexity of W, a notion

more restrictive than quasiconvexity, plus appropriate growth and coercivity assumptions.
For our purposes here, it is not desirable to assume at the onset that W is quasiconvex
or polyconvex. There are two reasons for this. First of all, the zero thickness limit model
we obtain always involves a quasiconvexification, which has to be effected whether W
is quasiconvex or not. Secondly, we do not want to rule out important examples, such
as the Saint Venant-Kirchhoff stored enmergy function which is neither polyconvex nor
quasiconvex, see Raoult [1]. Consequently, we do nor assume that W is quasicofivex
and problem (2) may well not possess any solutions. Naturally, if it does have solutions
which are thus actual equilibrium deformations of the bodies, our results apply to these
deformations. ) ' o

Let us thus be given a diagonal minimizing sequence ¢° for the sequence of energies
1. over the sets ®,. More specifically, we assume that : :

© # €l L(#)< jnf L()+eh(e),
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552 H. LE DRET AND A. RAQULT

where h is a positive function such that h(¢) — 0 when £ — ). Such a sequence alwiys
exists and if the minimization problems have solution, ¢° may be chosen to the such
a solution.

In order to obtain a membrane model in the limit, it is of crucial importince to specify
the order of magnitude of the applied loads. In effect, it is always possible to siretchi all
thin cylinders €2, into the same block, say (1, by applying suificiently lafge forges, Yor
such forces, the limit behavior is obviously not that of a membrane. s out that the
right order of magnitude is given by ||f¢||z« (o, ;r2) < CeV and iy :
where the constant C' does not depend on e. For example, the Wi
Fe(z) = (0, 0, —pg)7. is allowed. Note that it was knoi
nonlinear plate could not sustain its own weight, see for exanipl
[1]. This is no longer surprising as was already noted b
in view of our results, since a thin nonlinearly- eias
does not behave like a plate, but indeed like a mem|
that are used to derive plate equations are inapprope

* displacements
These scalings

imply for example that the flexural displacement: der of e, whereas
we obtain here that these displacements are roughly: ﬂg o the order of 1, so that
nonlinear plate models are unable to handle this ity

In order to rescale the problem, we let .Qﬂ N Emtl S’ 8, and define a

. rescaling operator ©. by (©.¢){z1, ®2;

and ¢ () {z) = (z1, %2, €23). Note that .
way: we only transport ¢¢ on the fixed domain is thie same rescaling as that
used in Fox, Raoult and Simo [1]. The rescaled disp acement u(c) = ¢{(¢) — ¢a (€)
belongs to V = WE?(€; R?)., We accordingly rescale the energies by sciting

1(e) () = I (851 B), e
M 1w = [ W ((&¢Hﬁ¢ﬁ%¢))¢w—l;fﬁywdviéedgﬁlwdm

or in terms of the rescaled displacements

® IEW= / ((el+aw|ez+é2v|e3+ —8—))45;

—Lf@wm@+maiLaw@w%w+mm

? H

where f(e) = ©. f° and g(e) = O, ¢°. It is immediate that

© () (u(e) £ fnf T (o) (v) + R (e)-

For simplicity, we assume that f (¢} = f and £~ g (¢) = g are independent of e.
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NONLINEAR MEMBRANES AND THREE-DIMENSIONAI ELASTICITY 553

3. Computation of the I'-limit of the rescaled energies

We use I'-convergence theory to determine the asymptotic behavior of the - rescaled
displacements « (&) when & — 0. In the sequel, the thickness parameter £ will take its
values in a sequence £, — 0. Since the results do not depend on the sequence in question,
and for notational brevity, we will simply use the notation . Let us recall that a sequence.
of functions G, from a metric space X into R is said to I-converge toward Gy for the
topology. of X if the following two conditions are satisfied for all z € X:

{Vaﬂs —, lminf G. (z.) > Go(z),
Jy. — =z, Gelye) — Golz).

If the sequence G, I'-converges, its I'-limit is altemativel& given.by.
Go (2} = min {lim inf G, (x.); z. — T}

In addition, the set of functions from X into R has a sequential compactness property with
respect to I'-convergence in the sense that any sequence G.: X — R admits a I'-convergent
subsequence. The main interest of T-convergence is that if the minimizers of G, stay in
a compact set of X for all ¢, then their limit points are minimizers of Gy, see De Giorgi
and Franzoni [1], Attouch [1], Dal Maso [1].

We do not use J (¢) directly, since this would imply working with the weak topology
of W1 2((; R®), which is non metrizable on unbounded sets. Instead, we extend the

energles to LP ((2; R®) by setting
_{J@M@ ifveV,

10  YeeIP(RY,  J()(v) _
: + o0 otherwise.

This is a classical trick used in the applications of I'-convergence. It has the additional
virtue of incorporating the boundary conditions in the energy functional.

Let us now proceed to compute the I'-limit of the sequence J () for the strong topology
- of I? (£ R®). Let M; » be the space of 3 x 2 real matrices endowed with the usual
Euclidean norm ||F}| = 1/tr (_FT F). We note (21]|2:) the matrix of M » whose a-th
column is z, € R®. Forall F = (21]22) € M3 , and z € R?, we also note (F|z) the matrix
whose first two columns are z; and zp and whose third column is z.

As in Acerbi, Buttazzo and Percivale [4] for elastic strings, we define Wy : My, — R by

| (1D ' Wy (F) = ziéiga W ((F|z)).

Due to the coercivity assumption (1), it is clear that this function is well defined. Besides,
since W is continuous, the infimum is attained.

PROPOSITION 1. — The function Wy is continuous and satisfies the growth and coercivity
estimates:

(12) { = C" -2 01 VF [ 1’\/1':3!21 IWO (-F-)' S O!(l + ”F”p),

VE € Msa,  Wo(F) 2 al|F|]P -
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554 4. LE DRET AND A. RAQULT

Proof. — Since Wy is an infimum of continuous functlons it is upper semi-continuous. Let
_ Fe Ms3, 2 and consider a sequence F'e My o such that "> TFasn— +oo Because of

the coercivity assumption (1), there exists a compact set K such that for all F" the infimum
in definition (11) is attained at a point z* € K. Consider a subsequence, still denoted 7,
such that Wo (F ) converges when n - +00. We extract a further subsequence such that
2" — z € K: By continuity of W, Wo (F") = W((F |z”) — W ((Fl|z)) > Wo(F).
As this is true for all subsequences such that Wy (F } converges, it follows that
lim inf Wy (F™y > Wy (F), hence W;, is lower semi-continuous.

Forall F € M 5, Tet 29 be a point where the infimum in definition (11) is attained. Thus,
Wo (F) = W((Flzo)) > a|[(Flzo)||IP — 8 > o| F|ir — 8. Hence Wy is coercive. Therefore,
W), is nonnegative outside of a compact set K. Since |W,| is continuous, it is bounded on
K’ andfor F ¢ K', |Wy (T)| = Wo (F) < W ((FI0)) < C (LI (FIO)IIP) = C A+FIP),
which proves the growth estimate. [

- Let@QWy =sup{Z: M3 3 — R, Z quasiconvex, Z < Wo} be the quasiconvex envelope
of Wy, sée Dacorogna [1] for the definition and properties of quasiconvex functions and
quasiconvex envelopes. Let us introduce the space

(13) Vi ={veV;dv=0},

which we call the space of membrane dlsplacements It is canonically isomorphic to
Wo? (w; R®) and we let T denote the element of Wy'? (w; R®) that is associated with
-y € Vy through this isomorphism. The expression of the T'- lumt of the sequence J(€)
is given in the following theorem.

TuroreM 2. — The sequence J () T-converges for the strong topology of L* (€2; RY)
when € —0. Let J (0) be its T-limit. For all v € L? (§2; R?), J(0) (v) is given by

2/ QWy ((61 -+ 8ﬁ|eg + 825)) dzy dxs

(14) J(O) (’U) - -/ F - (gﬁo (0) +5) dzy d.?;g ﬁf v e VM,
+o0 v otherwise.

. 1
- where F (z1, T2) =/ f (21, z2, z3) das + g (21, T2, 1) + g (21, T2, —1).
-1

For clarity, we break the proof of Theorem 2 into a series of lemmas.

We begin by extracting a [-convergent subsequence and call J(0) its T-limit. The
uniqueness of .J (0) will make the extraction of this subsequence superfluous a posteriori.

LEMMA 3. — Let v{e) € L7 (§; R3) be a sequence such that J(e) (v{e)) S C < 4+
where C does not depend on e. Then v (€) is uniformly bounded in V and its limit points
for the weak topology of V belong to V.

Proof. ~ Let v{e) € LP{f); R*) be such that J (e} (v(e)) € C < +oo. Then, the
definition (10) of the function J ()} implies first of all that v (¢) € V for all & > 0. Let us
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NONLINEAR MEMBRANES AND THREE-DIMENSIONAL ELASTICITY 5535

call ¢ (g) = v (¢) + ¢q (&) the deformation that is associated with the displacement v (&).
The coercivity of the function W and the assumed uniform bound for the energies imply that

(1s)y a /Q (8146 () 1829 (e)le ™ Bs ¢ ()P dir < C (L + i ()l ;)

where C” does not depend on e. It is clear that for all £ < 1, |[(21]z2]e ! z3)| >
[(21]22]23)|]. Therefore (15) implies that

(16) al|V e ()L @aey S €L+ II4 (€)llw = (0;09)),

which, together with the boundary condition of place % () = ¢ (g} on T, yields the
desired uniform bound for ¢ (¢) in W7 (Q; R®) by Poincaré’s inequality. Since ¢ (€) is
obviously uniformly bounded in WP (Q; R®), the same holds true for v (¢).

- On the other hand, since |(z1)22fe™t z5)|| > £71||23]|, upon using the bound just
established above in inequality (15), we obtain that 185 4 (€}l 2o (;m2) < C” &, so that
A3 () — 0 strongly in L? (£2; R®). If we let ¢ denote any limit point of the sequence
1 (e) for the weak topology of WhP(Q; R?), it follows at once that 833 = 0. If v
denotes the corresponding limit point of the sequence v (s), since v = 3 — ¢ (0) and
O30 (0) = 0, we obtain that v belongs to Vy,. [

CoroLLARY 4. — If v € L? (2; R®) but v € Viy, then J (0) (¢) = +oc.

Proof. — Indeed, if J (0) (v) < +oo, there exists a sequence v (¢) that converges strongly
to v in I? (% R®) and such that J(¢)(v(e)) — J(0)(v). Therefore, by Lemma 3,
v € Vi, O

We thus only have to compute the value of the I'-limit for dlsplacements in VM We
first give a technical lernma.

LemMma 5. — Let X — Y be two Banach spaces such that X is reflexive and
compactly embedded in Y. Consider a functional G : X — R such that for all v € X,
G (v) > g(|lvllx) where g is such that g(t) — +oc as ¢t — +oo. Let G: ¥ — R be
defined by G (v) = G (v) if v € X, G (v) = 400 otherwise. Let T-G denote the sequential
lower semi-continuous envelope of G for the weak topology of X and T'- e denote the lower
semi-continuous envelope of G for the strong 1opology of Y. Then T-G = T-G.

Proof. — Both lower semi-continuous envelopes admit a representation formula
an I'-G (v} = min {lim inf G{v°}: v* —wvin X},
-G (v) = min {lim inf G (v%) : v° - vin Y}

Note that these lower seml—contmuous envelopes are nothing but the T'- hmlts of the
constant sequences G and G. '
Consider first v € X. Then I'- G('U) < +oo and there exists as sequence vE - v
strongly in ¥ such that G (v®) = G (v°) — -G (v). By the coercivity of G and since X
is reflexive, v° — v weakly in X as well and the sequential weak lower semi-continuity
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556 1. LE DRET AND A. RAOULT

of -G implies at one that -G (v) > -G (v). Conversely, if v* — v weakly in X is
such that G (v%) — T-G (v), then by the compact embedding v* — v strongly in ¥ and
-G (v) > T-G(v). Therefore, I-G (v) > -G (v) for all v € X.

Let now v € ¥ \ X. Then, r-G (v) = +oo. Indeed, assume for contradiction that
I-G (v) < +oo. Thus, there exist a sequence v* — v in ¥ such that G (v) is uniformly
bounded from above. The coercivity of G then implies that v® is bounded in X, hence
contains a weakly convergent subsequence. The continuous embedding implies that the
limit of such a subsequence is v, so that » € X. This contradicts the hypothesis. [

We now are in a position to give a bound from below for the I'-limit functional.

ProposSITION 6. — For all v € Vir, we have that

a®) F0) ) 2 2 f QW (1 + BuBles + 859)) dar daza — / F - (g (0) +7) day das.

Proof. — - Consider any v € Vis. Since J () (v) is obviously bounded from above
independently of , it follows that J (0) (v) < +co. By the definition of ['-convergence,
there exists a sequence v{e) € V such that v(e} — v strongly in 7 (©; R3) and
J(£) (v(e)} — J(0) (v). Then, by Lemma 3, v(g) — v weakly in V.

First of all, it is clear that, when £ — 0,

w-

(19) / f-(do(e) +v(€))d$+f g-(¢o (e} +v(e))do — f]—'-(qﬁo (0} + ) dz, d=s.
o ]
For the elastic energy, we have that (with 1 (¢) = v (g) + ¢o (¢) as usual) '

e [w((mv@mye )} [wi@s@se)

> ] QW (81 () |02 (€))) e
Q
Let G : WbLP(9; R®) — R be defined by

@) G(w) = / QWo (8 4 |82 4)) dac

Let us define a function Z : Ms — R by Z((z1]7|23)) = QWa ((21]22)). Since
QW, is quasiconvex, Z is also quasiconvex. Indeed, let d be the unit square in R? and
D = dx]0, 1[. Consider any function ¢ € D (D; R®). For all y €]0, 1[, the function ¢y
defined by @, (z1, z2) = ¢ (21, %2, y) belongs to D (d; R*). Hence, for all F' € M,

fZ(F-I-VSD)d.'L':/ QWo (=1 + d1 @22 + o)) dx
L D
:fo (/; QWy (=1 + 01 oy '22+82(Py))d$1d932) dy..
1
> [ awo(@lmnay=2(F).
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This implies that Z is quasiconvex, ¢f Dacorogna [1].
We now remark that Z is quasiconvex, bounded below by —/ and satisfies the growth

condition (1) since QW, satisfies (12). Therefore, the function G is sequentially weakly
lower semi-continuous on W12 (; R?), see Acerbi and Fusco [1]. Consequently, since

Yle) — ¥ = v+ do(0) in WHP (5 R?).

@) imigt [ w (a0 10912292} ) a0

E—F

> limiaf G (4 (¢) 2 G (¢)

= 2/ QWQ ((81 + 316|61 -I-az 5)) dil.',

and the proof is complete. O
Let us now turn to proving the reverse inequality.

PropostTioN 7. — For all v € Vi, we have that
23) j(ﬂ) ('U) < 2/ QW ((61 -+ 8fﬁ|eg + 6275)) dzy dxs — ] F- (450 (0) +ﬁ)dﬂr1 dzy.
Proof. — Let us consider v € Vjy. For all w € WP (w; R?), we define a displacement

(24) | v (e} (z) =T (21, 22) + cx3w ().

Obviously, v (¢) — v strongly in W7 {2; R®). Let us examine the limit behavior of the
sequence J (&) (v (&)). By the dominated convergence theorem and the growth estimate,
it is clear that

/{; W (0 (¥ +exsw) |82 (P + ezaw)les +w)) dz
= [ W@ B 10:Fes +w) da
v?hen e — (. Conséquently, |
25 J(E) () — /ﬂ W (& P10 Bles +w)) dis — / F - (4o (0) +7) dar daa.

As this is true for all w € WP (w; R®), it follows from the definition of I'-convergence
that ' : '

(26) j(O) (’U) < - 1nf f W (61¢|32¢|33 +‘w)) dx— /.F(qﬁo (0)-]—?) d$1 d.‘.Ez.

wEWD? {w; RF) w
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558 H. LE DRET AND A, RAOULT

We remark that

an in / W (@F1850les +w)) dz

'wEWI' -4 {cu' Ra)

- / W (8.9 les +u))ds

wELP( :R3)

by the density of Wy'? {w; R®) in L? (w; R®) and by the dominated convergence theorem.
The function g : w x R® — R defined by g (z, 2) = W ((01¢ ()|5e¢ (z)|es + 2)) is a
Carathéodory function. Hence, the measurable selection lemma, cf Ekeland and Temam
[1], shows that there exists a measurable function wy such that

Wo (019 (2) 823 (2))) = W (819 (2)[82% (w)lea + wo ()

_ for almost all z € w. Due to the coercivity.estimate wg € LP (w; R3) and thus

(28) mf / w ((611/)|321/J|e3 +w)) dx < / Wo ((819029)) dx

w; 8}

Let G : WP (w; R*) — R be defined by

It follows from (28) that for all v € Vi

(30) . J(0) (v) < G (#).

Let @ be defined on L7 (; R?) by G (v) = G (7) if v € Vay, G (v) = +oo otherwise.
Corollary 4 and (30) then imply that for all v € L? (£; R?) :

G1) J(0) (v) £ G (o).

Since J (0) is lower semi-continuous on L? (2; R?), it is smaller than the lower semi-
continuous envelope of G. It is known, see Acerbi and Fusco [1], that the sequential weak
lower semi-continuous envelope I-G of G on Wy'? (w; R3) is given by

Therefore, Lemma 5 with X = V), ¥ = L7 (Q; R®) and g (¢) = o (¥ — 1) implies that
(33) J(0) (v) < -G (v) =T-G (®),

which proves the Proposition. O

Proof of Theorem 2. — Use Corxollary 4 for the v & Vyr and Propositions 6 and 7 for
the case v € V. I]
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4. Convergence of the rescaled deformations and the nonlinear membrane model

We now use Theorem 2 to characterize the asymptotic behavior of diagonal minimizing
sequences of rescaled deformations ¢ () for the sequence of rescaled energies [ (£}, which
are such that 7 (g) (¢ () < . eigf( : I(e) (%) + h(e) where h is a positive function such

£

that () — 0 when & — 0 and the sets of admissible deformations are
®(e) = {4 € WP (4 R®); ¢ (2) = do (¢) () on T}
We introduce the space of membrane deformations as Py ={tp € Whr (Q; R®),
D39 =0, () = (z1, 22, 0} on I'}, which is isomorphic to ®r = {3 € WH? (w; R?),
¥ (21, 2) = (21, %2, 0)T on dwl.

THEOREM 8. — The sequence ¢ (€) is relatively compact in Wb (Q; R3). lis limit points
¢ belong to Ry and are identified with elements ¢ of ®yy, solutions of the minimization
problem I(0)(#) = _inf 1(0) (%) where the membrane energy I (0) is given by

wEP . .

(34) 7(0) ) =2 f QWo (V) dr ds — / F T day do.

Proof. — With the rescaled deformation ¢ (g), we 'associate a rescaled displacement
u(e) € V by u(e) = ¢ (&) — ¢o (¢). Obviously, J (¢) (u(e)) < mf J(e) () +h(e). In

particular, J (&) (u (€)) is uniformly bounded and Lemma 3 shows that the sequence u (&)

is relatively weakly compact in V' and that its limit points belong to VM This implies in
particular that u (e} is relatively compact in L? (Q; R%).

'On the other hand, it is clear that .J (&) (u(e)) < Ln&fz ) J (&) (v} + h(s) Let u
welr

“be a limit point of u (¢) for the strong topology of L? (; R®) (such a w is also a limit

point of u(e) for the weak topology of V). Without loss of generality, we may assume
that u (e} — wu strongly in L (2; R®). Let v be an arbitrary element of L? (Q; R?®) and
consider a sequence v (e) € LP (Q; R®) such that

vie) 2 v, J(e) (v(e) = I (0) (v).

Such a sequence exists by the very definition of I'-convergence. Since J (&) (u (s)) <
J() (v(e)) + h(e), it follows that

J(0) (u) < liminf J () (u(e)) < liminf (J (¢) (v () + h () - J(0) (v).

Therefore, v is a minimizer of J (0). Rewriting this statement in terms of qb we obtain
Theorem 8. [

Remarks. — (i) The argument used in this proof is due to De Giorgi.
(i) It is classical in I'-convergence theory that the energies converge as well in the

sense that () (¢ (e)) — I(0)(9).
(iii) Once we know that the rescaled deformations converge weakly in Wl'f’ (2 R®),

hence in LP(—1, 1; Wh? (w; R3)), it follows immediately that the averages
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— 1 f¢ -
o = 7 ¢° dzs converge weakly in Wb 7 (w; R®) toward the same limit ¢. Simply
use the standard properties of the Bochner integral, see Diestel and Uhl [1].

Comments on Theorem 8. - i) If the three-dimensional elasticity problem has solutions
that minimize the elastic energy, Theorem 8 applies to these minimizes. Such is the case
for the polyconvex stored energy functions introduced by Ball [1], which are of the form

W (F) = g (F, cof F, det F)

where cof F s the cofactor matrix of F and g : M3 x M3 xR — R is convex, We
assume here that '

o(F, H, 6) 2 a(IFIP + JHI +16F = 1), lg(F, H, )i < (I + 1),

with p > 3,1 < 7 < p/2 and 1 < 5 < p/3 so that the coercivity assumption does
not conflict with the growth assumption. More general exponents will be considered in a
further work. Examples of realistic stored energy functions that satisfy the above hypotheses
include Ogden’s stored energy functions with appropriate exponents. The case of stored
energy functions that are such that W (F) — -+oo as det F — 0% presents technical
difficulties and will be addressed elsewhere.

(ii) Even if the three-dimensional elasticity problem does not have any solutions, the
limit minimization problem always has solutions, either by virtue of resulting from the I’
convergence of a sequence of equicoercive functionals, or by virtue of being a quasiconvex
coercive problem with growth conditions. In particular, our analysis applics to the Saint-
Venant-Kirchhoff material that was used by Fox, Raoult and Simo [1], {2] to derive a
nonlinear membrane model by formal asymptotic expansions in powers -of the thickness.
It is known that the Saint-Venant-Kirchhoff stored energy function is not quasiconvex, see
Raoult [1], so that the corresponding minimization problem may not always have solutions.
We will go into more detail concerning the Saint-Venant-Kirchhoff material further on.

(iif) In the case of a three-dimensional stored energy function which is not quasiconvex,
it is a legitimate question to ask whether the quasiconvexification of Wy can be avoided
by using the relaxed three-dimensional energy in place of the original energy. Indeed, the
-limits of both sequences coincide, ¢f Dal Maso [1]. In orther words, we always have
Q{(QW)o) = QWy. However, we will show below that, even if Z is quasiconvex, in
general Zy is not quasiconvex, see Corollary 11 and the remarks following it. In particular
Q((@W)y) < (W) and there is no escaping the quasiconvexification of Wy, except
in special cases.

(iv) It should be noted that the weak limits ¢ of weakly convergent subsequences of
¢ (¢) do not depend on x4, in which sense the problem becomes two-dimensional in the
limit. If regular enough, the associated function ¢ describes a deformation of w into a

surface of R3. The elastic energy of such a deformation, 2 / QW (V ¢) dzq dx2, only

. . " - W - »
depends on its first derivatives. There are thus no bending effects associated with eurvature,
in which sense the resulting model is a nonlinear membrane model.
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(v) H the function QW, is smooth enough, the Euler-Lagrange equations for the
membrane problem assume the form

1 _
= 5 Fi in w, ¢($1, :1'}2) = (.’El, Z9, O)T on dw.

(35) -9 (i QW (V E))

JF i8
Here, as well as in the sequel, Greek indices take their values in the set {1, 2}, Latin indices
in the set {1, 2, 3} and the summaticn convention is understood. System (35) is a system of
three quasilinear partial differential equations in the three unknowns &,. If the applied load
is the weight, assuming the membrane is horizontal in its reference configuration, the limit
load is of the form 1/2F = (0, 0, —pg)T. The function F — Ty (F) = o QW (F)
appears as the constitutive law for the analogue of the first Piola-Kirchoff stress tensor in
the membrane. It gives the Lagrangian description of the tensile stresses in the membrane.
It appears that the limit membrane problem retains the full quasilinear structure of three-
dimensional elasticity, in contrast with such nonlinear plate models as the von Karmén
equations that are only semilinear. It would be interesting to obtain a derivation based
‘on I'-convergence arguments of nonlinear plate models that incorporate bending effects,
inciuding the von Kérman equations and more invariant models. A derivation of the von
Kdrmén model by formal asymptotic expansions is given in Ciarlet [2]. A derivation of a
frame-indifferent inextensional bending model by formal asymptotic expansions is given
in Fox, Raoult and Simo [i], [2].

(vi) It is a straightforward matter to extend the above analysis to the case of more
general loadings as well as more general boundary conditions such as, for example, the
case of a cylinder clamped on. part of its lateral surface only, the other part of the lateral
surface being submitted to given tractions. In this case, we would obtain the same nonlinear
membrane energy and additional force terms coming from the edge fractions.

5. Properties of the nonlinear membrane energy

* " In the T-convergence analysis, we have ignored the fact that the stored energy function
W of the three-dimensional bodies has to satisfy material frame-indifference, since this
was irrelevant for the convergence proof. In this section, we will investigate what are the
consequences of material frame-indifference for the nonlinear membrane energy QW as
well as the consequences of material symmetry assumptions, '

First of all, recall that the principle of material frame-indifference states that to be
legitimate from the standpoint of continuum mechanics, a stored energy function W has
to satisfy ‘

(36) VFeM,, YReSO(3), W(RF)=W(F).

This is a requirement of objectivity that essentially means that the energy should not depend
‘on: the” orthonormal cartésian frame used by the observer, see e.g. Ciarlet [1], Wang and
Truesdell [1] or Marsden and Hughes [1]. Note:that (36) is usually restricted to matrices
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F € Mz such that det F' > 0 that are the only ones that make sense as three-dimensional
deformation gradients. As we do not impose this restriction here for technical reasons, we
extend the principle to the whole of Ms. '

THEOREM 9. — Let the stored energy function W satisfy the principle of material frame-
indifference (36). Then, the nonlinear membrane energy QW is frame-indifferent as well,
in the sense that '

Gn VFeMs, VYRESO(3), QWy(RF)=QW,(F).

Moreover, there exists a function W - Sym% — R, where Sym22 is the set of 2 X 2 positive
semi-definite symmetric matrices, such that

G8 . . YFeMsa QWo(F)=Wo(F F).

. Proof. — We start by proving the analogue of (37) for Wy. Let us be given F' € Mj -
and R € SO (3). By definition,

(39) _ Wo (RF) = inf W((RF|2))

inf, W (R(Fl)

— yigfs W (Fly)) = Wo (F),

which proves the claim for Wy. Let us now use Dacorogna’s representation formula for
the quasiconvex envelope of Wy, ¢f. Dacorogna [1], {2], which states that

— ] 1 = o0
(40) QWy (F) = inf {mea.sD /1; Wa (F-I— V!,D(.I')) dz; p € Wg" (D; R"D’)},

where D is a bounded open subset of R? (this infimum does not depend on the choice of
D). Since for all R € SO (3) and all p € Wo'™ (D; R?), R € Wy ™ (D; R?) as well
and V (Ry) (z) = RV ¢ (z), the same argument as above gives (37).

Proving the representation formula (38) is now an essentially algebraic matter. In fact,
it holds true for any function that satisfies (37). Let thus Z : M3 5 — R be such that
Z(RF) = Z(F) forall F € M3, and R € SO(3). We introduce a kind of polar
factorization for 3 x 2 matrices as follows. Let

and T=\F F.

S =D

1
1) J=10
0

By construction, U € Sym%. We claim that for all F € M 4, there exists a rotation
R € SO(3) such that

42) F=RJU.
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Assume that (42) is proved, then the representation formula follows at once since
43) Z (F) =47 ("J_W)

and it suffices to define Z : Syms — R by

(a4 2(B)=2(TVB),
s0 that
(45) Z(F)=2(F F).

Let us thus turn to proving claim (42). We begin with the case when T is invertible.
It is easily checked that this is equivalent to rank F = 2. In this case, we consider the

matrix FU . We have that
(46) FUYFU =T 0T ' =1,

. L . ' : -1
where I, is the identity matrix in M5. Therefore, the column vectors of U = (23]22)
are orthonormal. Hence, R = (21|22[21 A 23) is a rotation and

47) FU'=R7

and this proves the claim if U is invertible. If U/ is not invertible, i.e. rank F < 2, we

consider a sequence F' ~» F with rank F' = 2 (the set of rank 2-matrices is open and

dense in M3, o) and let B™ denote the associated rotations. As SO (3) is compact, there
exists a subsequence such that R* — R € SO (3) and

RIU =lim(R*JTU ) =lim F* =F,
since the mapping F' ~» U is continuous and the proof is complete. O
Remark. — (i) The meaning of frame-indifference for a membrane is exactly the same as
for three-dimensional continuum mechanics. In this sense, the nonlinear membrane model
is a two-dimensional model that satisfies automatically this fundamental requirement of

objectivity. This is to be contrasted with classical nonlinear plate models which have the
drawback of not obeying: this invariance.

(i) If the deformation ¢ is.smooth enough, say an immersion, mexﬁte‘nsor Vg V&; is

-nothing but the metric of the deformed surface expressed in the chart ¢. The membrane

energy thus only depends on this metric, which is consistént with the intuition that the

stress state in an elastic membrane depends only on l:he stretching that the deformied

surface undergoes

: (iii) If the differentiate formula (38) w1th respect to F, we see that there exists a 2x2
tensor—valued function N such that

(48) VFe Msa, Tr(FY=FNF F).
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Indeed, N (C) = 2 %Wg (C) is a symmetric stress tensor which is analogous to the
second Piola-Kirchhoff stress tensor of three-dimensional elasticity. To obtain an Eulerian
description of the membrane, we assume that ¢ is a C%-immersion of w in R®. This
implies that ¢ (w) is a CZ-surface in R® and that ¢ is a chart for this surface. In
parficular, the matrix (V $)7 V§ is everywhere nonsingular and it is easy to check that
N =((V$)T' V)"t (V)T Tr(V ). Expressed in terms of N, equation (35) becomes

(49 —85 (0a @ Nop) = F/2inw.
Let a, = 8, ¢ be the basis tangent vectors to the deformed surface, a3 = a1 Aaz/}lar Aas i
the normal vector, (@', a2, a3) the dual basis, bog = —a3 - 05 a0 = Cu - O3 a3 the second

fundamental form,'I‘Z,a = a7 - g a, the Christoffel symbols and o = [jag A || the area
element of the surface. It only requires a routine albeit somewhat lengthy calculation to
check that the tensor n = a~ Y2 N satisfies :

— Ty = Pm -
(50) { el on ¢ (w),
, Nap bag = D3,

where the covariant derivative is defined by

Taply = Oy Nap + Ty Pup + Ly

and the loads are given by

—1/2 —1/2
11 a
F-a%  ps=

Pa = F - as.

Equations (50) are the usual equilibrium equatiohs for a membrane given for example
in Green and Zerna [1], although in our case the constitutive law for the Eulerian stress
tensor n fully nonlinearly elastic:

n(F) = det(F’ F) 2 (F )" F 5% QWo (F).

A similar observation was made in Fox, Raoult and Simo [2] for the Saint-Venant-Kirchhoff
membrane.

Note that it is not possible to define the second Piola-Kirchhoff stress N without any
assumption on the constitutive law for the first Piola-Kirchhoff stress —in our case frame-
indifference, which is not really an assumption but rather a requirement. This is quite
different from three-dimensional elasticity where the second Piola-Kirchhoff stress tensor
3 is defined in terms of the first Piola-Kirchhoff stress tensor Ty via the formula T = Fy
where, with standard notation in elasticity, F' € Mj is a nonsingular matrix that stands for
the deformation gradient. In effect, a necessary and sufficient condition for the existence
of a factorization of the form T = F N in the case of membranes is that, considering
T and F as linear mappings from R? into R®, we should have ImT'r C Im F. This is
not always the case: take for example the unphysical membrane stored energy function
Z (F) = F1;. The corresponding first Piola-Kirchhoff stress tensor cannot be expressed
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in terms of a second Piola-Kirchhoff stress tensor even when the rank of 7 is maximal.
Of course, this energy is not frame-indifferent. It should also be noted that factorization
(48) implies that the Piola-Kirchhoff stress vectors always belong to the tangent plane
to the deformed surface.

We may also define an analogue of the Cauchy stress tensor by setting I’ = ¢ */2 T F~,
which is a 3 x 3 tensor, and write equilibrium equations in covariant form for this tensor.

(iv) The expression of material frame-indifference for a membrane in terms of the
various stress tensors introduced in the comments of Theorem 8 and above can be obtained
by differenting relation (37) with respect to F. Namely, for the Piola-Kirchhoff stress
tensor T, we find that

G YRe SO(3), VF e M, Tr(RF)=RTr(F),

for the Eulerian stress tensor n that

(52) YReSO(3), VFeMsa  n(RF)=n(F).

and for the Caunchy stress tensor T that

(53) YRe SO(3), VF e Mss,, (RF} = RT (F) RY,

so that these tensors behave as they should under the left action of SO (3). See Marsden
and Hughes [1], Sime and Marsden [1] and Simo, Marsden and Krishnaprasad [1] for a
discussion- of the differential geometric nature of the various stress tensors.

(v) Tt should be noted that, whereas in three-dimensional elasticity it is reasonable to
restrict attention to deformation gradients in M3+ . there is no such notion for membranes.
Indeed, deformations such as @ (z1, z2) = (22, x5, 0)T, which represent a folding of the
membrane on itself, are legitimate. In this deformation, the deformation gradient is rank-
one along the fold (x; = 0} and the orientation is reversed across the fold. The problem
of global noninterpenetration of matter for a membrane is another question altogether. It
is pow fairly well understood in three-dimensional elasticity, see in this direction Ball 2],
Ciarlet and Nedas [1], Tang Qi [1], Giaquinta, Modica and Soudek [1].

We now proceed to show that, due to frame indifference, if the three-dimensional stored
energy function has a global minimum at F' = I, the corresponding nonlincar membrane
energy is constant in a subset of M3 , with nonempty interior. To begin with, we introduce
a definition.

Definition. - For all F' € Mj, o, we call right singular values of F, and we note v, (F),
vz (F), the eigenvalues of the matrix v/ (ﬁT F) (in increasing order).

Remarks. — By definition, the right singular values are nonnegative real numbers. In

three-dimensional elasticity, the singular values of F are the three eigenvalues of /(F7T F).
These eigenvalues are also called pnn01pa1 stretches. The right singular values play the

same role for a membrane.
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THEOREM 10. — Assume that the three—dzmenszc;nal stored energy function W is such that
W (I)=0and W(F) > 0 for all F € Ms. Then, QW (F) = Uforall F ¢ Ms 5 such
that 0 < v (F) < v (F) < L

Proof — Let F € M 5 be such that 0 < vy (F) < 0(F) < 1. Let U = (F'F)
and let R € SO (2) be such that ' ‘
5T vy (F) 0
RUR m( 0 Uz(F))'
~ Since Wy > 0, it follows immediately that QW (F) 2 0. Indeed, the null functlon is
_ trivially quasiconvex and below Wp. Moreover, W (G) = 0 for all @ such that T G= Iz,
ie., v (G) = v2(G) = 1, by frame-indifference, viz. formula (38). Hence, @QWo (G) =
- for such matrices as well.
_ Let D be the unit disk of R2 The idea is to construct a sequence of membrane
deformations on D that have zero elastic energy and whose gradients weakly converge
to a matrix Z such that (F)TF = F'F. We will then conclude by weak lower
. semi-continuity of the membrane energy.
We consider the function &, : R — R defined by

(1—v (F)t if 0<t<1_+m'”1——(F),
b (1) = Lo (F)
(=1~ (F)(t-1) if——ém—<t<1
(note that since v, (F) € [0, 1], HUTI(F) € [0, 1} and the function 6, is well defined

and cbntinuous) and extend it by periodicity to R. It is clear that §; € W *° (R). We also

define a function 6 in the same way but using vs (F) instead v; (F'). Finally, let

— 1
v (F)a + - 61 (nz1) "

—-n =T
(54) T E D @t 26 ()
0
‘We have
L v (F) 2y
55) FE ) —F R 2)=|ve(@az |,
0
weakly-= in Wb (D; R?), so that
(21 (F) 0
(56) Ve —-ve=| o6 w@®|E
0 0
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weakly-+ in L (D; Mj 5). Since

—r fn (F 0 0]
vy = ("0
0 ?}2( ) 0
L4 ] (F) 0
x| 0 w@ | R=F BUROR=T,
0 0
it follows from Theorem 9 that
(57) QWo (F) = QWo (V)
(which is independent of (x;, z3)).
On the other hand, it is easily checked that
E? (271) 0
—n =T "
(58) V¢ (R z)= ] e (zg) |, -
0 0 '

where

e (1) =1 if nzy — [ngy] E] 0, 1—1_%—(17—‘) [, €7 (x1) = —1 otherwise,

€3 {z2) =1 if nwy ~ fnay] e}o, L%@ [ £7 {z2) = —1 otherwise,
so that
(60) (VY VE =1,
and by frame-indiffercnce
(61) . QW(VE) =0

Since QW is quasiconvex, the functional b | QW (V é(z)) cl:cl dzs is sequentlally
n
weakly-+ lower semii-continuous on W (D; R®), so that we can write

(62) | 0 = lim inf {jl; QWo (V@ () da:lda:g}

00

> j; QWy (VE' (2)) dsdes = w QW, (F),

which completes the proof. O
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Remarks. — (i) The assumption implies in particular that the reference configuration is a
natural state for the three-dimensional body. This assumption is thus fairly natural and the
resulting degeneracy of the membrane energy is not at all a pathological phenomenon.

(ii) The meaning of Theorem 10 is that crumpling a membrane does not require
any energy. In effect, deformations such that 0 < v; (F) < v (F) < 1 correspond
to compressions of the membrane. As the limit problem is a relaxed problem, we can

_ interpret Theorem 10 by saying that if we try to achieve such a compression in a given

membrane, the natural tendency of the membrane will be, instead of achieving it in its
own tangent plane, to jump out of the tangent plane and crumple itself more and more
finely as the thickness go to zero, without modifying its metric very much so that only
little energy is needed. In the weak limit, these oscillations _average out and result in the
required compression. This is exactly what the sequence qb does, although already in
the zero thickness limit: if folds the membrane on itself periodically on a finer and finer
scale, without changing the metric. It is possible, although more complicated, to construct
explicitly a similar sequence of three-dimensional deformations in 2y, rescale it and
obtain the same net effect.

(iii) A similar phenomenon was exhibited by Acerbi, Buttazzo and Percivale [1] in
the case of elastic strings (note that they allow the energy to satisfy W (F) — +oo as
det-F - 0%). In their case, the limit deformations map a segment ¥ into R?, so that limit
deformation gradients take their values in R3. They define Wy (z) = inf {W {(z]22]23));
(22]23) € Ma, 2} and prove that the limit string energy is given by the convex envelope
Wy* of Wy. They show that if W is frame-indifferent and has a minimum at F' = I,
W (I) = 0, then W™ (2) only depends on |{z]] and is identically O for all {{z|| < 1. Such
deformation gradients correspond to compressions of the string and the interpretation of
this result is essentially the same as for the membrane case.

(iv) In the context of the dynamics of an elastic string, it was postulated by Gilquin

" and Serre [1] that the constitive law for the tension in an elastic string should vanish

in compressive states. This was for physical and numerical reasons. The result of Acerbi,
Buttazzo and Percivale vindicates this postulate. Our result shows the kind of degeneracy
that should be expected in the study of the dynamics of a membrane.

(v) Note that Theorem 10 depends crucially on the hypothesis that the energy is
minimum at ¥ = I. This is a property of the reference configuration. Indeed, assume that
the reference configuration is a pre-stretched state. Then it is clear that the membrane will
want to strictly lower its energy by shrinking back to a natural state.

(vi) The set of matrices ' = (21 |z2) such that 0 < v; (F) < vq (F) < 1can alternatwely
be characterized by (|22 + ||22lj%, |22 A 22]|?) € S where S = {(11, ¥2) € (R+) ys =
y; — 1 and 4y; < yl} Its interior is thus nonempty.

We now turn to showing that the quasiconvexification step in the definition of the
nonlinear membrane energy cannot be avoided.

COROLLARY 11. — Let W be frame-indifferent and such that W (I) = 0 and W (F') > 0
if ' # SO(3). Then QW, < W,.

Proof. — We already know that QW, (F) = 0 for all T such that 0 <

f 1 (F <
v (F) € 1. Consider 7 such that v (F) < v, (F) € 1. We claim that Wy (F) >

.O
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Indeed, let 2 € R® be such that Wy (F) = W ((F|z)). Since F'F # I, it follows that
{(Flz) ¢ SO (3) and therefore W ((F|z0)) > 0. U

Remarks. — Corollary 11 implies in particular that even if W is quasiconvex, Wy cannot
be expected to be quasiconvex. Similarly, if W is polyconvex, in general Wy will not be
3

polyconvex. Consider for example W (F) == Z [v; (F)? —1]2 + | det F— 1] where v; {(F)

=1
are the singular values of F, ie., the eigenvalues of /(FT F), and [z]3 = =% if £ > 0

and [z]; = 0 if z < 0. Note that, by contrast, if W is convex, then Wy is also convex so
that @QWy = W, in this case. Unfortunately, it is well known that convex stored energy
functions are entirely inappropriate in nonlinear clasticity.

There is a special case in which quasiconvexity {resp. polyconvexity, rank-one convexity)
is conserved, although by Theorem 10 the reference configuration of such materials cannot
be a strict (modulo frame-indifference) absolute minimizer of the elastic energy.

PROPOSITION 12. — Assume that the minimum in definition (11) is attained at a point
zy € R® that is independent of F. In this case, if W is quasiconvex (resp. polyconvex,
rank-one convex), Wy is quasiconvex ( resp. polyconvex, rank-one convex).

Proof. — Let us prove the quasiconvex case. Since W is guasiconvex and satisfies
appropriate growth conditions, the functional ¢ > / WV ¢ (z)) dz is weakly lower

B
semi-continuous on W (B; R*), where B is the unit cube in RB®. It is shown in Ball
and Murat [1], that then .

©3) fW(ng(:c))deW(ngﬁ(a:)dm)
B B '
for all ¢ € WhH#(B; R®) such that V ¢ is B-periodic.

_Let F_be the unit square in R? so that B = B €)0, 1. Let F € Ms 5 and for all
¢ € D(B; R®) define a function ¢ on B by

(64) ¢ (.’L‘l, Tq, .’L‘3) = F(ml, SL‘z)T | 5(371, .Zt','g) + XT3 Zpg. .
Then V ¢ = (F + V |z) is clearly B-periodic and (63) implics that
©5) /_ Wo (F + V'§(2)) dry dasg = f W (T +V§(@)|e)d

B . B B

2w([ Vo de) =W (Flao)) = Wi (7).

Hence W, is quasiconvex.
We omit the proof for polyconvexity and rank-one convexity, which is simply a restriction
argument, [ - ‘ : - _—
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We now investigate theé consequences on the membrane energy of material symmetry
assumptions on the three-dimensional stored energy function. Recall first that an -elastic
material is said to be isotropic if :

(66) VFe M;, YReSO(3), W(FR)=W (¥).

Although formally similar to the prmcxple of material frame-indifference, isotropy does
not share the samie status. Indeed, it is not a universal property of all materials, but rather
a property of the reference configuration of certain materials. Its meaning i$ that if we
perform eithier a given deformation or first a rotation and then the same defortnation, the
élastic energy is not charged, or in other woids the Cauchy stress tensor is not changed.
Therefore in this sense, the material has (he same material properties-in all directions
“of space in the reference configuration. For nonlingar membranes, isottopy translates in
thie following. fashion. '

' TupoREM 13. — Assume that the stored energy function W is isotropic (66). ’Hten the
nonlinear membrane energy QW, is isotropic as well, in the sense that :

(67_) vFe M., YReSO(2), QW(FR)=QW,(F).
Moreover, rhere exists a function wy : RS — R, symmetric, such that

(68 VF € My, QWo (F) = wo (v1 (F); vz (F)).

Proof. — The proof is similar to that of Theorem 9. Let ¥ € Mz, 2 and B € 50 (2). Then

- 0
. R
R = . 0] e 50(3)
0 0 1
and if we let F = (F|z) then FR = (Fﬁlz) Therefore, W (F) = W(FR) =

W (FRjz)) so that Wy (F) = Wy (FR) as in the proof of Theorem 9. We obtain the
same invariance for QW by using Dacorogna’s formula agam Note that it is important
1o take the domain D to be a disk, so that for all ¢ € Wp** (D; R®) and all R € SO(2),
‘we have gz € Wy ™ (D; R®) where vz (z) = ¢ (Rx).

By frame-indifference, we already now that

QW, (F) = Wo (F* F).
Therefore, by (67), for all € € Syms and all B € 50 (2),
o (R TR) = Wo (T)

and the existence of wyp follows at once from a well known result on isotropic scalar
functions on Symz. O
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Remarks. — (i) The meaning of isotropy for a membrane is exactly the same as for three-
dimensional elasticity, expect that since the membrane is two-dimensional, the rotations to
be performed in its reference configuration must belong to 5O (2).

(i) In terms of the stress tensors, isotropy reads:

(69) VReS0(2), YVFeMy, Tg(FRy=Tr(F)E,
(70) VReS0(2), YFeMyy n(FR=E w@R
and

an VReSO(2), VFeMs T(FR=T(F).

(ii)) A symmetric function of the right singular values of F is also a function of the
pair ([{z1]1? + lza|[%, |21 A 22]|?), which we might thus call right principal invariants of
C=F Fuy analogy with three-dimensional elasticity. Indeed, v, (F)? + v, (F)? =
l1z1]? + [|22][* = tr € and vy (F)2 0y (F)? = |21 A 2|2 = det C. Theorem 13 is thus a
two-dimensional analogue of the Rivlin-Ericksen theorem.

(iv) Note that \/ 181 BlI% + 1|8, Fl|* and 81 6 A 8, B|| are respectively the square
root of the trace and the square root of the determinant of the deformed metric. The
second function is also the surface element on the deformed surface. Both functions
TP+ TlP = |F|l and fiz1 A z|| = [ladj, (P are polyconvex functions of T,
so that any function F — g (y/Tesl? + [z, [l21 A 2ff) with g : R? — R convex
and nondecreasing in each variable defines a frame-indifferent, isotropic and polyconvex
nonlinear membrane energy (if the first variable is missing, this is reminiscent of a minimal
- surface energy). In terms of the right singular values, such a function may be written as

F i k(v (F), v2(F), v1 (F) v2 (F)) with b : R? — R convex, symmetric in the first
two variables and nondecreasing in each variable (see Ball (1] and Le Dret [1] for a.
discussion of the polyconvexity of such functions in the n x n square matrix case and
Lemma 15 below for the convexity in the 3 x 2 case). If we want to enforce additionally
the degeneracy of nonlinear membrane energies, it suffices to ask that k (vy, va, w) = 0
whenever 0 < o1, v, w < 1, _ =
For the case of material symmetries other than isotropy, we have a less complete
result whose proof is identical to that of Theorem 13. Let & = {R € SO(3); VF €
Mz, W(FR) = W (F)} be the material symmetry group of the three-dimensional
material and define & = {R € My; YF € Ma 5, QW (FR) = QW, (F)} to be the
material symmetry set for the membrane (it is not q priori clear that SO (2) nor
“that & is a group). Then we have: R

ProrosimioN 14. — If B € SO (2) is such that

then B ¢ 8.
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We conclude this article by examining the case of the Saint-Venant-Kirchhoff material
in more detail. Recall that the Saint-Venant-Kirchhoff stored energy function is given by

W (F) = gtr(FTF—I)2+g-(tr(FTF_I))Z

where p and A are the Lamé moduli, which we assume to be such that x > 0 and
A > 0. This energy satisfies our basic hypotheses with p = 4. As it is not quasiconvex,
see Raoult [1], we may only conclude that approximate minimizers for the sequence of
three-dimensional problems converge towards minimizers of the corresponding membrane
energy. The quasiconvex enveloppe of the Saint-Venant-Kirchhoff stored energy function
has been explicitly computed in Le Dret and Raoult [3], [4], by the same kind of arguments
as those used below for the membrane energy. Let us first state a lemma, whichisa 3 X 2
version of a result on isotropic convex functions of square matrices of Thompson and
Freede [1], see also Ball [1]. The simplified proof given in Le Dret {1] also works here.

LEMMA 15. — Let & R} — R be a symmetric, convex function that is nondecreasing in
. each variable. Then the function Z (F) = ® (vy (F), v (F}) is convex on Mj 2.

Proof. — As in the square matrix case, the proof is based on the fact that given any triple
3

(31, S, 83) such that 0 < 51 < s3 < s3, the function F — E 8;v; (F), where v; (F)
=1
are the singular values of F, is convex on Ms. This in tum resulis from a trace mequahty

of von Neumann, which says that given two n X n matnces A and B,
trAB < Z v (A) v (B)
i=1
where the singular values v; (A) and v; (B) are arranged .in increasing order, see Mirsky [1].
Since the singular values of the matrix F = (F|0) are 0, v, (F') and v, (F), we deduce
- a
from the above result that for all 0 < s5 < ss, the function F — 2 Sip1 (F) is convex

i=1
on M3 2. We conclude as in Le Dret [1] by expressing the function Z as a supremum of
such functions obtained from the subdifferentials of ®. O

The membrane energy for the Saint-Venant-Kirchhoff material is computed in following
fashion.

PROPOSITION 16. — For the Saint-Venant-Kirchhoff stoved energy function, we have

(72) Wo (F) = gtr (FTF - 1) + ﬁ h(F)?
1 i 2
+ 8010w ((ARCF) — (A +2u))4)
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— _T — .
where h(F) = tr(F F — L) and the membrane energy is

(73 QW (F) = ‘?([92 (F)? - 1))

+ 57 0 F 4w~ (140,
E

S a2y B+ (E)) = (L)),

-+

u(3A+2p)

where vy (F) < vy (F) are the right singular values of ¥ and F = p is the
A
Young modulus and v = ———— is Poisson’s ratio.
2(n+ A)

Proof. — Let us express W {F) in terms of the column vectors of F:

a4 (F)—E(Z(zz 25— u-)“‘) (Z(uzzutl)

g— ( > (za 8 — aﬁ)z) (Z(Hzaif? - 1))'
a, B=1 a=1
+ g ( N 23)2) + 2”8-'_ A-(l!z3l|2 — 1)

u=|>~

(Iln?e'll2 -1) (Z (N 1))

a=]1

In view of (74), it is clear that in order to minimize W ((F|23)) with respect to z3 we
can always choose z3 to be orthogonal to z; and z;. Hence, we are left with minimizing
the function

(75) Flty==—5— 2’“”“ ~ 1P+ 2 (8- 1) (Z(Ilzallz—l)

over the set ¢ > 0, depending on the values of the parameters ||z || and [|22||. As this is a

quadraue fupction in y == ¢* —1, if we let b = Z (lze(* — ) it-thus suffices to minimize .

a=1

20+ A A
(76) g()—‘” v'+ 2 hy
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over the set y > —1. Therefore

2
A 32 i h<2u+/\
an ming={  SCH+A A
' ,u+)\__)\h " h>2,u+)\
8 4 A

from which we obtain fonnﬁla {72).

To compute the quasiconvex envelope of W, we first notice that for all F € Mj s,
there exists G = (21]22) with 21 - 22 = 0 such that v, (F) = v, (G). By Theorem 13,
QW (I) = QW, (G), it therefore suffices to consider matrices 7 whose column-vectors
are orthogonal, which simplifies subsequent computations. Note that for such matrices

Av(F), v (F)} = {llill, ll=2fi}-

The proof is based on the following observation. Since @QW, is quasiconvex, it

is rank-one convex. Hence, for z fixed, the function k., : (22)t — R defined by

- k., (21) = QWo ((z1]22)) is convex. Since ks, (21) < I, (71) = W ((z1]22)), it follows

that ks, (21) < U7} (#1), where I7} is the convex envelope of [.,.
Let us consider the case ||z2)] > 1. In this case, a direct computation shows that

E _ . .
78 z:;(z1)={§(”%ll”~1)2 it Jall + llzl® <1+,
bea (21) if flafl? + vllzall? 2 14w

By the previous remark, this function gives an upper bound for QW (F) on the set of
matrices such that z -z = 0 and }|z2{| > 1. Similarly,

(79) E&ﬂ:{—mmw_nz il + vlal® < 1+,
Lz, (22) if |zl + 2l 2 1+,

(with obvious notation) gives an upper bound for QW, (F) on the set of matrices such
that z; - 2o = 0 and ||z;|| > 1. We now define a function Zp on the set of matrices such

th&[.Z1'Zz=0by

0 i 0<fall i<l
@ Zo(F) = @) i 0[] S 1< ] and ]+ vzl <140,
v F(20) i 0< |jrll <1< |leafl and flzell? + vl 2 < 14,
Wo(F) if |lzall? + vlfzel® 2 1+ v and [[2]® + vllzl > 1+,

Theorem 10 applies to the Saint-Venant-Kirchhoff stored energy function. Therefore,
QW5 (F) = 0 for 0 < ||z, ||22l € 1. Consequently, QW, (F) < Zg(F) for all
F such that z;, - zp = 0. On the other hand, it aiso follows from (78). and (79) that
Zo (F) < Wy (F) for all F such that z; - z, = 0. .
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We now extend the function Z, to M, 5 in an isotropic and frame-indifferent fashion
by letting for all ¥ € M; 5:

0 if 0<u(F)<u(F)<l,
- E — if 0<u (F) <1<y (F)
81) Zy(F) =4 = 2_1)2 ! 2 =
B L) =\ 5 () -1) and vy (FY2 + v (F)? < 14 0,
Wy (F) otherwise.

Itis clear that for all F such that z; .25 = 0 definitions {80) and (81) coincide. Consequently,
by frame-indifférence and isotropy, QWy < Zy < Wy on M; 5. Let us introduce a
function @ by

) O(w, m) = % (fo5 - 1+)* + 8—6% (fof — 14 (v - 1)}y)”

E
8(1~v%)(1-2v

+ y (b @F +03) = L+ 0)14)7,

for v; < wy. A straightforward inspection of all 1 possible cases shows that the expression
of Zy in terms of the right singular values of F (81) is precisely the right-hand side of

. formula (73), in order words Z, (F) @ (v (F), vp (F)).

We now remark that the extension of @ by symmetry for v; > v is convex and
non-decreasing in each variable, so that Zo is convex on M » by Lemma 15. Thcrefore
QW = Z,. O

Remarks. — (i) It is possible to derive the'cxpression of QWy completely algebraically
without appealing to Theorem 10. This is slightly miore complicated.

(ii) The function W, agrecs with the expression found by Fox, Raoult and Simo [1], [2]
by formal asymptotic expansions as long as Ak (F) — (A 4 2) < 0. The fact that this
function is not quasiconvex already implied that it had to be relaxed in order to give rise

_to 3 well-posed problem. However, the failure of formal asymptotic expansions to capture

the additional term m (IXA(F) — (A +2p)]+)? seems hard to explain: Tt should
be noted that Fox, Raoult and Simo where led to restrict their attention to deformations
such that Ak (F) — (A+2 ) < 0 in order to be able to pursue their asymptotic expansions

beyond the zero order term and obtain frame-indifferent, bending governed plate models.
(iii) It is useful to draw a picture of the various regions of the (v, v;)-plane: according

to the values of QWy (see Fig. 1). The 'Emve is an arc of the ellipse of equation
v} + v = 1+ v. In the union of the interior of this ellipse and the half unit square,
the function Wy is relaxed as indicated. Outside of this set, the quasiconvex envelope -

oW, coincides with the function Wy itself, The circle is the curve on which the term.
50720 ([AB(F)—(A+2 )]+ )? becomes stnctly positive. It is tangent to the ellipse. It
is only in the hachured region delimited by this circle and the ellipse that the energy found
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QW P=W (")

-
1’1(1‘-)
Fig. 1

by formal asymptolic expansions is the correct energy for the Saint-Venant-Kirchhoff
membrane. ' :
(iv) For A = 0, the expression of the quasiconvex envelope QW is much simpler:

QW (F) = %I((['Ul (FY? = 1]4)% + ([v2 (F)* = 1141

(v) This is a case when (QWy) = QW,. The minimum in (@Wj) is attained at one point
and furthermore QW happens to be convex, ¢f. Proposition 12 and the remarks following .
Corollary 11. See Le Dret and Raoult [3], [4] for the explicit computation of QW if W
is the Saint-Venant-Kirchhoff stered energy function.

This work is part of the §,C.LE.N.C.E. program project “Junctions in Elastic Multi-Structures” of the Commission
of the European Communities {contract # SCI *0473-C (EDB)).
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