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In this paper, we present several extensions of theoretical tools for the analysis of discontinuous Galerkin
(DG) method beyond the linear case. We define broken Sobolev spaces for Sobolev indices)n [1

and we prove generalizations of many techniques of classical analysis in Sobolev spaces. Our targeted
application is the convergence analysis for DG discretizations of energy minimization problems of the
calculus of variations. Our main tool in this analysis is a theorem which permits the extraction of a
‘weakly’ converging subsequence of a family of discrete solutions and which shows that any ‘weak limit’

is a Sobolev function. As a second application, we compute the optimal embedding constants in broken
Sobolev-Poinc#& inequalities.

Keywords discontinuous Galerkin method; broken Sobolev spaces; embedding theorems; compactness;
I'-convergence.

1. Introduction

In this article, we develop several tools for the analysis of the discontinuous Galerkin finite-element
method (DGFEM) which, in this generality, have only been available in classical Sobolev spaces. We
define broken Sobolev norms for Sobolev indiges [1, co) and prove several embedding theorems
such as broken Poin@rSobolev inequalities (see alsasis & dili, 2003 Brenner 2003 2004 and

trace theorems; see SectidnThese broken embedding theorems are based on combining the known
results in classical Sobolev spaces and the space of functions of bounded variatiorceritinaous
reconstruction operatowhich maps any discontinuous Galerkin finite-element (DGFE) function to a
Lipschitz function. This operator is analysed in detail in Sec8on

These results are then used to prove a compactness theorem for broken Sobolev spaces on suc-
cesively refined meshes when endowed with suitable mesh-dependent topologies. In our opinion, this
compactness theorem is the most important result of the present work.

Our original motivation to prove these results was to understand how one could use a DGFEM
to discretize energy minimization problems of the calculus of variations which occur in many areas
of applied mathematics. A possible idea was providediéy Eyck & Lew (2006 which we briefly
motivate in Sectiori.1and analyse in detail in Sectié The tools which we develop in SectioBsb
allow us to give a rigorous convergence analysis for a general class of energy minimization problems.
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As a second application, we present a technique to prove that the constant in a broken embedding
inequality is the same as in its classical version, provided that the continuous version of the embedding
is compact. We demonstrate the technique at the example of the FeiScduolev inequality.

We anticipate that the tools and techniques which we develop in this paper will have numerous
applications in the analysis of DGFEMSs. For example, the embedding results can be useful for any
nonlinear problem where bounds on lower-order nonlinear terms are required. The compactness results
may be useful for any problem where no ‘classical’ analysis based on coercivity or an inf-sup condition
is possible (for example, in the presence of multiplicity of solutions) and where only weak convergence
can be expected.

In Sectionsl.1and1.2, we provide an introduction to our two targeted applications. We will use
notation which is not introduced until Secti@but which is standard in the literature on DGFEMSs.
Furthermore, we would like to stress that these sections are intended as an informal introduction and
therefore some statements are intentionally not made fully precise.

1.1 The variational DGFEM

Let SX(.%,) denote the space of possibly discontinuous, piecewise polynomial functions of degree
with respect to a partitiot?, of a domain@ c R" with boundarysQ = I'b U I'y. Let I denote the
interior skeleton of the partition and Ietdenote the global andl(x) the local mesh size.

The basic problem of the calculus of variations is to minimize the functional

J(u):/g f(x,u, Vu)dx + . g(x, u)ds (1.2)

over a set of admissible functions, say,
o = {u e WLP(Q)™: Ul = uD}, (1.2)

wheref : Q x R™ x R™" —» Randg: I'n x R™ — R. Under suitable conditions ofi andg, the
existence of minimizers follows from the direct method of the calculus of variat@asdrognal989.

To discretize {.1) by a conforming finite-element method, one would construct a finite-dimensional
subspaceat, of &/ (by means of the finite-element method) and aim to minimiZeover .o,
instead. Wherf andg satisfy suitable conditions, one can then modify the direct method to prove the
convergence afliscrete minimizerto a minimizer of the original problem. Such a technique completely
avoids the use of the Euler-Lagrange equations and is therefore particularly useful when they are not
available or when it is known that the minimizers sought are singular and therefore may not satisfy these
equationsBall, 2001).

The question which we wish to adress here, and in more detail in Segtisrwhether a similar
technique can be applied for the DGFEM. Naively, one might try to define a discrete functional as
follows:

ﬂh(uh):/ f(x,uh,Vuh)dx+/ a(x, uh)ds+/ h_1|[uh]||2ds+/ h_lluh—uD|2ds,
Q N Tint Ip
1.3)

whereVup denotes the elementwise gradientigf [up] denotes the jump dfi, between two elements
andh is the local mesh size (see Sectidrior the precise definitions). The two latter terms would,
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respectively, impose weak continuity across element interfaces and the Dirichlet boundary condition.
However, it turns out that this discretizatiomistconvergent, which is due to fact that we usedraon-
sistentdiscretization for the gradient. Since DGFE functiapsare not continuous, their distributional
gradient has a contribution from the jumps; more precisely,

(Dup, @) =/ Vu-gpdx — [un] -pds Vg e CZ(Q2)™", (1.4)
Q Tint

where [un] is the jump ofup, across the faces dfiy:, which should be taken into accouiien Eyck &

Lew (2006 used difting operatordefined by

/ R(Un) - gn dx = — / [un] - (pn)ds, (1.5)
Q

TintUoQ

where{pp} is a suitable averagdix) of the bi-valued functiomy on the skeleton, to define

S(un) = /Q f (X, Un, Vun + RUn)AX + [ g(x, up)ds
IN

+/ h_l||[Uh]||2d5+/ h=Y|un — up|?ds. (1.6)
Tint Ip

Using our compactness result, Theorgr® for motivation it was natural to arrive at the same discretiza-
tion. In fact, our theoretical results in Sectiohand5 make it straightforward to prove convergence of
minimizers of #, in S“(%)m to a minimizer of.¥ in «/; see Theorend.1 The proof of this theorem
mimics the direct method (or rather a closely related technique knowha@svergenceBraides 2002

Dal Masq 1993 where our compactness results feature prominently. In addition, we do not restrict our-
selves to the casp = 2 but will use more general Sobolev indices in our discretization. It will become
clear that the appropriate choice strongly depends on the propertfearafg.

We conclude this dicussion with a remark on the minimization problerf).(Depending on the
particular properties of , the computation of minimizers td.(1) is a largely unsolved problem. For
example, for typical stored energy densities of finite elasticity, it is unknown whether a conforming
Galerkin finite-element discretization df.() convergesBall, 2001, Le Talleg 1994. Our own analysis
in the present work covers only the case whéris convex in the third argument, and satisfies certain
growth conditions, which are insufficient to cover physically realistic stored energies (Wheet best
polyconvex and is infinite for certain gradients) and it can therefore only be considered as an exploratory
first step towards the solution of the general model probler) py the DGFEM. However, we hope
that the flexibility of the discontinuous Galerkin (DG) method will allow us in the future to tackle some
of the more difficult problems in this class.

1.2 Optimal embedding constants

In Section4, we prove several broken embedding theorems, such as the broken Sobolev-&Poincar
inequality

lun — (Un)ellLace) < Chlunlwiecz, Vun € ST, (1.7)
where(up)o = |2]71 Jo undx and wherep € [1,n) andq € [1,np/(n — p)]; see Lemmad.1 The

proofs of these embedding inequalities are not sharp and do not give optimal constants, even if one
would make the effort to compute them explicitly.
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Thus, in Section7, we demonstrate a technique which allows us to determine the asymptotic
behaviour of the consta@, ash — 0 by comparing it to its classical counterpart

lu— (WellLae) < ClIVUllLeey Yue WHP(Q). (1.8)

For example, if we define the broken Sobolev norm as

1/p
Unhwe o) = IVURILoco) + (/ hl—p|[uh1|pds)
Tint
(see also Lemma3), then we can prove thatdf is small then liminf,_,o Cp, > C, whereas ifx is large,
then lim,—0C, = C. We obtain this result by rewriting the embedding inequalities as minimization

problems and then using techniques similar to those of Se6tion

2. Discontinuous finite-element spaces

Let.»#"~1 denote then — 1)-dimensional Hausdorff measure and, for aset R", let dimy A denote
the Hausdorff dimension oA.

Let @ c R" be a polyhedral Lipschitz domain. We divide the boundasy into a Dirichlet
boundary/p and a Neumann boundary such that/y N I'p = @ and#"1(6Q \ (Ip U I'v)) = 0.
Let (Jh)ne(o,1) be a family of partitions of2 into convex polyhedral elements which are affine images
of a set of reference polyhedra. More precisely, we assume that there exists a finite number of convex
reference polyedray, ..., kr such thatxi| = 1 fori = 1,...,r and that for eack € %, there exist
an invertible affine maj, and a reference elemegtsuch thatc = F, (xj). The symboh denotes the
global mesh size, i.dn = max. 4 diam(x). Without loss of generality, we assume that (0, 1]. We
will provide further assumptions on the mesh regularity in Secidn

Throughout, we shall use the symbets < and > to compare quantities which differ only up to
positive constants that do not depend on the local or global mesh size or on any function which appears
in the estimate.

2.1 Mesh regularity

In this section, we propose a set of assumptions on the family of partiti@)se o,1) which are required
in order to apply the theory developed in this paper. As it is standard in the finite-element literature, we
define the set ofn — 1)-dimensional facegj, of the partition as follows:

bh=knN«' Kk k' eI dmykNk)=n-1}
Uk NoR 1k € Fh,dimy(xkNoQ) =n—1}.

Furthermore, we uséj,; to denote the union of all facese &}, such that dim(enoQ) < n— 1.
Leth, = diam(x) for all k € 9}, andhe = diam(e) for all e € &},.We denote by (x) the local mesh
size defined as a piecewise constant function definéd>@s= h,, x € int(x), andh(x) = he, X € €.

ASSUMPTION 2.1 (Mesh quality) We assume throughout that the fanii)neo,1) satisfies the
following conditions:

(&) Shape regularity: There exis§, C> > 0 such that
C1h? < k] < Coh! Vi e Zh, Yhe (0,1].
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(b) Contact regularity: There exists a const@nt> 0 such that
Cih’t < #"Ye) Veecéhxe Fhsteck, Yhe(0,1]

In particular, we havée ~ h, under the above condition.

(c) Submesh condition: There exists a regular, conforming, simplicial subﬁe&mithout hanging
nodes, edges, etc.) such that

1. for eachk € ﬁh, there exists & € % such thak C «;
2. the family(ﬁh)he(o,l] satifies (a) and (b) and
3. there exists a constabsuch that whenever c «, h, < €h;.

REMARK 2.2 The existence of a simplicial submesh is an entirely technical assumption which may be
tedious to verify in practice. We have included it since it seemed a fairly general assumption under which
we were able to prove the required results. We note also that in dimemsior2, 3, such a submesh

can be constructed under fairly mild assumptions on the partifjp(Brenner 2003 Corollary 7.3). In

fact, it seems straightforward to generalize this proof to arbitrary dimensions.

LEMMA 1 There exists a consta@t independent offi, such that
fleeéh:eck}<C Vke s Vhe(O1]

Proof. Letx € 4 and letE c &}, be the set of faces containedsn Using Assumptiong.1(a) and
2.1(b), we have

FERT~ D hIT A > " e) = " (ox) A hITh

ecE ecE

Upon dividing byh?—1, we obtaint E ~ 1. a

2.2 Broken Sobolev spaces and DGFE spaces

Let p e [1, c0). We will use standard Sobolev spades-P(£2) and LP spacesL P(Q) with their
corresponding norms, with a self-evident notation. The broken Sobolev ¥paBe%;) is defined by

WEP(Z) = {u e LY(Q) : ul, € WEP(x) for all k € Fh).

The dual index is denoted iy = p/(p — 1). The Sobolev index appearing in the Sobolev embedding
theorems (seddams & Fournier 2003 is denoted byp* = np/(n — p) if p < nand p* = oo if
p > n. We recall thaW'P(Q) c L9(R), q € [1, p*] \ {400}, and this embedding is compact for all
g < p* (Adams & Fournier2003.

The subspace of discontinuous finite-element functions of polynomial degree no highérithan
defined as

() = {ue LY Q) : ul. e PXforall x € F},
wherePk denotes the space of polynomials of dedc@@R". For each face € &, e C I'nt, we denote

by x* andx ™~ its neighbouring elements. We write€", v~ to denote the outward normal unit vectors
to the boundariesx*, respectively. The jump of a vector-valued functione W-1(Z)™ and the
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average of a matrix-valued functigne WL1(.25)™*" with tracesp = ¢* from «* are, respectively,
defined as

[¢]l =9t ®@vT+9o ®v™ and
{p} =30 +07).

Foru e WLP(Z,)™, we define the broken Sobolev seminorms:

Ulysoezr) = IVUIEb o) +/F h'~PI[u] [P ds,
int

p P 1-py P
u =|u + h ulP ds.
| lwé*p(ﬂh) Uhwa.p () /FD lul

Next, we recall some important facts about the Banach spade@BV of functions of bounded
variation which contains the spacég-P(.7,)™. The space is equipped with the norm

lulley = llull 1g) + 1DUI(2),

whereDu is the measure representing the distributional derivativeasfd| Du| () is its total variation,
defined by

|[Dul(2) = sup u - dive dx.
wgcé.(g)mxny Q
llellLe <1

The symboICl(£2) denotes the space of continuously differential functions with compact support in
Q. Here and throughout, we use b to denote the usual euclidean inner product of either vectors or
matricesa, b of the same dimensions. Weakeompactness of bounded sets and many other properties
of the space BYQ) will play an important role in our analysis.

The variation (distributional derivative) of a broken Sobolev functioa W-P(.%,)™ is given by
the following formula, which can be easily verified using integration by parts on every element of the
mesh:

—/ u - dive dx =/ Vu - ¢ dx —/ [u]l -¢ds Ve e Cl2)™" (2.1)
Q Q int
The following result is the starting point to lift results for the space BV to DGFE spaces.
LEMMA 2 There exists a consta@t independent ol and p, such that for allp € [1, c0),
IDU|(Q) < Clulwip(g,) YueWHP(IH)™, Vhe (0,1]

Proof. The proof is a straightforward generalizationlafw et al. (2004 Theorem 3.26) to the case
p # 2. For the sake of completeness, we include a brief sketch. The variation is bounded by

IDul(2) < IVull1(g) +/

Fin

[[u]|ds.
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Since|Q| < +oo, we have||Vull 1oy < [2[*YP||VullLre). We can use Hlder's inequality and
Assumption?.1to estimate

/ ||[u]|ds:/ h1/P" ha=P)/P|[u] |ds
Tint Tint

1/p 1/p
g(/ hds) (/ hl‘p|[u]|pds)
Lint Lint

1/p

1/p
s(Zm) () rrnars)
int

eClint

By Assumption2.1as well as Lemma4, we have

DhIS > > s> el

eClint eC lint ke Fp, keIh
ecx

which gives the result. O
We conclude this section with an approximation result.

LEMMA 3 Supposar € WLP(Q)™ for somep € [1, o0); then for eacth € (0, 1], there exists
un € SY(9h)™ such that

[u—UnllLp@) + U — Unlwipz) — 0 ash— 0.

Proof. SinceQ is assumed to be a Lipschitz domain, it follows t_h)SP(Q)m is dense inWL-P(Q)™m
and hence we may assume without loss of generalitythatC> (2)™M. For such a smooth function,
this result follows from standard polynomial approximation the@iaflet 1978. O

3. Reconstruction operator

As is the case in many works on DG methods, ranging fagrosteriorierror estimationarakashian &
Pascal 2003 to the proof of broken Poincastype inequalitiesBrenner 2003 2004 Lasis & dlli,

2003 Ortner & li, 2007, we require at several points a continuous reconstruction operator. In this
section, we will make use of the assumption that there exists a regular simplicial subm&sliseie
Assumption2.1(c)).

Our goal is to define a family of quasi-interpolation opera®@ss: SK(7h)™ — WL (Q)™ and
provide localized error estimates fQnu — u in L9-norms,q e [1, co). Our results are more general
than previous ones in that we consider arbitrary Sobolev indices, but weaker than tligremmier
(2003, for example, since we restrict ourselves to a fixed polynomial degree. In fact, our proofs do
not carry over to arbitraryv>-P(.%,) functions in an obvious way since we make use of local inverse
inequalities. The idea of using quasi-interpolation operators was inspiredgser & Tosell(2003.

In order to simplify the notation, our discussion in this section is for scalar functions only. The
corresponding results for vector-valued functions follow trivially.
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3.1 Local projection operators

Let us firstintroduce some notation for the submésk(see AssumptioR.1(c)). We denote by/Vh the
set of nodes of, and by</1{] the subset of internal nodes. For every 41, we define the star-shaped
patch

T,=JFKe Fh:zer), (3.1)

and we seh, = diam(T). Due to the assumptions on the submegh it is clear thatT, contains a
finite number of elements which is independent of the mesh size. ~
Next, we establish the existence of linear maps BV (2) — R, z € 4, such that

lu— w2l 17,y < CheDul(Ty) Vze . fh, VueBV(Q), (3.2)

whereC is independent dfi andz. To achieve this, we have to dlstlngwsh between the cases miien
on the boundary Q and in the interior of the domaif?. If z € JVh ,l.e.zeint(Q), let B, = B(z, py),
wherep; = min, 7, X — z|2 such thatB, C T,. From Assumptior2.1(c), it follows thatp, ~ h;.
Settingz,(u) = (u)g, (the mean value over the b)), we obtain the following result. We note that our
construction as well as the proofs of the estimates are only minor modifications bf ttese treated
by Verfurth (1999 Lemma 4.1).

LEMMA 4 LetK c R" be star shaped with respect to the poine K and define

p1= inf |X—Xol2 and pz = sup |X — Xol2.
xeoK xeo K

There exists a consta@tdepending only op2/p1 andn such that
lull k) < C(p2/p1)(IUllL2(g) + p1IDUl(K))  Vu e BV(K), (3.3)

whereB = B(xg, p1), and

lu— Wall1k, < C(p2/p1)paIDUI(K) VU e BV(K), (3.4)

Since the proof of this lemma is technical, we postpone it to the appendix. B

We note that Lemmal together with Assumptior2.1(c) (shape regularity of the submesh,)
immediately implies§.2) for interior nodes.

If zlies at the boundary, we defitng as before but we now set

pz= inf |z—X]2.
XeoT,\00

Let B, = B(z, pz) N T, = B(z, pz) N Q. Repeating the proof of Lemn¥averbatim, we obtain
ol sy < € (Iolly, + halDol(T) Vo e BV(T). (3.5)

Since B, is not necessarily convex, we apply a further reduction to the first term on the right-hand
side of @3.5). Sinced 2 is Lipschitz continuous, there exists a cagiewith positive opening angle,
which can be chosen independentlyzofind apex 0 such thétz + ) N B(z, &) c R"\ T, for some
¢ > 0. Leta € R", |alz = pz/2, be the direction of the axis of the co@epointing into T, and
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definez = z + a. It can be easily seen th&, is star shaped with respect zband that there exists
a valuerg € (0, 1/2] which depends only on such thatB;, := B(Z,rop;) C B; c T,. Hence, we
may definer,(u) = (u)g, again (but note thaB, is defined differently now) to obtain the following
result.

LEMMA 5 Forz € .44 andu e BV(Q), let 7,(u) = (u)g,, whereB; is defined as in the above
discussion. Then3(2) holds with a constant independent of the mesh size.

Proof. For interior vertices, we have already shown tf&ap)Y holds with a constant depending only on
hz/pz, which measures mesh quality, and it remains to prove a similar bound for boundary vertices.
Using 3.5 with v = u — z(u), we have

U= w2 Wla, S U= 72WlL 1, + el Dul(Ty).

We now apply Lemmad with K = B, B = B,, h = p, andp = rop, to obtain

lu—m2(Wll 1@, S hzlDUl(By).
Combining this estimate with the previous formula, we obtain
lu— 72 Wl 15, S hzlDul(Ty). O

3.2 Construction and analysis of Q

Finally, we are in a position to define and analyse the reconstruction operator. Fon ead®, 1],
let Qn : SK(%h) — WL2(Q) be the linear operator defined by

Qnu = Z mz(U)Az, (3.6)

ze M

wherel, is the standard?! nodal basis function on the meéﬁ associated with the vertex
For later use, we define for eagke A, x € 9 ande € &h:

TZ=U{xe ThizCk), Te= U{Tz:zczc} and Te=U{T,C ‘e cC k).
Furthermore, forlA c Q, we define the notation
IhNA={ke % .xCA.

Sinceﬁh is a submesh off,, we have thal, O T,, whereT; is as defined ing.1). If we denote by%;,
the number of elemenis € 9, N Ty, due to Assumptio®.1(b) (contact regularity), it follows that,
is bounded independent bfandx. Together with AssumptioB.1(c), this implies that

h, = diam(T,) ~ diam(T,) ~ max diam(T,.)

and also

diam(T,) ~ rré@ he =~ h,.
K K
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THEOREM 3.1 Fix p,q € [1, o0). The reconstruction operat@, defined in 8.6) satisfies the local
estimates for all € S¢(.%,),

ﬂ_ﬂ+
lu—QnullLag) < M ° lUlwepgot,) Y& € Fh, (3.7
=1 _n
lu— QnullLae S he e P |U|W1,p(yhm're) vee éh\ lint (3.8)
IVQnullLeey S UlwrpzaT,) Vi € Th. (3.9)

Furthermore, fog € [p, p*] \ {oo}, we have the global estimates
lu— QnullLace) < ha P ulyrp5, and (3.10)
IVQnullLeo) < IUlwrp(g), (3.11)

whereh denotes the global mesh size.

Proof. Fix q e [1, o). For eacte e .4, we use LemmaL to obtain

0n
Iu—7zz(WllLag,) ~ 7 lIu—72WlL1 -

Our local projection result Lemntagives
g—n-i-l ~
lu— 7TZ(U)|||_q('|~'Z) <Shy |Du|(Ty)

Dn+1 Bn+1
<hi UIVUll L, + h? > [ Ilulids.
ecshNT; e

For the bulk term|Vul|_1(1,), we use Lemma1 and for the surface term we usélder’s inequality
(as in the proof of Lemma) to deduce

1/p
ﬂ_ﬂ_;’_l ﬂ_ﬂ+1 _
lu—7zWllaf,) Shi * IVUllLeer,) +hs P > he p/||[u]||"ols
ecéhNT, e
ﬂ_ﬂ+]_
<hy P [Ulw.p(gnT,)- (3.12)

We now prove the local estimat&.{). Using the fact that the hat functiof,},. 7 form a partition
of unity, we have
q

lu=Qnulllay =| > U—mz(u)i

ZE:/T/hva La (K)

Rearranging terms and recalling thigt, || L~ o) = 1 andi; = 0 outsideT,, we compute

q q q
lu=Qnulilagy S 2, =mWillam) S 2 =72l
ze NNk ze MNk



COMPACT EMBEDDINGS OF BROKEN SOBOLEV SPACES AND APPLICATIONS 837

Using 3.12), we obtain

31, q

lUlwap( g,

q D_
lu—Qnullfay S X (s

Zet/T/hvﬂ}c

Rearranging terms, using the definitionTaf and recalling that the cardinality o Nk is uniformly
bounded,

1/q
a7p q a~ptl
a P
lu— QnullLagy < hi > Ulwiozory | SN lUlwz.p( 50T,

Ze,,/?gﬁx

which concludes the proof 08(7).
If ee & NoQ,then

lu—QnullLa < D Iu— 72l LaenT,-

Zej/;ﬁe
The see N T, is a union of faces of elements jﬁ\. We can therefore use the local inverse estimate

U = 72 g g7y < D710 = 72(WII g 5,

after which proceed as above to obte@d. The third local estimate3(9) follows along the same lines.
To prove the first global estimat8.(L0), we assumeg < [p, p*], g # oo. It then holds thaﬁ — ﬂp +

1> 0, and we seh* = ha~—ptl (recall thath is the global mesh size). We su\.7) (to powerq) over
x € h to obtain

q/p
Iu— Qnullfqg, S "9 > (||Vu||Ep(TK)+/ hl—puu]lpds)
xeh IintN T

a/p

< (h")d Z[”VU”fpmﬁ/F Thl‘pIIUIlpdS} ,
intM Ty

xeh

where we used the fagt |a|* < (Z E" |)“ for « > 1. Finally, we note that due to Lemnia each
elementc appears only in finitely many sefg: and thus, taking thgth root, we obtain the result.
The second global estimate can be proved in the same way. O

4. Broken embedding theorems
4.1 Poincaté inequalities

In this section, we prove broken Sobolev—Poigdaequalities for any € [1, n). Similar results were
previously derived by asis & Sili (2003 for p = 2. The idea in our proof is the same as in the proof of
Theorem3.1to use the known results in B¥2) and the Sobolev spac&¥-P(Q2) together with local
norm equivalence and the reconstruction operator.
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THEOREM 4.1 (Sobolev—Poincéarinequalities) Letp < n and letp* = np/(n — p). There exists a
constanCs such that

Iu— (Wellp (@) < Cslulwrrzy Yue SM Vhe©1] (4.2)
In particular, it holds that
Ul p* (@) < CS(||U||L1(Q) + |U|Wl,p(%)) Vue Sk(%)m’ vhe (0, 1]. (4.2)

Proof. Leto = u — (u) . Itis easy to see thd@phw = w if w is a constant function. Hence, it follows
thatQnv = Qpu — (U)o and

o1l et (o) < o = QnollLp (o) + 1Qn0 — (Qnv)2llLp* (o) + Q) 2 Il b (0)- (4.3)
For the first term on the right-hand side df), we use Theorerd.1to estimate
lo— Qh0|||_p*(g) S |U|Wl,p(9h)-

For the second term on the right-hand side 48), we employ the PoincérSobolev inequality for
WZLP(Q)™M and @.11) to obtain

1Qnv — (QhU)Q“Lp*(Q) § ||VQhU||LP(Q) § |U|Wl,p(yh)-
For the last term, we note thi€Qnv) ol p* (o) < 1QnvIlL1(0) and
1QnollLioy < IQnv — vl 10y + IvllLie)
S hlolwiig, + [Dol(2),

where we used Theorelon the first term and the Poin&inequality for BM Q) on the second term
on the right-hand side.

Using our estimate in Lemm2 we deduce thatDo|(2) = [Du|(2) < |ulwpe,), and we can
combine our estimates to give the first result.

The second result follows immediately frqrtu)guLp*(Q) < ull 1oy O

4.2 Trace theorem

We first recall some facts about traces of functions of bounded variation. The following result summa-
rizes Theorems 1 and 2 Evans & Gariepy(1992 Section 5.3).

THEOREM4.2 LetQ be a Lipschitz domain iR". There exists a bounded, linear operatorBV ()™M
— L1(60Q)™ (we write Tu = u) such that

/ u-divp dx = —/ ¢ -dDu —|—/ U®v)-pds VueBV(Q)", Vg e CLRMH™N,
Q Q 0Q

wherev is the unit outward normal t6Q.
If u e BV(Q), then for#"~1 almost everi e 622, the identity

Tu(x) = lim 7[ u dx 4.49)
B(x,r)NnQ

r—0

holds.
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First, we note that identity4(4) immediately implies a Friedrichs inequality for BX) and there-
fore, by Theoremd.1, a broken Sobolev-Poin@inequality with respect to a broken norm which
penalizes boundary values.

LEMMA 6 (Friedrichs inequality for BV) Leti € BV (L) and let/p be a subset af Q with positive
surface measure. Then, there exists a con§targuch that

lulluso) < Cr (IDu|(.Q) +/ |u|ds> U e BV(Q).
Ip

Proof. We use the standard compactness technique to prove this result. For contradiction, suppose that
no such constartr exists. Then, there exists a sequenges BV (L) such thafu; L1y =1 and
IDUj () + llujli 1) — Oasj — oo. Since|luj|lgv is bounded, there exists a subsequence (not

relabelled) andi € BV (L) such thatu; S uin BV(Q). Since this impliessj — u strongly in
L1(Q), it follows that||u||L1(Q) = 1. Since the functional — [Do|(2) + [lv|l_1(/3,) is convex and
strongly continuous, it is also lower semicontinuous with respect to weadavergence. Therefore,
|Du|(2) = 0, which implies thati is constant in®2. Since||ul| 1) = O, the trace ofi at /b vanishes
which means that = 0 and contradicts the assumption thaf]; 1) = 1. O

COROLLARY 4.3 (Broken Friedrichs-type inequality) Let € [1, n) and suppose thdlp c 0Q has
positive surface measure. Then, there exists a conStgntindependent dfi, such that

Iull e @y < CaF (lullLerpy + lulwepcgy) Yue S{(I)™, vhe (0,1
Proof. Using Theorendl.1and Lemmag® and6, we obtain

Iull e 0y S Ul 1oy + Ulwirec)

A

ull 1) + IDUI(LQ) + [Ulwip(g,)

A

lullLe(rp) + lUlwie(g,)-
O
One may argue that, strictly speaking, Lem#indis a Poincag-type inequality. However, we chose
to label it a Friedrichs-type inequality since it trivially implies

/
Iull e () < CBF|U|Wé,p(%)- (4.5)

THEOREM 4.4 (Broken trace theorem) Lgt € (1, n] and setq = p(n — 1)/(n — p) (i.e. g satifies
%ﬁ - (”—all —1- %) There exists a constaBir, independent of, such that

lullLage) < Cer (Ilull 1oy + lUlwepz)) YU e SI)™, Vhe (0,1]. (4.6)
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Proof. Summinggth powers of 8.8) over the faces oA, we obtain the following:

ng

q q n—1-7+a4 g

IUlfeeo) SIQMUITapoy + D, he I NPRyp—
ecéh,ecoQ

For the choiceg = p(n — 1)/(n — p), we haven — 1 — ng/p + g = 0 and furthermoreq/p > 1.
The latter property can be used to estimate

J J a/p
> layl¥P < (Z laj |) :
i=1 i=1

Hence, we can estimate further

q < q q
flull LA(0Q) ~ ||Qhu|||_q(ag) + Z |U|W1,p(%m-|-e)
ecéh,ecoQ

a/p

q p
SIQnuifaoy + | 20 Wi
ecéh,ecoQ

S 1QnuI a0y + Ul n

The trace inequality4.6) is obtained by employing the trace theorem (see for instance Theorem 6.4.1
in Kufneret al, 1977 for Qnpu, the continuity property o and the estimate3(11) of Theorem3.1
O

5. Compactness inWV1P (%)

In this section, we will generalize the compactness properties of classical Sobolev spaces to broken
Sobolev spaces. This requires@nsistentliscretization of the gradient.

Using integration by parts on each element, it can be easily seen that the distributional delbivative
of a broken Sobolev function is given by

(Du,q)):/ Vu-pdx — [u]l - ¢pds Ve eCPQ)™".
Q T

int

In order to use compactness properties of Lebesgue spaces, we construct a bulk representation of the
jump contribution. To this end, we choose a polynomial defred and then define the lifting operator
R: WLP(Z)™ = S (%)™ " via

/QR<u)~¢dx=— [ 13- toids vo e ™ (5.1)

The polynomial degrekwill later become a discretization parameter and can be chosen arbitrarily.

REMARK 5.1 We note that for the sake of the theory developed in this paper, the avépadeshe
right-hand side of the definitiorb(1) can be replaced by any linear flgxsuch thatp) = ¢ wheneverp
is continuous across all inter-element boundaries.
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We first analyse the main features of the lifting operator. The left-hand siéeling an inner prod-
uct on a finite-dimensional space (cf. also LemA®) while the right-hand side, far € WL-P(%)™
fixed, is a linear functional o (.7,)™*" and henceR is well defined. Next, we prove the boundedness

of Rin different broken Sobolev spaces.

LEMMA 7 Letp € [1, o0). There exists a consta@i such that
1/p
IRWILp2) < Cr (/ hl‘P|[u1|pds) vue WHP(Z)™, vhe (0,1].
Iint
Proof. For eachu € WP (Z,)™ and for eacly € S ()™ ", we have

/ [ul -{¢}dS</ =P [ul | h¥ (p)|ds
: |

int Lint

Up /1 Co\YP
<(/ hl-p|[u1|pds) (—/ h(|¢+|+|¢-|)pds) .
Tint 2P Tint

We can further bound the second term in the last estimate by

/ h(p* I+ 1o~ NP ds< 29’—1/ h(lo*I” + o~ P )ds
Lint Tint

S Z/ hlgl” ds

xeh o
<> / lp!” dx.
keIp "

Thus, we have shown that
1 1/p
J wa-ds<c ( [ -P|[u1|Pds) T 5.2)
int int

vueWLP(H)™, Vo e S ()™,

whereC depends only on the mesh quality and pnUsing the inf—sup condition of Lemma2, we
obtain the result. a

THEOREM5.2 (Compactness WL P(%5)) Let p e (1, 00). For eacth € (0, 1], letup, € WL-P(Z5)™
such that

sup [||Uh|||_1(g) + |Uh|w1,p(%)] < +o0. (5.3)
he(0,1]

Then, there exists a sequertge]| 0 and a function e WZLP(Q)™ such that

Un; Zu inBV(@)™ and

Vuh, + R(Unh;) = Vu in LP(@)™".
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Proof. From Lemma, it follows that|lup||gv is bounded. Hence, there exists a subsequence (which is

not relabelled for notational convenience) and a functian BV (2)™ such thatuy, Zouin BV (Q)™M.

Using the boundedness of the penalty term and applying Lefmva also see thafu, andR(up) are
bounded inL P(£2)™*" which implies their weak compactness. Upon extracting a further subsequence
(again not relabelled), we obtain

Vuh — Fq and R(un) — F;j

ash — 0, whereFg, Fj € LP(2)™*". We show now thaDun converges td= + F; in the sense of
distributions. Sincé&/un, — F4, we only need to show that the jumps genefatén the limit, i.e. that

—/ [unl -godS—)/ Fi-pdx Vg eC@)™" (5.4)
Tint Q

To this end, we add and subtract a functign € S (5)™", then use the definition oR(up) and
subtracty again. This procedure gives

_/Fim[Uh] ~pds= _/FimIUh] o — €0h}d5—/ﬂm[uh] - {pn}ds

—— [ [unl-fo - €0h}dS+/ R(Un) - on dx
Tint Q

= —/ [un] - {p - (ﬂh}ds‘i‘/ R(Un) - (ph — @)dx +/ R(un) - ¢ dx.
Tint Q Q

Using Lemmav, it follows immediately that if we choosg, in such a way thatg — ¢n|lL~ — O, for
examplepy = (p), in x, then the first and second term tend to zerthas 0. SinceR(uy,) converges
weakly toFj, it follows thatDup converges td=,+F; in the sense of distributions. SinBau, converges
also toDu in the sense of distributions, it follows thBiu = (F5 + Fj)dx. Therefore, the singular part
of Du is zero, and hence has a weak derivativ€u = F; + Fj € LP(2)™". Poincaé’s inequality
implies thatu € LP(2)™ and hencel e WP (Q). O

LEMMA 8 (Compact embeddings) Under the conditions of Thedseint also holds that

Up, = u inL9(Q)™ vgil<qg<p* and (5.5)

J
Up, = uinL%@2)" vqil<q<q, (5.6)

whereq* = (n—1)p/(h— p)if p <nandg* =ocoif p > n.

Proof. For the proof of strond.9-convergenceH.5), it is sufficient to use the compactness of the

embedding BVQ)™ c L1(2)™M and Riesz’ interpolation theorem to lift the strong convergence to the

LY spaces indicated. To make this precise, supposeuﬂjwa{i uinBvV(@)™, thenun;, — u strongly

in L1(Q)™. Furthermore, if un; || 1+ + [un; |W1,p(’7h) is bounded, then, by4(2), |un; | . is bounded

and, by Theorens.2, u € W-P(Q)™ c LP*(Q). Hence, using Riesz’ interpolation theorem, we can

estimate

(1-6)

0 0
Ju— un, ”LQ(Q) < JJu—un| LP+(Q) Ju— un, ”Ll(.Q) < Cu—un, ”Ll(Q)

for somed € (0, 1). The right-hand side in this inequality tends to zero.
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Unfortunately, the trace operator presented in Theatedis not compact and thus, we must revert
to using the continuous reconstruction operafgrto prove the second result. Fro.§), it follows
that for each face c 62 N &,

qa oM g
”Uh - Qhuh”LQ(e) ~ he |uhlwl,p(%m'|'e)' (57)

We prove 6.6) only forq € [p, g9*), whereq* is defined as above, the other cases being an immediate
consequence of the statement for, g.¢= p. Seta =n—1—nqg/p+ q > 0. Summing %.7) over the
faces on the boundary, we obtain the following:

q o q
lun = QnunlItaagy < h* > 1unliep -
ecoQ

Sinceq > p, we can usd - ||;a < || - |l,p @and Assumption 1(b) to deduce that

q o q
lun = Qnunlltaegy Sh* D Uhlp o,

ecoQ
a/p
a p o q
Sh (Z |uhlwl,p(:?hm'|'e)) 5 h |uhlwl,p((yh)'
ecoQ
This implies that
lun — QnunllLae) = 0 ash — 0. (5.8)

Since the trace operator froi-P(Q)™ to L9(62)™ is compact Adams & Fournier2003 Theorem
6.3) andQnup, is bounded inW-P(Q)™, it follows that Qnup — u in L9(8Q)™ and therefore, by
virtue of 6.8), up = uin L9(6Q)™. O

6. Variational DG approximation of minimization problems

Let Q be a domain iR" with boundaryp Q = I'p U I'n, Ip N Iy = ¥, wherelp has positive surface
measure. Leff : Q x R™ x R™" — R be a Caratbodory function, i.e. measurable in its first and
continuous in its second and third argument. Suppose, furtherf thatisfies thegp-growth condition

co(|FIP = Jul" + ap(x)) < f(x,u, F) < ca(IF|P + |ul9 + a1(x)), (6.1)

wherea; e L1(Q). We furthermore require that e (1, 00),r < pandr < q < p*. Letg: IjyxR™ —
R be a Caratbodory function which satisfies the growth condition

lg(x, u)| < c2(lul” + ax(x)), (6.2)

wherea, € L1(7}y) andr is the same index as i (1).
We define the functionaV : W-P(Q)™ — R by

F(U) = /Q f(x, u, Vu)dx + : g(x,u)ds, ueWL-P(Q)M (6.3)
N
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Fix up € W-P(Q)™ and define the set of admissable trial functierigo be the closed, affine subspace
of WLP(Q)™ given by

o = [u e WP syl = uD} .

We consider the problem of finding a minimizer.gfin 7. If f is convex in its third component, then
the existence of minimizers follows from the direct method of the calculus of variations, see for example
Dacorogng1989 Theorems 3.1, 3.4 and 4.1). Note in particular that, if eithee 1 orn = 1, then
convexity of f in its third argument is a necessary and sufficient conditionsoto be sequentially
weakly lower semicontinuou$@corognald989 Theorem 3.1), which is a necessary condition for the
direct method to apply to our problem. However, if fimn) > 2, then a more general notion of
convexity should be allowed@corognal989.

Before proposing a discretization strategy, we summarize the most important technical facts about
(6.3) which we use in the convergence proof.

LEMMA 9 Let f andg be Caratkodory functions which respectively satisfy the growth conditions
(6.1 and 6.2.

(i) If uj — ustrongly inL9(2)™ andF; — F strongly inLP(2)™", then

/f(x,uj,Fj)dx—>/ f(x,u, F)dx asj — oo.
Q Q

(ii) If uj — ustrongly inL"(/n)™, then
/ g(x,uj)ds—>/ g(x,u)ds asj — oc.
IN IN

(i) If uj — ustrongly inL9(2)™M, Fj — F weakly inLP(Q)™ " and f is convex in the third
i i
argument, then

/ f(x,u, Fdx < Iiminf/ f(x, uj, Fj)dx.
Q jooo Jo

Items (i) and (ii) follow from Fatou’s lemma while item (iii) is an application@&corogng1989
Theorem 3.4).

We now turn to the discretization of the function@l3). To this end, we chose a polynomial degree
| > 0 and then define the lifting operat®: WL-P(Z)™ - S (,)™*" as in 6.1). The lifting R(u) is
a bulk representation of the jump contribution to the distributional gradiemtiie polynomial degree
| is a method parameter and can be chosen arbitrarily.

We propose the following discrete functional:

In(up) = /Q f(X, un, Vup + R(un))dx + [ g(x, uh)ds
IN

+/ hl‘p|uh—uD|pds—|—/ hi=P|[un]|P ds, (6.4)
Ip int

and our discrete problem is to find a minimizer 64 among all possible vector fields & (.Z,)™.
In the tradition of the literature on DGFEMSs, we chose to label this variational method as variational
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interior penalty DGFEM. We note that the fourth term &14) weakly imposes the Dirichlet boundary
condition and it is therefore not necessary to impose this condition on the approximation space.

A closely related DGFE discretization (with = 2 but allowing a more general definition of the
flux) was defined byfen Eyck & Lew(2006 for applications in finite elasticity. We refer to their paper
for a linearized stability analysis and very promising numerical results. An error analysis for smooth
solutions of the Euler—Lagrange equations was give@tiper & Sili (2007).

Note that, despite its appearandgd is in fact fairly straightforward to implement. The definition
of the lifting operator$.1) allows the construction dR(up) locally in each element, taking into account
only the degrees of freedom on the edges of the element. For exanf{aifis chosen to be piecewise
constant (which is sufficient to obtain convergence), then

R(UR)|x = |K|-1/a \ﬁgl[uh]lds Vi e Th. (6.5)

Our first step in the analysis 06.d) is to prove that families with bounded energies are bounded in
the brokenWP-norm.

LeEmMmMA 10 (Coercivity) Suppose that the energy densifiesdg satisfy, respectively 1) and 6.2).
Then, there exists a constadtindependent of the mesh size, such that

Il p ) < CORW +D) Vue SIWM, Yhe (0,1].

Proof. Letu € S¢(.%h)™. By the growth hypothese$ () and 6.2) and the Trace Theoreth4, we have
Fn() > co (1 VU + RWIPp o) = Ul g) = 120llL1(e))
—c2 (IUlLs (@) + Uy 5 + NalLacry )

+ [ h¥P|[ul|Pds+ [ h¥Pju—up|Pds.
Tint Ip

Sincer < p, for anye > 0, we can estimate

€ 1
ullt o < fullt < —|u|? —— < tqeulPoo
” ”Lf(Q) ~ ” |||_P(_Q) p/r ” |||_p(_Q) + e(p/r)’ ~ € +3|| |||_p(g)

Treating the ternjul| in a similar fashion, we obtain

r
WLT (Fh)
Ih(U) +C(@) > o (I VU + RWIPao) = elUll o) = 2lulfya 7))

+ [ h¥P|[uliPds+ [ h¥Plu—up|Pds.
Tint Ip

An application of the broken Friedrichs inequality, Corolldrg, gives
Fh(U) +C(e) > o (IVu+ RWIog, = e+ 2°7CEe) (Iul o) + 1lfa o))

+/ hl_p||[u]||pds+/ h1=Plu — up|P ds.
Lint Ip
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To shorten the notation, in what follows, we rename &(1 + 2P—1C§F). For a giverv € (0, 1], we
estimate the first and last terms on the right-hand side, respectively, by

IVU+ RWITpg) = dIVU+ RWILp o) = 21 PolIVUI o) — SIRWIILp o, and
/ hl_p|u—uD|pds>/ lu—up|Pds>2"P [ |uPds— [ |up|Pds,
Id Ip Ib I'b

and hence deduce
Ih(u) +C(e) > o ((21-% — &) IVUllfog) = SIRWII o) — & /F JufP ds)
D

+ hl_p||[u]||pds+/ lulPds
Tint Ip

1

coCh’

dominates|| R(u)||fp(g). Finally, we obtain

We now fixd = . whereCR is the constant appearing in Lemri@aso that penalty integral

n(U) + Ce) > (2P0 — &) VUl Py o) + (1/2 — Coz) (/F hl—p||[u]||pds+/r |u|pds),
int D

which provides the required bound after choosing, e.g= min{1/4cy, 2~ Pd} and then applying
Corollary4.3. O

Together, LemmaOand Theorend.2establish the compactness of any family of DGFEM functions
up for which #,(up) is bounded. This allows us to use a direct method-related technique (namely
I'-convergence, sdee Giorgi & Franzoni1975 Dal Masq 1993 to prove the convergence of discrete
minimizers to a minimizer of7 in <.

THEOREM 6.1 (Convergence) Suppose thiaandg are CaratBodory functions which, respectively,
satisfy 6.1) and 6.2) and f is convex in its third argument.

For eachh € (0, 1], letup € argmirg(%)mfh. Then, there exists a subsequehge| 0 andu e
BV(2)™ such thatun, S Any such accumulation pointi is a minimizer of .# in </
(in particularu € WL-P(2)™M) and satisfies

Up; > u inLY)™ vq < p7, (6.6)

Vup, — Vu in LP(Q)™", (6.7)

S () > Z(u) and (6.8)

/ hi ™" Jun, — up|® dS+/ hi™P [[fun, }|P ds — 0 (6.9)
b int

asj — oo. If f is strictly convex in its third argument, then, in addition,

|u— un, ’Wé,p(%j) — 0 asj - oo.

If the minimizer is unique, then the entire family, converges.
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Proof. By the growth condition§.1), any family (un) which is bounded iW%P(Z;,)™ has bounded
energy-#nh(un) and conversely, by LemmtD, if #h(un) is bounded, thetjunllyz.p( 5, is bounded as
well.

From the compactness result, Theorbr, we therefore deduce the existence of a subsequence
hj | 0 and a limit poinu € W-P(2)™ such thatip ZouinBV(Q)™.

Assume now tha(uhj) is any minimizing sequence fo#,; converging weakly- to someu e
BV (2)™. From the boundedness of the energy and the broken Friedrichs inequality, we can again
deduce the boundedness]uf-,j \lep(%j) and therefore can employ Theorén? to deduce thatl

WLP(Q)™ as well as
Vun, + R (un;) — Vu  weakly inLP()™". (6.10)

Lemma8 implies 6.6).
Since the boundary penalty terms

/ h%_p |un, — up|Pds
Ip

are bounded, using also LemrBait follows that
lu—UpllLep) < ”u — Un, |||_p(rD) + HUhj - UD“Lp(rD) -0

asj — oo and hencel € .
Lemmas8 also implies the strong convergenceugf touin L' (62)™, and therefore, it follows from
Lemma9(ii) that the surface integral converges, i.e.

/ g (X, un;) ds — g(x,u)ds asj — oo.
IN IN

As a consequence, using.{0 and Lemmad(iii), we deduce that

S (u) < liminf [/ f (X, un;, Vun, + R(Uhj))dx"‘/
Q

)ds|.
J—>00 FNg(X’ th) i|

To see thati € argmin,, .7, fixv € o/ and letoy € SX(9h)™ converge strongly to in the||-|l_p~ ©)
as well as the - |yy1.pz,)-norm (see Lemma). From Lemmad (using also the Trace Theoref),
we therefore obtain#, (vn) — - (v), which allows us to estimate

S (u) < liminf [/ f (X, Un;, Vun; + R(Uhj))dx+/
Q

J—0o0 IN

g (X, un;) ds}

<limsupsh, (un;) < limsup.sh, (vn) < 7 ().
J]—>o0 ] —>00
Sincev was arbitrary, it follows that? (u) e argmin,,.#. By choosing = u, we find that all inequali-
ties are equalities from which we can infer th&t, (uhj) — #(u) and that the penalty terms converge
to zero ash; — 0, i.e. that 6.9) holds. As a consequence, we also hﬁ%(elhj) — 0 strongly which
implies 6.7).
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If f is strictly convex in its third argument, then the theory of Young measures shows that weak
convergence together with convergence of the energy implies strong convergence. For example, the
proof of Theorem 3.16 in the monograph Bédregal(1997) can be immediately adapted to give our
result. See also Lemn?s3 in the appendix.

The last point follows from a straightforward uniqueness argument. O

7. Optimal embedding constants

In this final section, we present a second application of the compactness results of Sethater
suitable conditions, we shall deduce that in the limithas> 0, the optimal embedding constant in
the broken Sobolev—-Poin@imequality 4.1) is the same as the embedding constant for the classical
Sobolev space. We demonstrate the technique only on the example of the Sobolev-éRoemality,
but we believe that it should apply to any compact embedding of a Sobolev space. Throughout this
section, we taken = 1.

Unfortunately, our results are incomplete for the particular broken seminorm which we have chosen.
Instead, we analyse the equivalent norm

1/p
|U|W11,p(yh) = |VullLro) + @ (/ hl_pl[u]lpds) , (7.1)

Lint
wherea is some fixed positive constant.
From norm equivalence iR, it follows immediately that- lwip( ) and|- !
1
more precisely, there exists a constgnt- 0 such that

(T are equivalent;

1
ColUlwip(g) < |U|W11’p(%) < a|u|wl,p(%) vue W-P(Zh), vhe (0,1]. (7.2)

We can now study the Poin@constants of the newly defined broken seminorm.grix (1, co),
qell, pH)andletV = {v € LY(Q) : (v)o = 0}. From (7.2), it follows that we can replade lwi.p(g)
by| - |W1,p(7h) in (4.1) to obtain

P

lun — (Un)ellLae) < Ch(p, Q)IUhlwll,p(yh) Yuh € SY(%h), (7.3)
which is the discrete counterpart of the Sobolev—Poimazequality
lu— Wellta) < CP,A)IVullLee) Vue WHP(Q). (7.4)

We begin by noting that the optimal consta@igp, q) andC(p, q) in (7.3) and (7.4) are, respectively,
given by

1
= inf  [[VulLe 7.5
C(PO)  wewtpiony, @ 7o
lullLag)=1
and
1 .
inf

= [Unl\y2p -
Ch( pa q) UheSk(gh)ﬁV, Wl (%)
lunllLag)=1
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In particular, the latter can be viewed as a discretization to the minimization problem deSicmay)
and we can therefore employ a similar type of analysis as in Seétitm obtain the following
result.

We note for future reference that both infimeCl( p, q) and ¥/ Cn( p, q) are attained. This statement
is trivial for the latter and for the former, it follows from the fact that the set over which we minimize in
(7.5) is weakly closed inWP(Q).

ProPOSITION7.1 There exists a constait> 0 such that

i = if a >a
H%Ch( p,g) = C(p,q) ifa >a and
Ilrmg]f Ch(p,gq)> C(p,q) if0 <a <a.

Proof. We begin by investigating the case whers large. Suppose thah € SX(%,) NV, h € (0, 1];

lUnllLaey = 1 and|uh|W1,p(7h) = Ch(p,q)~L. From Lemma3 and norm equivalence, it follows
P

that |unlw1.p(, IS bounded and hence we can extract a subsequagceonverging weakly. in

BV(2) and strongly inL9(Q) to a functionu € WLP(Q). In particular, lullLagey = 1 and we
have

[VullLee) < |ijfT_1)ioflf [Vun, + R(uhj)“LP(Q)

<timinf (| Vun, | oo, + IR (U)o -
If a is sufficiently large (e.g. ifc > CR), it follows from Lemma7 that

Vu < liminf |up.
IVullLeo) < min | h,|Wll,p(%j)

and therefore liminf o Cnh( p, q)~t > C(p,q)~t. From Lemma3, we obtain limoCh(p,q) =

C(p, ).
Now assume that is small. Letu € W-P(2) NV such that|u]lLa) = 1 and||VullLro) =

C(p, q)~L. For eacth € (0, 1], letun be defined by
up(X) = (U), VXex, Vk € .

Clearly,un € S(%) NV and|up — UllLacey — Oash | 0. Furthermore, we can bound the seminorm

|uh|W11‘p(%) in terms of|| Vul|Lr(0) as follows:

- p 1-p -1
@ Pl s gy = 2 e P AT @I W — Wl
eClint
S D0 e Pl — 7| + (U — 7 []P (7.6)
eC lint

foranyz € R.
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We constructz in a similar fashion as the local projection operators in Se@idnFixe = ™ N
k™ e &h. Assumptior2.limplies the existence @€ eandp ~ he such thaB(z, p) c K :=xtUx™.
In particular,K is star shaped with respectzoHence, we can set = (u)g and use Lemmato deduce
that

Wi+ — x|+ [(W)e- — 7| S h,:+n||u —wllLiger) + h;— u—7ll i) S h_n+l||vu|||_l(|<)
Upon takingpth powers and applying Jensen’s inequality, we obtain
[We+ =]+ W =2 [1P S hEPIVUIPy ) S T IVUIL p(i)-
Combined with 7.6) and the contact regularity assumptions, this gives

p —
a”Plup| 1p(y ~ ||VU|||_p(g) =C(p, Q)

In summary, we have obtained that there exists a congtautitich is independent df such that
Hence, fora < 1/a, it follows that
Ch(p, @) ™" < lunlyar 5, < @aC(p, @)~ < C(p, @)

and, as a consequence, we obtain that limn€n( p, q) > C(p, q).
Finally, we note that if the latter property holds for a specifie- a’, then it also holds for alt < o’
and hence the proposition follows. O

REMARK 7.2 We conclude our analysis of optimal Sobolev—Poi@d¢arbedding constants with a re-
mark on a modification of the seminorm|y1.p( 7). If we redefine it as

1/p
lUlwiecg) = (”VUHEP(Q) +a/ hl_pllullpds) ,

int

with Sobolev—Poincér constanCh( p, q), then we can obviously use the construction aeeovery

sequencéor the| - |W1 P -seminorm in the proof of Propositioh1to deduce that, if is sufficiently

small, then liminf o Ch(p,q) > C(p,q). However, we have a gap for large
For sufficiently largex, we can deduce from Propositi@nl that

limsupCh( p, q) < 2YPC(p, q),
hl0

which is a good bound but not optimal. Settiag= || Vup|/Lr andb = (fr hl‘p||[uh]||"ds)l/p in the
following inequality:

(lal + b)P < (1 +&)lal® + B|blP,
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whereB, depends only oam and onp, we can strengthen this result to
lim limsupCn(p,q) = C(p, Q).
a—> 00 h¢0

However, we are unable to prove that lim gCn(p, d) = C(p, q) for any sufficiently large (but
fixed) a. In fact, our numerical experiments suggest that this is not the case.
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Appendix A
A.1 Proof of Lemmat

This proof is a modification of the proof derfurth (1999 Lemma 4.1). Throughout, we set= p2/p1.
Using the local approximation of BV functions by smooth functioBsans & Gariepy1992 Sec-
tion 5.2.2), there exists a sequenges BV (K) N C*>(K) such thauj — u strictly in BV, i.e.uj = u
strongly inL* and| Duj|(K) — |Du|(K) asj — oo. Hence, we can assume without loss of generality
thatu e C®(Q) N WLHL(Q).
We write

lull iy = lullLrgy + Ul ik \B)-

Let 2 be the unit sphere iR" and, for eacly € X, letxg +r(c)c € oK. For the second term, we
compute

r(o)
Il iy = /E / " 1Ju(te)dt ds(o)
p

1

r(o) r(o)
< / / " 1u(to) — u( p1o)ldt + / / 0 11u( pro) dt ds(or)
2 Jp; 2 Jp

1

=S+

To obtain a bound o0&, consider

r(o) t
81=// -1 / aru(ro)dr
2Jp1 p1

r(o) t
<p11‘”// t”_l/ r" 115, u(ro)|dr dt ds(o)
ZJp p

1 1

dt ds(o)

14 ") 1
<o 3 =p) [ [ tauaio dsio)
p

1

P1
< F(Vn = DIIVull 1k \B)-
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For S, we estimate
1 n n
S= - Z(F ()" — p1)Iu(pio)lds(o)
p1 Py
< / L2 1| py"Yu( pyo)ds(o)
nJs[p"
1 _
YL / "L u(p10)ds(o)
n x
Pl
= F(Vn = Dllull1om)-

We bound||u||L1(aB) as follows:

||U||L1(aB)=/2P1n_1lu(p10)|d5(0')
=Jorm G o]
_/Zpl /o Or o u(ro) |dr
n n—-1
:/ p1" L /pl[(L) aru(rr;)+nr - u(ra)} dr
z 0 P1 p1

P1 P1
g/ pl_l/ r16ru(ro)|dr ds(o-)+n/ pl_l/ r"“Lu(r p1)|dr ds(s)
> 0 s 0

ds(o)

ds(o)

n
< IVUllLyg) + —llull g
LY(B) p1 LY(B)
Combining all our estimates, we obtain
< PLin _1yv
lullLaky < lullLaey + PR MIVUll 1\ )
PLyn — v n_1
+ = (v VUl 1) + (& MUl 1)
p1
= Vn||U|||_1(B) + F(Vn = DIIVullLik)

which gives 8.3).
To obtain the second result, we note that the Poidaequality on balls takes the form (see
Acosta & Duian (2004, where this is proved for arbitrary convex sets)
lull gy < p1lVUllLre) YueWHH(B), (u)s=0. (A1)

Thus, @.4) follows immediately from 8.3).
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A.2 Auxiliary results
LEMMA Al Let (Jh)nhe(o,1) be a family of partitions of2 satisfying Assumptior2.1 Then, for each
P, q € [1, oo], there exists a constaft > 0, independent df, such that for anyx € %,

he PlollLpey < Che HollLagy Yo € (%), Vhe (0,1].

Moreover, for any € .,

h;B ||1)|||_p(;3) < Ch’;a”DHLQ(’,{) Vo e Sl(ﬁ]) + Sk(%)y Vhe (O, 1]

Proof. Letx € %, k its corresponding reference element &pd © — « the associated mapping. We
setJ = |detV F,|. SinceF is bi-Lipschitz, we havé:—lh,rj < J < Ch for some constan which is
independent of. From the area formula (cEvans & Gariepy1992, we have

/|u|pdx:/J|UOFK|pdx%hQ/|UOFK|pdx.
K K K

Using norm equivalence in finite-dimensional spaces, we obtain

p/q p/q
/|u|pdxmh2 (/lUOF,Clqu) ~ hn—np/d (/|u|qu) .

The first equivalence follows by taking theroot. _
The second equivalence is proved with the same technique, after noting thab givest(.%,) +
SK(%h), theno |z is a polynomial of degrek. Thus, the previous reasoning applies. O

LEMMA A2 Let SX(.%) be defined as in Sectiahand let the mesh family satisfy Assumptia@rlL
Then, for eactp € [1, c0), there exists a consta@, independent ofi, such that

, Jo uv dx
inf s >C>0.
ueSK(Fh) pesk(z IUllLr@) ol v (o)
Proof. For a givenu € LP(Q), setv = |u|P~2u so that [, uv = IulliLe) ol p o) At the
discrete level, ifu € S¢(.%), the choicev = |u|P~2u is not allowed, in general. Instead, we set

v = IIx(Ju|P~2u), where ITx denotes the_2-projection ontoSK(.%h) (note that this is a projection
element by element), and therefore

||HkU||2|_2(K) = /K UIludx < [lull p ) I IkUlILPGe) YV € Fh.
Using LemmaAl, we obtain
MUl o oy < Crrllull )y VK € Th,
whereCy; is independent oh andx. Moreover, by the definition ofly, it holds thath ullyo dx =

Jouvdxforallu e SK(h). A possible value for the consta@tin the statement is therefore given by
1/Cy. O



COMPACT EMBEDDINGS OF BROKEN SOBOLEV SPACES AND APPLICATIONS 855

The last result which we prove in this appendix allows us deduce strong convergence of a sequence
from its weak convergence together with convergence of a strictly convex energy. This result is well
known and the proof is a straightforward adaptiorPefirega(1997 Theorem 3.16). However, we did
not find a precise statement suited for our specific needs and therefore prefer to give a sketch of the
proof.

LEMMA A3 Let f : @ x R™ x R¥ be a Caratiodory function satisfying the growth condition
|, u,0) < e(@ 4+ [ul? + o]
and such thaf (x, u, -) is strictly convex for a.ax € Q and for allu e R™.
If uj — ustrongly inL9(2)™ andvj — v weakly inLP(Q)X and if

lim / f(X,Uj,l)j)dX:/ f (X, u, v)dx,
Q Q

j—o0
thenvj — o strongly inLP(Q)K.

Proof. The proof requires the machinery of Young measures which we cannot introduce at this point.
A nice introduction is given ifPedrega{2000. Suffice to say that Young measures give a more precise
description of weak limits and, when the functionél3) is extended in a suitable way, it becomes
continuous under weak convergence.

Let (ux)xe be the Young measure generated by (a subsequen@g pfdn. Then,(dux) ® ux)xeo
is the Young measure generated by the p@irs vj)jen. Using the assumptions of the lemma and
Pedrega(200Q Corollary 5.7), we can estimate

lim / f(x,uj,oj)dx=/ f (X, u(x), v(x))dx
Q Q

j—o> oo
:/Q f (x,u(x),/szdyx(z)) dx

g/Q/Rk f (X, u(x), 2) dux (2)dx
:/ / f(x,Z, 2)d(dux) ® ux)(Z, z)dx
Q JRM@RK

= lim / f(x,uj, vj)dx.
Q

]—>00

Thus, equality must hold in the inequality of line three, which means that

f (x,u(x),/szdyx(z)) = /]Rk f(X,u(x), 2)dux(z) fora.axe Q.

By assumption f (x, u(x), -) is strictly convex for a.ex and hence.yx = o7 = d,(x).-
Now, we can us®edrega(200Q Corollary 5.7) again to deduce that

lim / |1)j|de=// |Z|plux(dZ)dX=/ |o|P dx,
| Rnde SV o) Q JRK Q

and therefore; — o strongly inLP (see alsd®edregal200Q Lemma 5.8). d
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