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Compact embeddings of broken Sobolev spaces and applications
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In this paper, we present several extensions of theoretical tools for the analysis of discontinuous Galerkin
(DG) method beyond the linear case. We define broken Sobolev spaces for Sobolev indices in [1,∞),
and we prove generalizations of many techniques of classical analysis in Sobolev spaces. Our targeted
application is the convergence analysis for DG discretizations of energy minimization problems of the
calculus of variations. Our main tool in this analysis is a theorem which permits the extraction of a
‘weakly’ converging subsequence of a family of discrete solutions and which shows that any ‘weak limit’
is a Sobolev function. As a second application, we compute the optimal embedding constants in broken
Sobolev–Poincaré inequalities.
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1. Introduction

In this article, we develop several tools for the analysis of the discontinuous Galerkin finite-element
method (DGFEM) which, in this generality, have only been available in classical Sobolev spaces. We
define broken Sobolev norms for Sobolev indicesp ∈ [1,∞) and prove several embedding theorems
such as broken Poincaré–Sobolev inequalities (see alsoLasis & S̈uli, 2003; Brenner, 2003, 2004) and
trace theorems; see Section4. These broken embedding theorems are based on combining the known
results in classical Sobolev spaces and the space of functions of bounded variation with acontinuous
reconstruction operatorwhich maps any discontinuous Galerkin finite-element (DGFE) function to a
Lipschitz function. This operator is analysed in detail in Section3.

These results are then used to prove a compactness theorem for broken Sobolev spaces on suc-
cesively refined meshes when endowed with suitable mesh-dependent topologies. In our opinion, this
compactness theorem is the most important result of the present work.

Our original motivation to prove these results was to understand how one could use a DGFEM
to discretize energy minimization problems of the calculus of variations which occur in many areas
of applied mathematics. A possible idea was provided byTen Eyck & Lew(2006) which we briefly
motivate in Section1.1and analyse in detail in Section6. The tools which we develop in Sections3–5
allow us to give a rigorous convergence analysis for a general class of energy minimization problems.

†Email: christoph.ortner@comlab.ox.ac.uk

c© The author 2008. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.



828 A. BUFFA AND C. ORTNER

As a second application, we present a technique to prove that the constant in a broken embedding
inequality is the same as in its classical version, provided that the continuous version of the embedding
is compact. We demonstrate the technique at the example of the Poincaré–Sobolev inequality.

We anticipate that the tools and techniques which we develop in this paper will have numerous
applications in the analysis of DGFEMs. For example, the embedding results can be useful for any
nonlinear problem where bounds on lower-order nonlinear terms are required. The compactness results
may be useful for any problem where no ‘classical’ analysis based on coercivity or an inf–sup condition
is possible (for example, in the presence of multiplicity of solutions) and where only weak convergence
can be expected.

In Sections1.1 and1.2, we provide an introduction to our two targeted applications. We will use
notation which is not introduced until Section2 but which is standard in the literature on DGFEMs.
Furthermore, we would like to stress that these sections are intended as an informal introduction and
therefore some statements are intentionally not made fully precise.

1.1 The variational DGFEM

Let Sk(Th) denote the space of possibly discontinuous, piecewise polynomial functions of degreek
with respect to a partitionTh of a domainΩ ⊂ Rn with boundary∂Ω = ΓD ∪ ΓN. LetΓint denote the
interior skeleton of the partition and leth denote the global andh(x) the local mesh size.

The basic problem of the calculus of variations is to minimize the functional

I (u) =
∫

Ω
f (x, u,∇u)dx +

∫

ΓN

g(x, u)ds (1.1)

over a set of admissible functions, say,

A =
{
u ∈ W1,p(Ω)m : u|ΓD = uD

}
, (1.2)

where f : Ω × Rm × Rm×n → R andg : ΓN × Rm → R. Under suitable conditions onf andg, the
existence of minimizers follows from the direct method of the calculus of variations (Dacorogna, 1989).

To discretize (1.1) by a conforming finite-element method, one would construct a finite-dimensional
subspaceAh of A (by means of the finite-element method) and aim to minimizeI over Ah

instead. Whenf andg satisfy suitable conditions, one can then modify the direct method to prove the
convergence ofdiscrete minimizersto a minimizer of the original problem. Such a technique completely
avoids the use of the Euler–Lagrange equations and is therefore particularly useful when they are not
available or when it is known that the minimizers sought are singular and therefore may not satisfy these
equations (Ball, 2001).

The question which we wish to adress here, and in more detail in Section6, is whether a similar
technique can be applied for the DGFEM. Naively, one might try to define a discrete functional as
follows:

Ih(uh) =
∫

Ω
f (x, uh,∇uh)dx +

∫

ΓN

g(x, uh)ds+
∫

Γint

h−1|[[uh]] |2 ds+
∫

ΓD

h−1|uh − uD|
2 ds,

(1.3)

where∇uh denotes the elementwise gradient ofuh, [[uh]] denotes the jump ofuh between two elements
andh is the local mesh size (see Section2 for the precise definitions). The two latter terms would,
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respectively, impose weak continuity across element interfaces and the Dirichlet boundary condition.
However, it turns out that this discretization isnotconvergent, which is due to fact that we used anincon-
sistentdiscretization for the gradient. Since DGFE functionsuh are not continuous, their distributional
gradient has a contribution from the jumps; more precisely,

〈Duh, ϕ〉 =
∫

Ω
∇u · ϕ dx −

∫

Γint

[[uh]] · ϕ ds ∀ϕ ∈ C∞c (Ω)
m×n, (1.4)

where [[uh]] is the jump ofuh across the faces ofΓint, which should be taken into account.Ten Eyck &
Lew (2006) used alifting operatordefined by

∫

Ω
R(uh) · ϕh dx = −

∫

Γint∪∂Ω
[[uh]] · {ϕh}ds, (1.5)

where{ϕh} is a suitable average (flux) of the bi-valued functionϕh on the skeleton, to define

Ih(uh) =
∫

Ω
f (x, uh,∇uh + R(uh))dx +

∫

ΓN

g(x, uh)ds

+
∫

Γint

h−1|[[uh]] |2 ds+
∫

ΓD

h−1|uh − uD|
2 ds. (1.6)

Using our compactness result, Theorem5.2, for motivation it was natural to arrive at the same discretiza-
tion. In fact, our theoretical results in Sections4 and5 make it straightforward to prove convergence of
minimizers ofIh in Sk(Th)

m to a minimizer ofI in A ; see Theorem6.1. The proof of this theorem
mimics the direct method (or rather a closely related technique known asΓ -convergence;Braides, 2002;
Dal Maso, 1993) where our compactness results feature prominently. In addition, we do not restrict our-
selves to the casep = 2 but will use more general Sobolev indices in our discretization. It will become
clear that the appropriate choice strongly depends on the properties off andg.

We conclude this dicussion with a remark on the minimization problem (1.1). Depending on the
particular properties off , the computation of minimizers to (1.1) is a largely unsolved problem. For
example, for typical stored energy densities of finite elasticity, it is unknown whether a conforming
Galerkin finite-element discretization of (1.1) converges (Ball, 2001; Le Tallec, 1994). Our own analysis
in the present work covers only the case wheref is convex in the third argument, and satisfies certain
growth conditions, which are insufficient to cover physically realistic stored energies (wheref is at best
polyconvex and is infinite for certain gradients) and it can therefore only be considered as an exploratory
first step towards the solution of the general model problem (1.1) by the DGFEM. However, we hope
that the flexibility of the discontinuous Galerkin (DG) method will allow us in the future to tackle some
of the more difficult problems in this class.

1.2 Optimal embedding constants

In Section4, we prove several broken embedding theorems, such as the broken Sobolev–Poincaré
inequality

‖uh − (uh)Ω‖Lq(Ω) 6 Ch|uh|W1,p(Th)
∀ uh ∈ Sk(Th), (1.7)

where(uh)Ω = |Ω|−1
∫
Ω uh dx and wherep ∈ [1, n) andq ∈ [1, np/(n − p)]; see Lemma4.1. The

proofs of these embedding inequalities are not sharp and do not give optimal constants, even if one
would make the effort to compute them explicitly.
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Thus, in Section7, we demonstrate a technique which allows us to determine the asymptotic
behaviour of the constantCh ash→ 0 by comparing it to its classical counterpart

‖u− (u)Ω‖Lq(Ω) 6 C‖∇u‖L p(Ω) ∀ u ∈ W1,p(Ω). (1.8)

For example, if we define the broken Sobolev norm as

|uh|W1,p(Th)
= ‖∇uh‖L p(Ω) + α

(∫

Γint

h1−p|[[uh]] |p ds

)1/p

(see also Lemma2), then we can prove that ifα is small, then lim infh→0 Ch > C, whereas ifα is large,
then limh→0 Ch = C. We obtain this result by rewriting the embedding inequalities as minimization
problems and then using techniques similar to those of Section6.

2. Discontinuous finite-element spaces

Let H n−1 denote the(n− 1)-dimensional Hausdorff measure and, for a setA ⊂ Rn, let dimH A denote
the Hausdorff dimension ofA.

Let Ω ⊂ Rn be a polyhedral Lipschitz domain. We divide the boundary∂Ω into a Dirichlet
boundaryΓD and a Neumann boundaryΓN such thatΓN ∩ ΓD = ∅ andH n−1(∂Ω \ (ΓD ∪ ΓN)) = 0.
Let (Th)h∈(0,1] be a family of partitions ofΩ̄ into convex polyhedral elements which are affine images
of a set of reference polyhedra. More precisely, we assume that there exists a finite number of convex
reference polyedrâκ1, . . . , κ̂r such that|κ̂i | = 1 for i = 1, . . . , r and that for eachκ ∈ Th, there exist
an invertible affine mapFκ and a reference elementκ̂i such thatκ = Fκ(κ̂i ). The symbolh denotes the
global mesh size, i.e.h = maxκ∈Th diam(κ). Without loss of generality, we assume thath ∈ (0, 1]. We
will provide further assumptions on the mesh regularity in Section2.1.

Throughout, we shall use the symbols≈, . and& to compare quantities which differ only up to
positive constants that do not depend on the local or global mesh size or on any function which appears
in the estimate.

2.1 Mesh regularity

In this section, we propose a set of assumptions on the family of partitions(Th)h∈(0,1] which are required
in order to apply the theory developed in this paper. As it is standard in the finite-element literature, we
define the set of(n− 1)-dimensional facesEh of the partition as follows:

Eh = {κ ∩ κ
′ : κ, κ ′ ∈ Th, dimH(κ ∩ κ

′) = n− 1}

∪{κ ∩ ∂Ω : κ ∈ Th, dimH(κ ∩ ∂Ω) = n− 1}.

Furthermore, we useΓint to denote the union of all facese∈ Eh such that dimH(e∩ ∂Ω) < n− 1.
Let hκ = diam(κ) for all κ ∈ Th andhe = diam(e) for all e∈ Eh.We denote byh(x) the local mesh

size defined as a piecewise constant function defined ash(x) = hκ , x ∈ int(κ), andh(x) = he, x ∈ e.

ASSUMPTION 2.1 (Mesh quality) We assume throughout that the family(Th)h∈(0,1] satisfies the
following conditions:

(a) Shape regularity: There existC1,C2 > 0 such that

C1hn
κ 6 |κ| 6 C2hn

κ ∀ κ ∈ Th, ∀ h ∈ (0, 1].
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(b) Contact regularity: There exists a constantC1 > 0 such that

C1hn−1
κ 6H n−1(e) ∀ e∈ Eh, κ ∈ Th s.t. e⊂ κ̄, ∀ h ∈ (0, 1].

In particular, we havehe ≈ hκ under the above condition.

(c) Submesh condition: There exists a regular, conforming, simplicial submeshT̃h (without hanging
nodes, edges, etc.) such that

1. for eachκ̃ ∈ T̃h, there exists aκ ∈ Th such that̃κ ⊂ κ;

2. the family(T̃h)h∈(0,1] satifies (a) and (b) and

3. there exists a constantc̃ such that whenever̃κ ⊂ κ, hκ 6 c̃hκ̃ .

REMARK 2.2 The existence of a simplicial submesh is an entirely technical assumption which may be
tedious to verify in practice. We have included it since it seemed a fairly general assumption under which
we were able to prove the required results. We note also that in dimensionn = 2, 3, such a submesh
can be constructed under fairly mild assumptions on the partitionTh (Brenner, 2003, Corollary 7.3). In
fact, it seems straightforward to generalize this proof to arbitrary dimensions.

LEMMA 1 There exists a constantC, independent ofh, such that

]{e∈ Eh : e⊂ κ} 6 C ∀ κ ∈ Th, ∀ h ∈ (0, 1].

Proof. Let κ ∈ Th and letE ⊂ Eh be the set of faces contained inκ. Using Assumptions2.1(a) and
2.1(b), we have

]Ehn−1
κ ≈

∑

e∈E

hn−1
e ≈

∑

e∈E

H n−1(e) =H n−1(∂κ) ≈ hn−1
κ .

Upon dividing byhn−1
κ , we obtain]E ≈ 1. �

2.2 Broken Sobolev spaces and DGFE spaces

Let p ∈ [1,∞). We will use standard Sobolev spacesW1,p(Ω) and L p spacesL p(Ω) with their
corresponding norms, with a self-evident notation. The broken Sobolev spaceW1,p(Th) is defined by

W1,p(Th) = {u ∈ L1(Ω) : u|κ ∈ W1,p(κ) for all κ ∈ Th}.

The dual index is denoted byp′ = p/(p− 1). The Sobolev index appearing in the Sobolev embedding
theorems (seeAdams & Fournier, 2003) is denoted byp∗ = np/(n − p) if p < n and p∗ = ∞ if
p > n. We recall thatW1,p(Ω) ⊂ Lq(Ω), q ∈ [1, p∗] \ {+∞}, and this embedding is compact for all
q < p∗ (Adams & Fournier, 2003).

The subspace of discontinuous finite-element functions of polynomial degree no higher thank is
defined as

Sk(Th) = {u ∈ L1(Ω) : u|κ ∈ Pk for all κ ∈ Th},

wherePk denotes the space of polynomials of degreek in Rn. For each facee∈ Eh, e⊂ Γint, we denote
by κ+ andκ− its neighbouring elements. We writeν+, ν− to denote the outward normal unit vectors
to the boundaries∂κ±, respectively. The jump of a vector-valued functionϕ ∈ W1,1(Th)

m and the
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average of a matrix-valued functionϕ ∈ W1,1(Th)
m×n with tracesϕ = ϕ± from κ± are, respectively,

defined as

[[ϕ]] = ϕ+ ⊗ ν+ + ϕ− ⊗ ν− and

{ϕ} = 1
2(ϕ
+ + ϕ−).

For u ∈ W1,p(Th)
m, we define the broken Sobolev seminorms:

|u|p
W1,p(Th)

= ‖∇u‖p
L p(Ω) +

∫

Γint

h1−p|[[u]] |p ds,

|u|p
W1,p

D (Th)
= |u|p

W1,p(Th)
+
∫

ΓD

h1−p|u|p ds.

Next, we recall some important facts about the Banach space BV(Ω)m of functions of bounded
variation which contains the spacesW1,p(Th)

m. The space is equipped with the norm

‖u‖BV = ‖u‖L1(Ω) + |Du|(Ω),

whereDu is the measure representing the distributional derivative ofu and|Du|(Ω) is its total variation,
defined by

|Du|(Ω) = sup
ϕ∈C1

c (Ω)
m×n,

‖ϕ‖L∞61

∫

Ω
u · divϕ dx.

The symbolC1
c(Ω) denotes the space of continuously differential functions with compact support in

Ω. Here and throughout, we usea · b to denote the usual euclidean inner product of either vectors or
matricesa, b of the same dimensions. Weak-∗ compactness of bounded sets and many other properties
of the space BV(Ω) will play an important role in our analysis.

The variation (distributional derivative) of a broken Sobolev functionu ∈ W1,p(Th)
m is given by

the following formula, which can be easily verified using integration by parts on every element of the
mesh:

−
∫

Ω
u · divϕ dx =

∫

Ω
∇u · ϕ dx −

∫

Γint

[[u]] · ϕ ds ∀ϕ ∈ C1
c(Ω)

m×n. (2.1)

The following result is the starting point to lift results for the space BV to DGFE spaces.

LEMMA 2 There exists a constantC, independent ofh and p, such that for allp ∈ [1,∞),

|Du|(Ω) 6 C|u|W1,p(Th)
∀ u ∈ W1,p(Th)

m, ∀ h ∈ (0, 1].

Proof. The proof is a straightforward generalization ofLew et al. (2004, Theorem 3.26) to the case
p 6= 2. For the sake of completeness, we include a brief sketch. The variation is bounded by

|Du|(Ω) 6 ‖∇u‖L1(Ω) +
∫

Γint

|[[u]] |ds.
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Since|Ω| < +∞, we have‖∇u‖L1(Ω) 6 |Ω|
1−1/p‖∇u‖L p(Ω). We can use Ḧolder’s inequality and

Assumption2.1to estimate

∫

Γint

|[[u]] |ds=
∫

Γint

h1/p′ h(1−p)/p|[[u]] |ds

6
(∫

Γint

h ds

)1/p′ (∫

Γint

h1−p|[[u]] |p ds

)1/p

.




∑

e⊂Γint

hn
e





1/p′ (∫

Γint

h1−p|[[u]] |p ds

)1/p

.

By Assumption2.1as well as Lemma1, we have

∑

e⊂Γint

hn
e .

∑

e⊂Γint

∑

κ∈T h,
e⊂κ

hn
κ .

∑

κ∈Th

hn
κ ≈ |Ω|,

which gives the result. �
We conclude this section with an approximation result.

LEMMA 3 Supposeu ∈ W1,p(Ω)m for some p ∈ [1,∞); then for eachh ∈ (0, 1], there exists
uh ∈ S1(Th)

m such that

‖u− uh‖L p(Ω) + |u− uh|W1,p(Th)
→ 0 ash→ 0.

Proof. SinceΩ is assumed to be a Lipschitz domain, it follows thatC∞(Ω̄)m is dense inW1,p(Ω)m

and hence we may assume without loss of generality thatu ∈ C∞(Ω̄)m. For such a smooth function,
this result follows from standard polynomial approximation theory (Ciarlet, 1978). �

3. Reconstruction operator

As is the case in many works on DG methods, ranging froma posteriorierror estimation (Karakashian &
Pascal, 2003) to the proof of broken Poincaré-type inequalities (Brenner, 2003, 2004; Lasis & S̈uli,
2003; Ortner & S̈uli, 2007), we require at several points a continuous reconstruction operator. In this
section, we will make use of the assumption that there exists a regular simplicial submesh ofTh (see
Assumption2.1(c)).

Our goal is to define a family of quasi-interpolation operatorsQh : Sk(Th)
m → W1,∞(Ω)m and

provide localized error estimates forQhu − u in Lq-norms,q ∈ [1,∞). Our results are more general
than previous ones in that we consider arbitrary Sobolev indices, but weaker than those inBrenner
(2003), for example, since we restrict ourselves to a fixed polynomial degree. In fact, our proofs do
not carry over to arbitraryW1,p(Th) functions in an obvious way since we make use of local inverse
inequalities. The idea of using quasi-interpolation operators was inspired byLasser & Toselli(2003).

In order to simplify the notation, our discussion in this section is for scalar functions only. The
corresponding results for vector-valued functions follow trivially.
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3.1 Local projection operators

Let us first introduce some notation for the submeshT̃h (see Assumption2.1(c)). We denote byÑh the
set of nodes ofT̃h and byÑ 0

h the subset of internal nodes. For everyz ∈ Ñh, we define the star-shaped
patch

T̃z =
⋃
{̃κ ∈ T̃h : z ∈ κ̃}, (3.1)

and we sethz = diam(T̃z). Due to the assumptions on the submeshT̃h, it is clear that̃Tz contains a
finite number of elements which is independent of the mesh size.

Next, we establish the existence of linear mapsπz : BV(Ω)→ R, z ∈ Ñh, such that

‖u− πz(u)‖L1(T̃z)
6 Chz|Du|(T̃z) ∀z ∈ Ñh, ∀ u ∈ BV(Ω), (3.2)

whereC is independent ofh andz. To achieve this, we have to distinguish between the cases whenz lies
on the boundary∂Ω and in the interior of the domainΩ. If z ∈ Ñ 0

h , i.e.z ∈ int(Ω), let Bz = B(z, ρz),
whereρz = minx∈∂ T̃z

|x − z|2 such thatBz ⊂ T̃z. From Assumption2.1(c), it follows thatρz ≈ hz.
Settingπz(u) = (u)Bz (the mean value over the ballBz), we obtain the following result. We note that our
construction as well as the proofs of the estimates are only minor modifications of theL2 case treated
by Verfürth (1999, Lemma 4.1).

LEMMA 4 Let K ⊂ Rn be star shaped with respect to the pointx0 ∈ K and define

ρ1 = inf
x∈∂K
|x − x0|2 and ρ2 = sup

x∈∂K
|x − x0|2.

There exists a constantC depending only onρ2/ρ1 andn such that

‖u‖L1(K ) 6 C( ρ2/ρ1)(‖u‖L1(B) + ρ1|Du|(K )) ∀ u ∈ BV(K ), (3.3)

whereB = B(x0, ρ1), and

‖u− (u)B‖L1(K ) 6 C( ρ2/ρ1)ρ1|Du|(K ) ∀ u ∈ BV(K ). (3.4)

Since the proof of this lemma is technical, we postpone it to the appendix.
We note that Lemma4 together with Assumption2.1(c) (shape regularity of the submesh̃Th)

immediately implies (3.2) for interior nodes.
If z lies at the boundary, we definehz as before but we now set

ρz = inf
x∈∂ T̃z\∂Ω

|z− x|2.

Let B̃z = B(z, ρz) ∩ T̃z = B(z, ρz) ∩ Ω̄. Repeating the proof of Lemma4 verbatim, we obtain

‖v‖L1(T̃z)
6 C

(
‖v‖L1(B̃z)

+ hz|Dv|(T̃z)
)
∀ v ∈ BV(T̃z). (3.5)

Since B̃z is not necessarily convex, we apply a further reduction to the first term on the right-hand
side of (3.5). Since∂Ω is Lipschitz continuous, there exists a coneC with positive opening angleα,
which can be chosen independently ofz, and apex 0 such that(z+ C ) ∩ B(z, ε) ⊂ Rn \ T̃z for some
ε > 0. Let a ∈ Rn, |a|2 = ρz/2, be the direction of the axis of the coneC pointing into T̃z and
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definez′ = z+ a. It can be easily seen that̃Bz is star shaped with respect toz′ and that there exists
a valuer0 ∈ (0, 1/2] which depends only onα such thatBz := B(z′, r0ρz) ⊂ B̃z ⊂ T̃z. Hence, we
may defineπz(u) = (u)Bz again (but note thatBz is defined differently now) to obtain the following
result.

LEMMA 5 For z ∈ Ñh and u ∈ BV(Ω), let πz(u) = (u)Bz, whereBz is defined as in the above
discussion. Then, (3.2) holds with a constantC independent of the mesh size.

Proof. For interior vertices, we have already shown that (3.2) holds with a constant depending only on
hz/ρz, which measures mesh quality, and it remains to prove a similar bound for boundary vertices.

Using (3.5) with v = u− πz(u), we have

‖u− πz(u)‖L1(T̃z)
. ‖u− πz(u)‖L1(B̃z)

+ hz|Du|(T̃z).

We now apply Lemma4 with K = B̃z, B = Bz, h = ρz andρ = r0ρz to obtain

‖u− πz(u)‖L1(B̃z)
. hz|Du|(B̃z).

Combining this estimate with the previous formula, we obtain

‖u−πz(u)‖L1(T̃z)
. hz|Du|(T̃z). �

3.2 Construction and analysis of Qh

Finally, we are in a position to define and analyse the reconstruction operator. For eachh ∈ (0, 1],
let Qh : Sk(Th)→ W1,∞(Ω) be the linear operator defined by

Qhu =
∑

z∈Ñh

πz(u)λz, (3.6)

whereλz is the standardP1 nodal basis function on the mesh̃Th associated with the vertexz.
For later use, we define for eachz ∈ Ñh, κ ∈ Th ande∈ Eh:

Tz =
⋃
{κ ∈ Th : z⊂ κ}, Tκ =

⋃
{Tz : z⊂ κ} and Te =

⋃
{Tκ : e⊂ κ}.

Furthermore, forA ⊂ Ω, we define the notation

Th ∩ A = {κ ∈ Th : κ ⊂ A}.

SinceT̃h is a submesh ofTh, we have thatTz ⊃ T̃z, whereT̃z is as defined in (3.1). If we denote byKκ

the number of elementsκ ′ ∈ Th ∩ Tκ , due to Assumption2.1(b) (contact regularity), it follows thatKκ

is bounded independent ofh andκ. Together with Assumption2.1(c), this implies that

hz = diam(T̃z) ≈ diam(Tz) ≈ max
κ,z⊂κ

diam(Tκ )

and also

diam(Tκ) ≈ min
κ ′⊂Tκ

hκ ′ ≈ hκ .
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THEOREM 3.1 Fix p,q ∈ [1,∞). The reconstruction operatorQh defined in (3.6) satisfies the local
estimates for allu ∈ Sk(Th),

‖u− Qhu‖Lq(κ) . h
n
q−

n
p+1

κ |u|W1,p(Th∩Tκ ) ∀ κ ∈ Th, (3.7)

‖u− Qhu‖Lq(e) . h
(n−1)

q −
n
p+1

e |u|W1,p(Th∩Te)
∀ e∈ Eh \ Γint, (3.8)

‖∇Qhu‖L p(κ) . |u|W1,p(Th∩Tκ ) ∀ κ ∈ Th. (3.9)

Furthermore, forq ∈ [ p, p∗] \ {∞}, we have the global estimates

‖u− Qhu‖Lq(Ω) . h
n
q−

n
p+1|u|W1,p(Th)

and (3.10)

‖∇Qhu‖L p(Ω) . |u|W1,p(Th)
, (3.11)

whereh denotes the global mesh size.

Proof. Fix q ∈ [1,∞). For eachz ∈ Ñh, we use LemmaA1 to obtain

‖u− πz(u)‖Lq(T̃z)
≈ h

n
q−n
z ‖u− πz(u)‖L1(T̃z)

.

Our local projection result Lemma5 gives

‖u− πz(u)‖Lq(T̃z)
. h

n
q−n+1
z |Du|(T̃z)

. h
n
q−n+1
z ‖∇u‖L1(Tz)

+ h
n
q−n+1
z

∑

e∈Eh∩Tz

∫

e
|[[u]] |ds.

For the bulk term‖∇u‖L1(Tz)
, we use LemmaA1 and for the surface term we use Hölder’s inequality

(as in the proof of Lemma2) to deduce

‖u− πz(u)‖Lq(T̃z)
. h

n
q−

n
p+1

z ‖∇u‖L p(Tz) + h
n
q−

n
p+1

z




∑

e∈Eh∩Tz

h1−p
e

∫

e
|[[u]] |p ds





1/p

. h
n
q−

n
p+1

z |u|W1,p(Th∩Tz)
. (3.12)

We now prove the local estimate (3.7). Using the fact that the hat functions{λz}z∈Ñh
form a partition

of unity, we have

‖u− Qhu‖qLq(κ) =

∥
∥
∥
∥
∥
∥

∑

z∈Ñh∩κ

(u− πz(u))λz

∥
∥
∥
∥
∥
∥

q

Lq(κ)

.

Rearranging terms and recalling that‖λz‖L∞(Ω) = 1 andλz = 0 outsidẽTz, we compute

‖u− Qhu‖qLq(κ) .
∑

z∈Ñh∩κ

‖u− πz(u)‖
q
Lq(κ∩T̃z)

.
∑

z∈Ñh∩κ

‖u− πz(u)‖
q
Lq(T̃z)

.
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Using (3.12), we obtain

‖u− Qhu‖qLq(κ) .
∑

z∈Ñh∩κ

h
q
(

n
q−

n
p+1

)

z |u|q
W1,p(Th∩Tz)

.

Rearranging terms, using the definition ofTκ and recalling that the cardinality of̃Nh ∩ κ is uniformly
bounded,

‖u− Qhu‖Lq(κ) . h
n
q−

n
p+1

κ




∑

z∈Ñh∩κ

|u|q
W1,p(Th∩Tz)





1/q

. h
n
q−

n
p+1

κ |u|W1,p(Th∩Tκ ),

which concludes the proof of (3.7).
If e∈ Eh ∩ ∂Ω, then

‖u− Qhu‖Lq(e) 6
∑

z∈Ñh∩e

‖u− πz(u)‖Lq(e∩T̃z)
.

The sete∩ T̃z is a union of faces of elements iñTh. We can therefore use the local inverse estimate

‖u− πz(u)‖
q
Lq(e∩T̃z)

. h−1
z ‖u− πz(u)‖

q
Lq(T̃z)

,

after which proceed as above to obtain (3.8). The third local estimate (3.9) follows along the same lines.
To prove the first global estimate (3.10), we assumeq ∈ [ p, p∗], q 6= ∞. It then holds thatnq −

n
p +

1> 0, and we seth∗ = h
n
q−

n
p+1 (recall thath is the global mesh size). We sum (3.7) (to powerq) over

κ ∈ Th to obtain

‖u− Qhu‖qLq(Ω) . (h
∗)q

∑

κ∈Th

(
‖∇u‖p

L p(Tκ )
+
∫

Γint∩Tκ
h1−p|[[u]] |p ds

)q/p

. (h∗)q




∑

κ∈Th

[
‖∇u‖p

L p(Tκ )
+
∫

Γint∩Tκ
h1−p|[[u]] |p ds

]




q/p

,

where we used the fact
∑
|ai |α 6

(∑
|ai |

)α for α > 1. Finally, we note that due to Lemma1, each
elementκ appears only in finitely many setsTκ ′ and thus, taking theqth root, we obtain the result.

The second global estimate can be proved in the same way. �

4. Broken embedding theorems

4.1 Poincaŕe inequalities

In this section, we prove broken Sobolev–Poincaré inequalities for anyp ∈ [1, n). Similar results were
previously derived byLasis & S̈uli (2003) for p = 2. The idea in our proof is the same as in the proof of
Theorem3.1 to use the known results in BV(Ω) and the Sobolev spacesW1,p(Ω) together with local
norm equivalence and the reconstruction operator.



838 A. BUFFA AND C. ORTNER

THEOREM 4.1 (Sobolev–Poincaré inequalities) Letp < n and let p∗ = np/(n − p). There exists a
constantCS such that

‖u− (u)Ω‖L p∗ (Ω) 6 CS|u|W1,p(Th)
∀ u ∈ Sk(Th)

m, ∀ h ∈ (0, 1]. (4.1)

In particular, it holds that

‖u‖L p∗ (Ω) 6 CS
(
‖u‖L1(Ω) + |u|W1,p(Th)

)
∀ u ∈ Sk(Th)

m, ∀ h ∈ (0, 1]. (4.2)

Proof. Let v = u− (u)Ω . It is easy to see thatQhw = w if w is a constant function. Hence, it follows
that Qhv = Qhu− (u)Ω and

‖v‖L p∗ (Ω) 6 ‖v − Qhv‖L p∗ (Ω) + ‖Qhv − (Qhv)Ω‖L p∗ (Ω) + ‖(Qhv)Ω‖L p∗ (Ω). (4.3)

For the first term on the right-hand side of (4.3), we use Theorem3.1to estimate

‖v − Qhv‖L p∗ (Ω) . |v|W1,p(Th)
.

For the second term on the right-hand side of (4.3), we employ the Poincaré–Sobolev inequality for
W1,p(Ω)m and (3.11) to obtain

‖Qhv − (Qhv)Ω‖L p∗ (Ω) . ‖∇Qhv‖L p(Ω) . |v|W1,p(Th)
.

For the last term, we note that‖(Qhv)Ω‖L p∗ (Ω) . ‖Qhv‖L1(Ω) and

‖Qhv‖L1(Ω) 6 ‖Qhv − v‖L1(Ω) + ‖v‖L1(Ω)

. h|v|W1,1(Th)
+ |Dv|(Ω),

where we used Theorem3.1on the first term and the Poincaré inequality for BV(Ω) on the second term
on the right-hand side.

Using our estimate in Lemma2, we deduce that|Dv|(Ω) = |Du|(Ω) . |u|W1,p(Th)
, and we can

combine our estimates to give the first result.
The second result follows immediately from‖(u)Ω‖L p∗ (Ω) . ‖u‖L1(Ω). �

4.2 Trace theorem

We first recall some facts about traces of functions of bounded variation. The following result summa-
rizes Theorems 1 and 2 inEvans & Gariepy(1992, Section 5.3).

THEOREM4.2 LetΩ be a Lipschitz domain inRn. There exists a bounded, linear operatorT : BV(Ω)m

→ L1(∂Ω)m (we writeT u= u) such that
∫

Ω
u · divϕ dx = −

∫

Ω
ϕ · dDu+

∫

∂Ω
(u⊗ ν) · ϕ ds ∀u ∈ BV(Ω)m, ∀ϕ ∈ C1(Rn)m×n,

whereν is the unit outward normal to∂Ω.
If u ∈ BV(Ω), then forH n−1 almost everyx ∈ ∂Ω, the identity

T u(x) = lim
r→0
−−
∫

B(x,r )∩Ω
u dx (4.4)

holds.
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First, we note that identity (4.4) immediately implies a Friedrichs inequality for BV(Ω) and there-
fore, by Theorem4.1, a broken Sobolev–Poincaré inequality with respect to a broken norm which
penalizes boundary values.

LEMMA 6 (Friedrichs inequality for BV) Letu ∈ BV(Ω) and letΓD be a subset of∂Ω with positive
surface measure. Then, there exists a constantCF such that

‖u‖L1(Ω) 6 CF

(
|Du|(Ω)+

∫

ΓD

|u|ds

)
∀ u ∈ BV(Ω).

Proof. We use the standard compactness technique to prove this result. For contradiction, suppose that
no such constantCF exists. Then, there exists a sequenceu j ∈ BV(Ω) such that‖u j ‖L1(Ω) = 1 and
|Du j |(Ω) + ‖u j ‖L1(ΓD)

→ 0 as j → ∞. Since‖u j ‖BV is bounded, there exists a subsequence (not

relabelled) andu ∈ BV(Ω) such thatu j
∗
⇀ u in BV(Ω). Since this impliesu j → u strongly in

L1(Ω), it follows that‖u‖L1(Ω) = 1. Since the functionalv 7→ |Dv|(Ω) + ‖v‖L1(ΓD)
is convex and

strongly continuous, it is also lower semicontinuous with respect to weak-∗ convergence. Therefore,
|Du|(Ω) = 0, which implies thatu is constant inΩ. Since‖u‖L1(ΓD)

= 0, the trace ofu atΓD vanishes
which means thatu = 0 and contradicts the assumption that‖u‖L1(Ω) = 1. �

COROLLARY 4.3 (Broken Friedrichs-type inequality) Letp ∈ [1, n) and suppose thatΓD ⊂ ∂Ω has
positive surface measure. Then, there exists a constantCBF, independent ofh, such that

‖u‖L p∗ (Ω) 6 CBF
(
‖u‖L p(ΓD) + |u|W1,p(Th)

)
∀ u ∈ Sk(Th)

m, ∀ h ∈ (0, 1].

Proof. Using Theorem4.1and Lemmas2 and6, we obtain

‖u‖L p∗ (Ω) . ‖u‖L1(Ω) + |u|W1,p(Th)

. ‖u‖L1(ΓD)
+ |Du|(Ω)+ |u|W1,p(Th)

. ‖u‖L p(ΓD) + |u|W1,p(Th)
.

�
One may argue that, strictly speaking, Lemma4.3is a Poincaŕe-type inequality. However, we chose

to label it a Friedrichs-type inequality since it trivially implies

‖u‖L p∗ (Ω) 6 C′BF|u|W1,p
D (Th)

. (4.5)

THEOREM 4.4 (Broken trace theorem) Letp ∈ (1, n] and setq = p(n − 1)/(n − p)
(
i.e. q satifies

(n−1)
p − (n−1)

q = 1− 1
p

)
. There exists a constantCBT, independent ofh, such that

‖u‖Lq(∂Ω) 6 CBT
(
‖u‖L1(Ω) + |u|W1,p(Th)

)
∀ u ∈ Sk(Th)

m, ∀ h ∈ (0, 1]. (4.6)
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Proof. Summingqth powers of (3.8) over the faces on∂Ω, we obtain the following:

‖u‖qLq(∂Ω) . ‖Qhu‖qLq(∂Ω) +
∑

e∈Eh,e⊂∂Ω

h
n−1− nq

p +q
κ |u|q

W1,p(Th∩Te)
.

For the choiceq = p(n − 1)/(n − p), we haven − 1− nq/p + q = 0 and furthermore,q/p > 1.
The latter property can be used to estimate

J∑

i=1

|aj |
q/p 6

(
J∑

i=1

|aj |

)q/p

.

Hence, we can estimate further

‖u‖qLq(∂Ω) . ‖Qhu‖qLq(∂Ω) +
∑

e∈Eh,e⊂∂Ω

|u|q
W1,p(Th∩Te)

. ‖Qhu‖qLq(∂Ω) +




∑

e∈Eh,e⊂∂Ω

|u|p
W1,p(Th∩Te)





q/p

. ‖Qhu‖qLq(∂Ω) + |u|
q
W1,p(Th)

.

The trace inequality (4.6) is obtained by employing the trace theorem (see for instance Theorem 6.4.1
in Kufneret al., 1977) for Qhu, the continuity property ofQh and the estimate (3.11) of Theorem3.1.

�

5. Compactness inW1,p(Th)

In this section, we will generalize the compactness properties of classical Sobolev spaces to broken
Sobolev spaces. This requires aconsistentdiscretization of the gradient.

Using integration by parts on each element, it can be easily seen that the distributional derivativeDu
of a broken Sobolev function is given by

〈Du, ϕ〉 =
∫

Ω
∇u · ϕ dx −

∫

Γint

[[u]] · ϕ ds ∀ϕ ∈ C∞c (Ω)
m×n.

In order to use compactness properties of Lebesgue spaces, we construct a bulk representation of the
jump contribution. To this end, we choose a polynomial degreel > 0 and then define the lifting operator
R: W1,p(Th)

m→ Sl (Th)
m×n via

∫

Ω
R(u) · ϕ dx = −

∫

Γint

[[u]] · {ϕ}ds ∀ϕ ∈ Sl (Th)
m×n. (5.1)

The polynomial degreel will later become a discretization parameter and can be chosen arbitrarily.

REMARK 5.1 We note that for the sake of the theory developed in this paper, the averages{ϕ} in the
right-hand side of the definition (5.1) can be replaced by any linear fluxϕ̂ such thatϕ̂ = ϕ wheneverϕ
is continuous across all inter-element boundaries.
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We first analyse the main features of the lifting operator. The left-hand side in (5.1) is an inner prod-
uct on a finite-dimensional space (cf. also LemmaA2) while the right-hand side, foru ∈ W1,p(Th)

m

fixed, is a linear functional onSl (Th)
m×n and henceR is well defined. Next, we prove the boundedness

of R in different broken Sobolev spaces.

LEMMA 7 Let p ∈ [1,∞). There exists a constantCR such that

‖R(u)‖L p(Ω) 6 CR

(∫

Γint

h1−p|[[u]] |p ds

)1/p

∀ u ∈ W1,p(Th)
m, ∀ h ∈ (0, 1].

Proof. For eachu ∈ W1,p(Th)
m and for eachϕ ∈ Sl (Th)

m×n, we have
∫

Γint

[[u]] · {ϕ}ds6
∫

Γint

|h−1/p′ [[u]] || h1/p′ {ϕ}|ds

6
(∫

Γint

h1−p|[[u]] |p ds

)1/p( 1

2p′

∫

Γint

h(|ϕ+| + |ϕ−|)p′ ds

)1/p′

.

We can further bound the second term in the last estimate by
∫

Γint

h(|ϕ+| + |ϕ−|)p′ ds6 2p′−1
∫

Γint

h(|ϕ+|p
′
+ |ϕ−|p

′
)ds

.
∑

κ∈Th

∫

∂κ
h|ϕ|p

′
ds

.
∑

κ∈Th

∫

κ
|ϕ|p

′
dx.

Thus, we have shown that
∫

Γint

[[u]] · {ϕ}ds6C

(∫

Γint

h1−p|[[u]] |p ds

)1/p

‖ϕ‖L p′ (Ω) (5.2)

∀ u ∈ W1,p(Th)
m, ∀ϕ ∈ Sl (Th)

m×n,

whereC depends only on the mesh quality and onp. Using the inf–sup condition of LemmaA2, we
obtain the result. �

THEOREM 5.2 (Compactness inW1,p(Th)) Let p ∈ (1,∞). For eachh ∈ (0, 1], let uh ∈ W1,p(Th)
m

such that

sup
h∈(0,1]

[
‖uh‖L1(Ω) + |uh|W1,p(Th)

]
< +∞. (5.3)

Then, there exists a sequenceh j ↓ 0 and a functionu ∈ W1,p(Ω)m such that

uh j

∗
⇀ u in BV(Ω)m and

∇uh j + R
(
uh j

)
⇀∇u in L p(Ω)m×n.
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Proof. From Lemma2, it follows that‖uh‖BV is bounded. Hence, there exists a subsequence (which is

not relabelled for notational convenience) and a functionu ∈ BV(Ω)m such thatuh
∗
⇀ u in BV(Ω)m.

Using the boundedness of the penalty term and applying Lemma7, we also see that∇uh andR(uh) are
bounded inL p(Ω)m×n which implies their weak compactness. Upon extracting a further subsequence
(again not relabelled), we obtain

∇uh ⇀ Fa and R(uh) ⇀ Fj

ash → 0, whereFa, Fj ∈ L p(Ω)m×n. We show now thatDuh converges toFa + Fj in the sense of
distributions. Since∇uh ⇀ Fa, we only need to show that the jumps generateFj in the limit, i.e. that

−
∫

Γint

[[uh]] · ϕ ds→
∫

Ω
Fj · ϕ dx ∀ϕ ∈ C∞c (Ω)

m×n. (5.4)

To this end, we add and subtract a functionϕh ∈ Sl (Th)
m×n, then use the definition ofR(uh) and

subtractϕ again. This procedure gives

−
∫

Γint

[[uh]] · ϕ ds=−
∫

Γint

[[uh]] · {ϕ − ϕh}ds−
∫

Γint

[[uh]] · {ϕh}ds

=−
∫

Γint

[[uh]] · {ϕ − ϕh}ds+
∫

Ω
R(uh) · ϕh dx

=−
∫

Γint

[[uh]] · {ϕ − ϕh}ds+
∫

Ω
R(uh) · (ϕh − ϕ)dx +

∫

Ω
R(uh) · ϕ dx.

Using Lemma7, it follows immediately that if we chooseϕh in such a way that‖ϕ − ϕh‖L∞ → 0, for
exampleϕh = (ϕ)κ in κ, then the first and second term tend to zero ash→ 0. SinceR(uh) converges
weakly toFj , it follows thatDuh converges toFa+Fj in the sense of distributions. SinceDuh converges
also toDu in the sense of distributions, it follows thatDu = (Fa + Fj )dx. Therefore, the singular part
of Du is zero, and henceu has a weak derivative∇u = Fa + Fj ∈ L p(Ω)m×n. Poincaŕe’s inequality
implies thatu ∈ L p(Ω)m and henceu ∈ W1,p(Ω). �

LEMMA 8 (Compact embeddings) Under the conditions of Theorem5.2, it also holds that

uh j → u in Lq(Ω)m ∀q:16 q < p∗ and (5.5)

uh j → u in Lq(∂Ω)m ∀q:16 q < q∗, (5.6)

whereq∗ = (n− 1)p/(n− p) if p < n andq∗ = ∞ if p > n.

Proof. For the proof of strongLq-convergence (5.5), it is sufficient to use the compactness of the
embedding BV(Ω)m ⊂ L1(Ω)m and Riesz’ interpolation theorem to lift the strong convergence to the

Lq spaces indicated. To make this precise, suppose thatuh j

∗
⇀ u in BV(Ω)m, thenuh j → u strongly

in L1(Ω)m. Furthermore, if
∥
∥uh j

∥
∥

L1 +
∣
∣uh j

∣
∣
W1,p(Th)

is bounded, then, by (4.2),
∥
∥uh j

∥
∥

L p∗ is bounded

and, by Theorem5.2, u ∈ W1,p(Ω)m ⊂ L p∗(Ω). Hence, using Riesz’ interpolation theorem, we can
estimate

∥
∥u− uh j

∥
∥

Lq(Ω)
6
∥
∥u− uh j

∥
∥(1−θ)

L p∗(Ω)

∥
∥u− uh j

∥
∥θ

L1(Ω)
6 C

∥
∥u− uh j

∥
∥θ

L1(Ω)

for someθ ∈ (0, 1). The right-hand side in this inequality tends to zero.



COMPACT EMBEDDINGS OF BROKEN SOBOLEV SPACES AND APPLICATIONS 843

Unfortunately, the trace operator presented in Theorem4.2 is not compact and thus, we must revert
to using the continuous reconstruction operatorQh to prove the second result. From (3.8), it follows
that for each facee⊂ ∂Ω ∩ Eh,

‖uh − Qhuh‖
q
Lq(e) . h

n−1− nq
p +q

e |uh|
q
W1,p(Th∩Te)

. (5.7)

We prove (5.6) only for q ∈ [ p,q∗), whereq∗ is defined as above, the other cases being an immediate
consequence of the statement for, e.g.q = p. Setα = n− 1− nq/p+ q > 0. Summing (5.7) over the
faces on the boundary, we obtain the following:

‖uh − Qhuh‖
q
Lq(∂Ω) . hα

∑

e⊂∂Ω

|uh|
q
W1,p(Th∩Te)

.

Sinceq > p, we can use‖ · ‖`q 6 ‖ · ‖`p and Assumption 1(b) to deduce that

‖uh − Qhuh‖
q
Lq(∂Ω) . hα

∑

e⊂∂Ω

|uh|
q
W1,p(Th∩Te)

. hα
(
∑

e⊂∂Ω

|uh|
p
W1,p(Th∩Te)

)q/p

. hα|uh|
q
W1,p(Th)

.

This implies that

‖uh − Qhuh‖Lq(∂Ω) → 0 ash→ 0. (5.8)

Since the trace operator fromW1,p(Ω)m to Lq(∂Ω)m is compact (Adams & Fournier, 2003, Theorem
6.3) andQhuh is bounded inW1,p(Ω)m, it follows that Qhuh → u in Lq(∂Ω)m and therefore, by
virtue of (5.8), uh→ u in Lq(∂Ω)m. �

6. Variational DG approximation of minimization problems

LetΩ be a domain inRn with boundary∂Ω = ΓD ∪ ΓN, ΓD ∩ ΓN = ∅, whereΓD has positive surface
measure. Letf : Ω × Rm × Rm×n → R be a Carath́eodory function, i.e. measurable in its first and
continuous in its second and third argument. Suppose, further, thatf satisfies thep-growth condition

c0(|F |
p − |u|r + a0(x)) 6 f (x, u, F) 6 c1(|F |

p + |u|q + a1(x)), (6.1)

whereai ∈ L1(Ω). We furthermore require thatp ∈ (1,∞), r < p andr 6 q < p∗. Letg : ΓN×Rm→
R be a Carath́eodory function which satisfies the growth condition

|g(x, u)| 6 c2(|u|
r + a2(x)), (6.2)

wherea2 ∈ L1(ΓN) andr is the same index as in (6.1).
We define the functionalI : W1,p(Ω)m→ R by

I (u) =
∫

Ω
f (x, u,∇u)dx +

∫

ΓN

g(x, u)ds, u ∈ W1,p(Ω)m. (6.3)
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Fix uD ∈ W1,p(Ω)m and define the set of admissable trial functionsA to be the closed, affine subspace
of W1,p(Ω)m given by

A =
{
u ∈ W1,p(Ω)m : u|ΓD = uD

}
.

We consider the problem of finding a minimizer ofI in A . If f is convex in its third component, then
the existence of minimizers follows from the direct method of the calculus of variations, see for example
Dacorogna(1989, Theorems 3.1, 3.4 and 4.1). Note in particular that, if eitherm = 1 or n = 1, then
convexity of f in its third argument is a necessary and sufficient condition forI to be sequentially
weakly lower semicontinuous (Dacorogna, 1989, Theorem 3.1), which is a necessary condition for the
direct method to apply to our problem. However, if min(m, n) > 2, then a more general notion of
convexity should be allowed (Dacorogna, 1989).

Before proposing a discretization strategy, we summarize the most important technical facts about
(6.3) which we use in the convergence proof.

LEMMA 9 Let f and g be Carath́eodory functions which respectively satisfy the growth conditions
(6.1) and (6.2).

(i) If u j → u strongly inLq(Ω)m andFj → F strongly inL p(Ω)m×n, then
∫

Ω
f (x, u j , Fj )dx→

∫

Ω
f (x, u, F)dx as j →∞.

(ii) If u j → u strongly inLr (ΓN)
m, then

∫

ΓN

g(x, u j )ds→
∫

ΓN

g(x, u)ds as j →∞.

(iii) If u j → u strongly in Lq(Ω)m, Fj ⇀ F weakly in L p(Ω)m×n and f is convex in the third
argument, then

∫

Ω
f (x, u, F)dx 6 lim inf

j→∞

∫

Ω
f (x, u j , Fj )dx.

Items (i) and (ii) follow from Fatou’s lemma while item (iii) is an application ofDacorogna(1989,
Theorem 3.4).

We now turn to the discretization of the functional (6.3). To this end, we chose a polynomial degree
l > 0 and then define the lifting operatorR: W1,p(Th)

m→ Sl (Th)
m×n as in (5.1). The lifting R(u) is

a bulk representation of the jump contribution to the distributional gradient ofu. The polynomial degree
l is a method parameter and can be chosen arbitrarily.

We propose the following discrete functional:

Ih(uh) =
∫

Ω
f (x, uh,∇uh + R(uh))dx +

∫

ΓN

g(x, uh)ds

+
∫

ΓD

h1−p|uh − uD|
p ds+

∫

Γint

h1−p|[[uh]] |p ds, (6.4)

and our discrete problem is to find a minimizer of (6.4) among all possible vector fields inSk(Th)
m.

In the tradition of the literature on DGFEMs, we chose to label this variational method as variational
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interior penalty DGFEM. We note that the fourth term in (6.4) weakly imposes the Dirichlet boundary
condition and it is therefore not necessary to impose this condition on the approximation space.

A closely related DGFE discretization (withp = 2 but allowing a more general definition of the
flux) was defined byTen Eyck & Lew(2006) for applications in finite elasticity. We refer to their paper
for a linearized stability analysis and very promising numerical results. An error analysis for smooth
solutions of the Euler–Lagrange equations was given byOrtner & S̈uli (2007).

Note that, despite its appearance, (6.4) is in fact fairly straightforward to implement. The definition
of the lifting operator (5.1) allows the construction ofR(uh) locally in each element, taking into account
only the degrees of freedom on the edges of the element. For example, ifR(uh) is chosen to be piecewise
constant (which is sufficient to obtain convergence), then

R(uh)|κ = |κ|
−1
∫

∂κ\∂Ω
[[uh]]ds ∀ κ ∈ Th. (6.5)

Our first step in the analysis of (6.4) is to prove that families with bounded energies are bounded in
the brokenW1,p-norm.

LEMMA 10 (Coercivity) Suppose that the energy densitiesf andg satisfy, respectively, (6.1) and (6.2).
Then, there exists a constantC, independent of the mesh size, such that

‖u‖p
W1,p(Th)

6 C(Ih(u)+ 1) ∀ u ∈ Sk(Th)
m, ∀ h ∈ (0, 1].

Proof. Let u ∈ Sk(Th)
m. By the growth hypotheses (6.1) and (6.2) and the Trace Theorem4.4, we have

Ih(u)> c0

(
‖∇u+ R(u)‖p

L p(Ω) − ‖u‖
r
Lr (Ω) − ‖a0‖L1(Ω)

)

−c2

(
‖u‖rLr (Ω) + |u|

r
W1,r (Th)

+ ‖a2‖L1(ΓN)

)

+
∫

Γint

h1−p|[[u]] |p ds+
∫

ΓD

h1−p|u− uD|
p ds.

Sincer < p, for anyε > 0, we can estimate

‖u‖rLr (Ω) . ‖u‖
r
L p(Ω) 6

ε

p/r
‖u‖p

L p(Ω) +
1

ε(p/r )′
. ε−1+ ε‖u‖p

L p(Ω).

Treating the term|u|r
W1,r (Th)

in a similar fashion, we obtain

Ih(u)+ C(ε)> c0

(
‖∇u+ R(u)‖p

L p(Ω) − ε‖u‖
p
L p(Ω) − ε|u|

p
W1,p(Th)

)

+
∫

Γint

h1−p|[[u]] |p ds+
∫

ΓD

h1−p|u− uD|
p ds.

An application of the broken Friedrichs inequality, Corollary4.3, gives

Ih(u)+ C(ε) > c0

(
‖∇u+ R(u)‖p

L p(Ω) − ε(1+ 2p−1Cp
BF)

(
‖u‖p

L p(ΓD)
+ |u|p

W1,p(Th)

))

+
∫

Γint

h1−p|[[u]] |p ds+
∫

ΓD

h1−p|u− uD|
p ds.
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To shorten the notation, in what follows, we renameε = ε(1+ 2p−1Cp
BF). For a givenδ ∈ (0, 1], we

estimate the first and last terms on the right-hand side, respectively, by

‖∇u+ R(u)‖p
L p(Ω) > δ‖∇u+ R(u)‖p

L p(Ω) > 21−pδ‖∇u‖p
L p(Ω) − δ‖R(u)‖

p
L p(Ω) and

∫

ΓD

h1−p|u− uD|
p ds>

∫

ΓD

|u− uD|
p ds> 21−p

∫

ΓD

|u|p ds−
∫

ΓD

|uD|
p ds,

and hence deduce

Ih(u)+ C(ε)> c0

(
(21−pδ − ε)‖∇u‖p

L p(Ω) − δ‖R(u)‖
p
L p(Ω) − ε

∫

ΓD

|u|p ds

)

+
∫

Γint

h1−p|[[u]] |p ds+
∫

ΓD

|u|p ds

We now fix δ = 1

2c0Cp
R

, whereCR is the constant appearing in Lemma7, so that penalty integral

dominatesδ‖R(u)‖p
L p(Ω). Finally, we obtain

Ih(u)+ C(ε) > c0(2
1−pδ − ε)‖∇u‖p

L p(Ω) + (1/2− c0ε)

(∫

Γint

h1−p|[[u]] |p ds+
∫

ΓD

|u|pds

)
,

which provides the required bound after choosing, e.g.ε = min{1/4c0, 2−pδ} and then applying
Corollary4.3. �

Together, Lemma10and Theorem5.2establish the compactness of any family of DGFEM functions
uh for which Ih(uh) is bounded. This allows us to use a direct method-related technique (namely
Γ -convergence, seeDe Giorgi & Franzoni, 1975; Dal Maso, 1993) to prove the convergence of discrete
minimizers to a minimizer ofI in A .

THEOREM 6.1 (Convergence) Suppose thatf andg are Carath́eodory functions which, respectively,
satisfy (6.1) and (6.2) and f is convex in its third argument.

For eachh ∈ (0, 1], let uh ∈ argminSk(Th)m
Ih. Then, there exists a subsequenceh j ↓ 0 andu ∈

BV(Ω)m such that uh j

∗
⇀ u. Any such accumulation pointu is a minimizer of I in A

(in particular,u ∈ W1,p(Ω)m) and satisfies

uh j → u in Lq(Ω)m ∀q < p∗, (6.6)

∇uh j ⇀ ∇u in L p(Ω)m×n, (6.7)

Ih j

(
uh j

)
→ I (u) and (6.8)

∫

ΓD

h1−p
j

∣
∣uh j − uD

∣
∣p ds+

∫

Γint

h1−p
j

∣
∣[[uh j ]]

∣
∣p ds→ 0 (6.9)

as j →∞. If f is strictly convex in its third argument, then, in addition,
∣
∣u− uh j

∣
∣
W1,p

D (Th j )
→ 0 as j →∞.

If the minimizer is unique, then the entire familyuh converges.



COMPACT EMBEDDINGS OF BROKEN SOBOLEV SPACES AND APPLICATIONS 847

Proof. By the growth condition (6.1), any family (uh) which is bounded inW1,p(Th)
m has bounded

energyIh(uh) and conversely, by Lemma10, if Ih(uh) is bounded, then‖uh‖W1,p(Th)
is bounded as

well.
From the compactness result, Theorem5.2, we therefore deduce the existence of a subsequence

h j ↓ 0 and a limit pointu ∈ W1,p(Ω)m such thatuh j

∗
⇀ u in BV(Ω)m.

Assume now that
(
uh j

)
is any minimizing sequence forIh j converging weakly-∗ to someu ∈

BV(Ω)m. From the boundedness of the energy and the broken Friedrichs inequality, we can again
deduce the boundedness of

∣
∣uh j

∣
∣
W1,p(Th j )

and therefore can employ Theorem5.2 to deduce thatu ∈

W1,p(Ω)m as well as

∇uh j + R
(
uh j

)
⇀ ∇u weakly inL p(Ω)m×n. (6.10)

Lemma8 implies (6.6).
Since the boundary penalty terms

∫

ΓD

h1−p
j

∣
∣uh j − uD

∣
∣p ds

are bounded, using also Lemma8, it follows that

‖u− uD‖L p(ΓD) 6
∥
∥u− uh j

∥
∥

L p(ΓD)
+
∥
∥uh j − uD

∥
∥

L p(ΓD)
→ 0

as j →∞ and henceu ∈ A .
Lemma8 also implies the strong convergence ofuh j to u in Lr (∂Ω)m, and therefore, it follows from

Lemma9(ii) that the surface integral converges, i.e.
∫

ΓN

g
(
x, uh j

)
ds→

∫

ΓN

g(x, u)ds as j →∞.

As a consequence, using (6.10) and Lemma9(iii), we deduce that

I (u) 6 lim inf
j→∞

[∫

Ω
f
(
x, uh j ,∇uh j + R

(
uh j

))
dx +

∫

ΓN

g
(
x, uh j

)
ds

]
.

To see thatu ∈ argminA I , fix v ∈ A and letvh ∈ Sk(Th)
m converge strongly tov in the‖·‖L p∗ (Ω)

as well as the| · |W1,p(Th)
-norm (see Lemma3). From Lemma9 (using also the Trace Theorem4.4),

we therefore obtainIh(vh)→ I (v), which allows us to estimate

I (u)6 lim inf
j→∞

[∫

Ω
f
(
x, uh j ,∇uh j + R

(
uh j

))
dx +

∫

ΓN

g
(
x, uh j

)
ds

]

6 lim sup
j→∞

Ih j

(
uh j

)
6 lim sup

j→∞
Ih j (vh j ) 6 I (v).

Sincev was arbitrary, it follows thatI (u) ∈ argminA I . By choosingv = u, we find that all inequali-
ties are equalities from which we can infer thatIh j

(
uh j

)
→ I (u) and that the penalty terms converge

to zero ash j → 0, i.e. that (6.9) holds. As a consequence, we also haveR
(
uh j

)
→ 0 strongly which

implies (6.7).
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If f is strictly convex in its third argument, then the theory of Young measures shows that weak
convergence together with convergence of the energy implies strong convergence. For example, the
proof of Theorem 3.16 in the monograph ofPedregal(1997) can be immediately adapted to give our
result. See also LemmaA3 in the appendix.

The last point follows from a straightforward uniqueness argument. �

7. Optimal embedding constants

In this final section, we present a second application of the compactness results of Section5. Under
suitable conditions, we shall deduce that in the limit ash → 0, the optimal embedding constant in
the broken Sobolev–Poincaré inequality (4.1) is the same as the embedding constant for the classical
Sobolev space. We demonstrate the technique only on the example of the Sobolev–Poincaré inequality,
but we believe that it should apply to any compact embedding of a Sobolev space. Throughout this
section, we takem= 1.

Unfortunately, our results are incomplete for the particular broken seminorm which we have chosen.
Instead, we analyse the equivalent norm

|u|
W1,p

1 (Th)
= ‖∇u‖L p(Ω) + α

(∫

Γint

h1−p|[[u]] |p ds

)1/p

, (7.1)

whereα is some fixed positive constant.
From norm equivalence inR2, it follows immediately that| · |W1,p(Th)

and| · |
W1,p

1 (Th)
are equivalent;

more precisely, there exists a constantcα > 0 such that

cα|u|W1,p(Th)
6 |u|

W1,p
1 (Th)

6
1

cα
|u|W1,p(Th)

∀ u ∈ W1,p(Th), ∀ h ∈ (0, 1]. (7.2)

We can now study the Poincaré constants of the newly defined broken seminorm. Fixp ∈ (1,∞),
q ∈ [1, p∗) and letV = {v ∈ L1(Ω) : (v)Ω = 0}. From (7.2), it follows that we can replace| · |W1,p(Th)

by | · |
W1,p

1 (Th)
in (4.1) to obtain

‖uh − (uh)Ω‖Lq(Ω) 6 Ch(p,q)|uh|W1,p
1 (Th)

∀ uh ∈ Sk(Th), (7.3)

which is the discrete counterpart of the Sobolev–Poincaré inequality

‖u− (u)Ω‖Lq(Ω) 6 C(p,q)‖∇u‖L p(Ω) ∀ u ∈ W1,p(Ω). (7.4)

We begin by noting that the optimal constantsCh(p,q) andC(p,q) in (7.3) and (7.4) are, respectively,
given by

1

C( p,q)
= inf

u∈W1,p(Ω)∩V,
‖u‖Lq(Ω)=1

‖∇u‖L p(Ω) (7.5)

and
1

Ch( p,q)
= inf

uh∈Sk(T h)∩V,
‖uh‖Lq(Ω)=1

|uh|W1,p
1 (Th)

.
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In particular, the latter can be viewed as a discretization to the minimization problem definingC( p,q)
and we can therefore employ a similar type of analysis as in Section6 to obtain the following
result.

We note for future reference that both infima 1/C( p,q) and 1/Ch( p,q) are attained. This statement
is trivial for the latter and for the former, it follows from the fact that the set over which we minimize in
(7.5) is weakly closed inW1,p(Ω).

PROPOSITION7.1 There exists a constantα̂ > 0 such that

lim
h↓0

Ch( p,q) = C( p,q) if α > α̂ and

lim inf
h↓0

Ch( p,q) > C( p,q) if 0 < α < α̂.

Proof. We begin by investigating the case whereα is large. Suppose thatuh ∈ Sk(Th) ∩ V , h ∈ (0, 1];
‖uh‖Lq(Ω) = 1 and |uh|W1,p

1 (Th)
= Ch(p,q)−1. From Lemma3 and norm equivalence, it follows

that |uh|W1,p(Th)
is bounded and hence we can extract a subsequenceuh j converging weakly-∗ in

BV(Ω) and strongly inLq(Ω) to a functionu ∈ W1,p(Ω). In particular,‖u‖Lq(Ω) = 1 and we
have

‖∇u‖L p(Ω) 6 lim inf
j→∞

∥
∥∇uh j + R

(
uh j

)∥∥
L p(Ω)

6 lim inf
j→∞

(∥
∥∇uh j

∥
∥

L p(Ω)
+
∥
∥R

(
uh j

)∥∥
L p(Ω)

)
.

If α is sufficiently large (e.g. ifα > CR), it follows from Lemma7 that

‖∇u‖L p(Ω) 6 lim inf
j→∞

∣
∣uh j

∣
∣
W1,p

1 (Th j )

and therefore lim infh↓0 Ch( p,q)−1 > C( p,q)−1. From Lemma3, we obtain limh↓0 Ch( p,q) =
C( p,q).

Now assume thatα is small. Letu ∈ W1,p(Ω) ∩ V such that‖u‖Lq(Ω) = 1 and‖∇u‖L p(Ω) =
C( p,q)−1. For eachh ∈ (0, 1], let uh be defined by

uh(x) = (u)κ ∀ x ∈ κ, ∀κ ∈ Th.

Clearly,uh ∈ Sk(Th)∩ V and‖uh − u‖Lq(Ω) → 0 ash ↓ 0. Furthermore, we can bound the seminorm
|uh|W1,p

1 (Th)
in terms of‖∇u‖L p(Ω) as follows:

α−p|uh|
p

W1,p
1 (Th)

=
∑

e⊂Γint

h1−p
e H n−1(e)|(u)κ+ − (u)κ−|

p

.
∑

e⊂Γint

hn−p
e [|(u)κ+ − π | + |(u)κ− − π |]

p (7.6)

for anyπ ∈ R.
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We constructπ in a similar fashion as the local projection operators in Section3.1. Fix e = κ+ ∩
κ− ∈ Eh. Assumption2.1implies the existence ofz ∈ eandρ ≈ he such thatB(z, ρ) ⊂ K := κ+∪κ−.
In particular,K is star shaped with respect toz. Hence, we can setπ = (u)B and use Lemma4 to deduce
that

|(u)κ+ − π | + |(u)κ− − π | . h−n
κ+
‖u− π‖L1(κ+) + h−n

κ−
‖u− π‖L1(κ−) . h−n+1

e ‖∇u‖L1(K ).

Upon takingpth powers and applying Jensen’s inequality, we obtain

[|(u)κ+ − π | + |(u)κ− − π |]
p . hp−np

e ‖∇u‖p
L1(K )

. hp−n
e ‖∇u‖p

L p(K ).

Combined with (7.6) and the contact regularity assumptions, this gives

α−p|uh|
p

W1,p
1 (Th)

. ‖∇u‖p
L p(Ω) = C( p,q)−1.

In summary, we have obtained that there exists a constantα̃ which is independent ofh such that

α−1|uh|W1,p
1 (Th)

6 α̃C( p,q)−1.

Hence, forα < 1/α̃, it follows that

Ch( p,q)−1 6 |uh|W1,p
1 (Th)

6 αα̃C( p,q)−1 < C( p,q)−1,

and, as a consequence, we obtain that lim infh↓0 Ch( p,q) > C( p,q).
Finally, we note that if the latter property holds for a specificα = α′, then it also holds for allα < α′

and hence the proposition follows. �

REMARK 7.2 We conclude our analysis of optimal Sobolev–Poincaré imbedding constants with a re-
mark on a modification of the seminorm| · |W1,p(Th)

. If we redefine it as

|u|W1,p(Th)
=
(
‖∇u‖p

L p(Ω) + α
∫

Γint

h1−p|[[u]] |p ds

)1/p

,

with Sobolev–Poincaré constantC̃h( p,q), then we can obviously use the construction of arecovery
sequencefor the| · |

W1,p
1 (Th)

-seminorm in the proof of Proposition7.1to deduce that, ifα is sufficiently

small, then lim infh↓0 C̃h( p,q) > C( p,q). However, we have a gap for largeα.
For sufficiently largeα, we can deduce from Proposition7.1that

lim sup
h↓0

C̃h( p,q) 6 21/pC( p,q),

which is a good bound but not optimal. Settinga = ‖∇uh‖L p andb =
( ∫
Γint

h1−p|[[uh]] |p ds
)1/p in the

following inequality:

(|a| + |b|)p 6 (1+ ε)|a|p + Bε|b|
p,
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whereBε depends only onε and onp, we can strengthen this result to

lim
α→∞

lim sup
h↓0

C̃h(p,q) = C(p,q).

However, we are unable to prove that lim suph↓0 Ch(p,q) = C( p,q) for any sufficiently large (but
fixed)α. In fact, our numerical experiments suggest that this is not the case.
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Appendix A

A.1 Proof of Lemma4

This proof is a modification of the proof ofVerfürth(1999, Lemma 4.1). Throughout, we setγ = ρ2/ρ1.
Using the local approximation of BV functions by smooth functions (Evans & Gariepy, 1992, Sec-

tion 5.2.2), there exists a sequenceu j ∈ BV(K )∩C∞(K ) such thatu j → u strictly in BV, i.e.u j → u
strongly inL1 and|Du j |(K )→ |Du|(K ) as j →∞. Hence, we can assume without loss of generality
thatu ∈ C∞(Ω) ∩W1,1(Ω).

We write

‖u‖L1(K ) = ‖u‖L1(B) + ‖u‖L1(K\B).

Let Σ be the unit sphere inRn and, for eachσ ∈ Σ , let x0 + r (σ )σ ∈ ∂K . For the second term, we
compute

‖u‖L1(K\B) =
∫

Σ

∫ r (σ )

ρ1

tn−1|u(tσ)|dt ds(σ )

6
∫

Σ

∫ r (σ )

ρ1

tn−1|u(tσ)− u( ρ1σ)|dt +
∫

Σ

∫ r (σ )

ρ1

tn−1|u( ρ1σ)|dt ds(σ )

=: S1+ S2.

To obtain a bound onS1, consider

S1=
∫

Σ

∫ r (σ )

ρ1

tn−1
∣
∣
∣
∣

∫ t

ρ1

∂r u(rσ)dr

∣
∣
∣
∣ dt ds(σ )

6 ρ1
1−n

∫

Σ

∫ r (σ )

ρ1

tn−1
∫ t

ρ1

r n−1|∂r u(rσ)|dr dt ds(σ )

6
1

n
ρ1

1−n( ρn
2 − ρ1

n)

∫

Σ

∫ r (σ )

ρ1

r n−1|∂r u(rσ)|dr ds(σ )

6
ρ1

n
(γ n − 1)‖∇u‖L1(K\B).



COMPACT EMBEDDINGS OF BROKEN SOBOLEV SPACES AND APPLICATIONS 853

For S2, we estimate

S2=
1

n

∫

Σ
(r (σ )n − ρ1

n)|u( ρ1σ)|ds(σ )

6
ρ1

n

∫

Σ

[
ρn

2

ρ1
n
− 1

]
ρ1

n−1|u( ρ1σ)|ds(σ )

=
ρ1

n
(γ n − 1)

∫

Σ
ρ1

n−1|u(ρ1σ)|ds(σ )

=
ρ1

n
(γ n − 1)‖u‖L1(∂B).

We bound‖u‖L1(∂B) as follows:

‖u‖L1(∂B) =
∫

Σ
ρ1

n−1|u(ρ1σ)|ds(σ )

=
∫

Σ
ρ1

n−1
∣
∣
∣
∣

∫ ρ1

0
∂r

[(
r

ρ1

)n

u(rσ)

]
dr

∣
∣
∣
∣ ds(σ )

=
∫

Σ
ρ1

n−1

∣
∣
∣
∣
∣

∫ ρ1

0

[(
r

ρ1

)n

∂r u(rσ)+
nrn−1

ρ1
n

u(rσ)

]

dr

∣
∣
∣
∣
∣
ds(σ )

6
∫

Σ
ρ1
−1
∫ ρ1

0
r n|∂r u(rσ)|dr ds(σ )+ n

∫

Σ
ρ1
−1
∫ ρ1

0
r n−1|u(rρ1)|dr ds(σ )

6 ‖∇u‖L1(B) +
n

ρ1
‖u‖L1(B).

Combining all our estimates, we obtain

‖u‖L1(K ) 6 ‖u‖L1(B) +
ρ1

n
(γ n − 1)‖∇u‖L1(K\B)

+
ρ1

n
(γ n − 1)‖∇u‖L1(B) + (γ

n − 1)‖u‖L1(B)

= γ n‖u‖L1(B) +
ρ1

n
(γ n − 1)‖∇u‖L1(K )

which gives (3.3).
To obtain the second result, we note that the Poincaré inequality on balls takes the form (see

Acosta & Duŕan(2004), where this is proved for arbitrary convex sets)

‖u‖L1(B) 6 ρ1‖∇u‖L1(B) ∀ u ∈ W1,1(B), (u)B = 0. (A.1)

Thus, (3.4) follows immediately from (3.3).
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A.2 Auxiliary results

LEMMA A1 Let (Th)h∈(0,1] be a family of partitions ofΩ satisfying Assumption2.1. Then, for each
p,q ∈ [1,∞], there exists a constantC > 0, independent ofh, such that for anyκ ∈ Th,

h
− n

p
κ ‖v‖L p(κ) 6Ch

− n
q

κ ‖v‖Lq(κ) ∀ v ∈ Sk(Th), ∀ h ∈ (0, 1].

Moreover, for anỹκ ∈ T̃h,

h
− n

p
κ̃ ‖v‖L p(̃κ) 6Ch

− n
q

κ̃ ‖v‖Lq (̃κ) ∀ v ∈ S1(T̃h)+ Sk(Th), ∀ h ∈ (0, 1].

Proof. Let κ ∈ Th, κ̂ its corresponding reference element andFκ : κ̂ → κ the associated mapping. We
setJ = |det∇Fκ |. SinceFκ is bi-Lipschitz, we haveC−1hn

κ 6 J 6 Chn
κ for some constantC which is

independent ofκ. From the area formula (cf.Evans & Gariepy, 1992), we have
∫

κ
|u|p dx =

∫

κ̂
J|u ◦ Fκ |

p dx ≈ hn
κ

∫

κ̂
|u ◦ Fκ |

p dx.

Using norm equivalence in finite-dimensional spaces, we obtain

∫

κ
|u|p dx ≈ hn

κ

(∫

κ̂
|u ◦ Fκ |

q dx

)p/q

≈ hn−np/q
κ

(∫

κ
|u|q dx

)p/q

.

The first equivalence follows by taking thep root.
The second equivalence is proved with the same technique, after noting that givenv ∈ S1(T̃h) +

Sk(Th), thenv|̃κ is a polynomial of degreek. Thus, the previous reasoning applies. �

LEMMA A2 Let Sk(Th) be defined as in Section2 and let the mesh family satisfy Assumption2.1.
Then, for eachp ∈ [1,∞), there exists a constantC, independent ofh, such that

inf
u∈Sk(Th)

sup
v∈Sk(Th)

∫
Ω uv dx

‖u‖L p(Ω)‖v‖L p′ (Ω)

> C > 0.

Proof. For a givenu ∈ L p(Ω), set v = |u|p−2u so that
∫
Ω uv = ‖u‖L p(Ω)‖v‖L p′ (Ω). At the

discrete level, ifu ∈ Sk(Th), the choicev = |u|p−2u is not allowed, in general. Instead, we set
v = Πk(|u|p−2u), whereΠk denotes theL2-projection ontoSk(Th) (note that this is a projection
element by element), and therefore

‖Πku‖2L2(κ)
=
∫

κ
uΠku dx 6 ‖u‖L p′ (κ)‖Πku‖L p(κ) ∀ κ ∈ Th.

Using LemmaA1, we obtain

‖Πku‖L p′ (κ) 6 CΠ‖u‖L p′ (κ) ∀ κ ∈ Th,

whereCΠ is independent ofh andκ. Moreover, by the definition ofΠk, it holds that
∫
Ω uΠkv dx =∫

Ω uv dx for all u ∈ Sk(Th). A possible value for the constantC in the statement is therefore given by
1/CΠ . �
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The last result which we prove in this appendix allows us deduce strong convergence of a sequence
from its weak convergence together with convergence of a strictly convex energy. This result is well
known and the proof is a straightforward adaption ofPedregal(1997, Theorem 3.16). However, we did
not find a precise statement suited for our specific needs and therefore prefer to give a sketch of the
proof.

LEMMA A3 Let f : Ω × Rm× Rk be a Carath́eodory function satisfying the growth condition

| f (x, u, v)| 6 c(1+ |u|q + |v|p)

and such thatf (x, u, ·) is strictly convex for a.a.x ∈ Ω and for allu ∈ Rm.
If u j → u strongly inLq(Ω)m andv j ⇀ v weakly inL p(Ω)k and if

lim
j→∞

∫

Ω
f (x, u j , v j )dx =

∫

Ω
f (x, u, v)dx,

thenv j → v strongly inL p(Ω)k.

Proof. The proof requires the machinery of Young measures which we cannot introduce at this point.
A nice introduction is given inPedregal(2000). Suffice to say that Young measures give a more precise
description of weak limits and, when the functional (6.3) is extended in a suitable way, it becomes
continuous under weak convergence.

Let (µx)x∈Ω be the Young measure generated by (a subsequence of)(v j ) j∈N. Then,(δu(x)⊗µx)x∈Ω
is the Young measure generated by the pairs(u j , v j ) j∈N. Using the assumptions of the lemma and
Pedregal(2000, Corollary 5.7), we can estimate

lim
j→∞

∫

Ω
f (x, u j , v j )dx =

∫

Ω
f (x, u(x), v(x))dx

=
∫

Ω
f

(
x, u(x),

∫

Rk
zdµx(z)

)
dx

6
∫

Ω

∫

Rk
f (x, u(x), z) dµx(z)dx

=
∫

Ω

∫

Rm⊗Rk
f (x, z′, z)d(δu(x) ⊗ µx)(z

′, z)dx

= lim
j→∞

∫

Ω
f (x, u j , v j )dx.

Thus, equality must hold in the inequality of line three, which means that

f

(
x, u(x),

∫

Rk
zdµx(z)

)
=
∫

Rk
f (x, u(x), z)dµx(z) for a.a.x ∈ Ω.

By assumption,f (x, u(x), ·) is strictly convex for a.e.x and henceµx = δµx = δv(x).
Now, we can usePedregal(2000, Corollary 5.7) again to deduce that

lim
j→∞

∫

Ω
|v j |

p dx =
∫

Ω

∫

Rk
|z|pµx(dz)dx =

∫

Ω
|v|p dx,

and thereforev j → v strongly inL p (see alsoPedregal, 2000, Lemma 5.8). �


	Introduction
	The variational DGFEM
	Optimal embedding constants

	Discontinuous finite-element spaces
	Mesh regularity
	Broken Sobolev spaces and DGFE spaces

	Reconstruction operator
	Local projection operators
	Construction and analysis of Qh

	Broken embedding theorems
	Poincaré inequalities
	Trace theorem

	Compactness in W1,p(Th)
	Variational DG approximation of minimization problems
	Optimal embedding constants
	Proof of Lemma 4
	Auxiliary results


