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al InstituteUniversity of Oxford24-29 St. Giles'Oxford OX1 3LBU.K.Email ball�maths.ox.a
.ukAbstra
tVarious issues are addressed related to the 
omputation of minimizersfor variational problems. Spe
ial attention is paid (i) to problems withsingular minimizers, whi
h natural numeri
al s
hemes may fail to de-te
t, and the role of the 
hoi
e of fun
tion spa
e for su
h problems, and(ii) to problems for whi
h there is no minimizer, whi
h lead to diÆ
ultnumeri
al questions su
h as the 
omputation of mi
rostru
ture for elas-ti
 materials that undergo phase transformations involving a 
hange ofshape.
1 Introdu
tionIn this arti
le I give a brief tour of some issues related to the 
omputationof minimizers for integrals of the 
al
ulus of variations. In this I takethe point of view not of a numeri
al analyst, whi
h I am not, but of anapplied mathemati
ian for whom questions of 
omputation have arisennot just be
ause of the need to understand phenomena ina

essible to
ontemporary analysis, but also be
ause they are naturally motivatedby attempts to apply analysis to variational problems.I will 
on
entrate on two spe
i�
 issues. The �rst is that minimizersof variational problems may have singularities, but natural numeri
als
hemes may fail to dete
t them. Conne
ted with this is the surprisingLavrentiev phenomenon, a

ording to whi
h minimizers in di�erent fun
-tion spa
es may be di�erent. The se
ond issue is that minimizers maynot exist, in whi
h 
ase the question naturally arises as to what the be-haviour of numeri
al s
hemes designed to 
ompute su
h minimizers willbe. In this 
ase the predi
tive power of the variational problem may still1



2 J.M. Ballbe retained, for example as a explanatory me
hanism for the formationof mi
rostru
ture in materials. A key tool here is the elusive 
on
ept ofquasi
onvexity, whi
h helps to des
ibe the passage from mi
ros
ales toma
ros
ales.As a motivating example, 
onsider (nonlinear) elasti
ity theory. For ahomogeneous elasti
 body the total elasti
 energy is given by the integralI(y) = Z
W (Dy) dx;wher W is the stored-energy fun
tion of the material. Here 
 is abounded open subset of R3, with Lips
hitz boundary �
, that the bodyo

upies in a referen
e 
on�guration, and y : 
! R3 denotes a typi
aldeformation with gradientDy(x) = � �yi�xj� :Thus for ea
h x, Dy(x) 2M3�3, whereMm�n = freal m�n matri
esg.In this 
ase the singularities of minimizers 
ould potentially be relatedto various kinds of fra
ture or its onset, dislo
ations, or phase bound-aries, while mi
rostru
ture arises in materials undergoing phase trans-formations, for whi
h the minimum of I subje
t to suitable boundary
onditions may not be attained.
2 Singular minimizers and the Lavrentiev phenomenon2.1 The Lavrentiev phenomenon and repulsion propertyConsider �rst the simple problem due to Mani�a [45℄ of minimizing theintegral I(u) = Z 10 (u3 � x)2u6x dx (2.1)among absolutely 
ontinuous fun
tions u satisfying the end 
onditionsu(0) = 0; u(1) = 1: (2.2)The unique minimizer of this problem is easily seen to beu�(x) = x 13 :In fa
t I(u�) = 0, and if �u were any other fun
tion satisfying the end
onditions (2.2) with I(�u) = 0 then �ux(x) = 0 for x 2 E and �u(x) =



Computation of minimizers 3u�(x) for x 2 (0; 1)nE, where E has positive one-dimensional Lebesguemeasure. Thus 0 = Z 10 (u�x � �ux) dx = ZE 13x� 23 dx > 0;a 
ontradi
tion.Consider now a very natural �nite-element s
heme for 
omputing theminimizer. Take a uniform mesh subdividing [0; 1℄ into N subintervals oflength h = 1=N and minimize I among 
ontinuous fun
tions satisfyingthe end 
onditions (2.2) whi
h are aÆne on ea
h element (i=N; (i+1)=N).For any su
h fun
tion vh the integral I(vh) 
an be 
omputed exa
tly (dueto the expli
it form of the integrand), so that questions of quadrature
an in the �rst instan
e be ignored. For ea
h h there is at least oneminimizer u�h to this dis
rete problem. What is the behaviour of u�h ash ! 0? Remarkably, u�h 
onverges as h ! 0, but not to the minimizeru�! In fa
t the limit u0 is a monotone in
reasing fun
tion that is smoothin (0; 1) but has in�nite slope at the end-points x = 0; 1.This behaviour is hard to 
redit at a �rst glan
e. An illuminatinginitial 
al
ulation is to 
ompute I(uh) for the fun
tionuh(x) = � h� 23x if x 2 (0; h)u�(x) if x 2 (h; 1)in whi
h u� is altered only on the �rst element. Surely limh!0 I(uh) =I(u�) = 0? But no, Z 10 (u3h � x)2u6hx dx = 8105h�1;whi
h tends to +1 as h! 0 !In fa
t it 
an be shown (see Ball & Knowles [12℄) that if 1 � p � 1and Ap = fv 2W 1;p(0; 1) : v(0) = 0; v(1) = 1g(so that A1 is the admissible 
lass of fun
tions 
onsidered above) theninfA1 I = minA3=2 I > minA1 I = 0:The fa
t that the in�mum of I in di�erent fun
tion spa
es 
an be dif-ferent is known as the Lavrentiev phenomenon (see Lavrentiev [37℄ forthe original example). The initial 
al
ulation above has the followinggeneralization, let us 
all it the repulsion property, that if u(j) 2 A3=2and u(j) ! u� a.e. in (0; 1) then I(u(j))!1.



4 J.M. BallIn the Mani�a example the integrand f(x; u; p) = (u3�x)2p6 is 
onvexin p, but not stri
tly 
onvex. However, as was shown by Ball & Mizel[13, 14℄, the Lavrentiev phenomenon and the repulsion property hold forellipti
 integrands, i.e. those for whi
h fpp(x; u; p) � � > 0 for all x; u; p.Su
h an example is given by the problem [14℄ of minimizingI(u) = Z 1�1[(x4 � u6)2u28x + "u2x℄ dx (2.3)in Ap = fv 2 W 1;p(�1; 1) : v(�1) = �1; v(1) = 1g. Note that theintegrand f(x; u; p) = (x4�u6)2p28+"p2 satis�es fpp � 2" > 0. Here, forsuÆ
iently small " > 0, there is an absolute minimizer u� of I in A1 thatis a smooth solution of the Euler-Lagrange equation in [�1; 0)[(0; 1℄ buthas derivative +1 at x = 0, where u�(x) � jxj 23 sign x. The Lavrentievphenomenon holds in the forminfA1 I = minA3 I > infA1 I = I(u�): (2.4)As indi
ated in (2.4), I attains its in�mum in A3, and every su
h mini-mizer is a smooth solution of the Euler-Lagrange equation in the wholeinterval [�1; 1℄. The repulsion property also holds in the form that ifu(j) 2 A3 with u(j) ! u� a.e. then I(u(j))!1.
2.2 Computation of singular minimizersWhat are possible numeri
al methods for dete
ting su
h singular mini-mizers? Consider the problem of minimizingI(u) = Z ba f(x; u; ux) dxin A1 = fu 2W 1;1(a; b) : u(a) = �; u(b) = �g;where �; � are given 
onstants.A �rst method proposed by Ball & Knowles [12℄ 
onsists in de
ouplingu from its derivative. Thus given " > 0 we minimizeI(u; v) = Z ba f(x; u; v) dxamong pie
ewise aÆne fun
tions u in A1 on a uniform mesh of size h,



Computation of minimizers 5and fun
tions v that are pie
ewise 
onstant on the same grid, subje
t tothe 
onstraint Z ba '(ux � v) dx � ";where ' � 0 is a suitable even 
ontinuous fun
tion satisfying (i) '(p) �jvjs for all v 2 R, where 1 � s <1, (ii) '(p1+p2) � C('(p1)+'(p2)) forall p1; p2 2 R. Then under suitable growth and 
onvexity hypotheses onf (in parti
ular guaranteeing that the in�mum of I(u) in A1 is attained)it 
an be shown that minimizers fuh;"; vh;"g, with h < 
(") for a suitablefun
tion 
, 
onverge to minimizers fu�; u�xg of I in A1, possibly afterextra
tion of a subsequen
e, and thatlimh;"!0; 0<h<
(") I(uh;"; vh;") = infu2A1 I(u) = I(u�):The e�e
t of numeri
al quadrature is also studied in [12℄; in fa
t for theMani�a example a dire
t numeri
al minimization of (2.1) among pie
ewiseaÆne fun
tions in A1 using the trapezoidal rule su

eeds in �nding u�,but this is a freak resulting from the spe
ial form of the integrand andin parti
ular its degenera
y when u3 = x.A se
ond idea (see Li [43℄) is the trun
ation method, in whi
h f =f(x; u; p) is repla
ed by a trun
ated integrand fM (x; u; p) satisfyingfM (x; u; p) = f(x; u; p) whenever jpj � M , and fM ! f monotoni-
ally as M !1. If fM has suitable mild growth properties as jpj ! 1,ensuring in parti
ular that the trun
ated integralIM (u) = Z ba fM (x; u; ux) dxdoes not have the Lavrentiev phenomenon, then we 
an �rst minimizeIM , and then let M !1. Although this method works theoreti
ally, ithas pra
ti
al drawba
ks in that it may not be easy to �nd an absoluteminimizer of IM (for example, in the 
ase when I attains a minimumamong smooth fun
tions, as for the integral (2.3), there is the danger of�nding this minimizer instead, sin
e it is a lo
al minimizer of IM for allsuÆ
iently large M).A more interesting method (see Li [41℄) is that of element removal.Here we use pie
ewise aÆne approximations, but for ea
h h minimizeZ[a;b℄nE f(x; u; ux) dxwhere E 
onsists of a (
ontrolled) small number of elements (in pra
ti
e



6 J.M. Ballthese turn out to be elements where u�x is large). As for the methodin [12℄ the number of unknowns is in
reased, in this 
ase by variablestra
king whi
h elements are removed.A potentially promising method, whi
h as far as I am aware has notbeen studied, is that of using non
onforming elements. It seems possiblethat this 
ould lead to ways of dete
ting minimizers in a 
ontinuous s
aleof Sobolev spa
es.There is a growing literature on singular minimizers of one-dimensionalvariational problems. These singular minimizers do not in general sat-isfy the Euler-Lagrange equation in weak or integrated form on the wholeinterval [a; b℄. For ellipti
 integrands the Euler-Lagrange equation is sat-is�ed on the 
omplement of a 
losed set of Lebesgue measure zero. Thisis part of the 
ontent of the Tonelli partial regularity theorem [60℄IIp. 359. This theorem is shown to be optimal in [14℄ (where a slightlyimproved version 
an be found), and in Davie [29℄. The singularitiesof minimizers 
an also be studied in the (x; u) plane; it was shown byBall & Nadirashvili [16℄ that under natural hypotheses on f there is auniversal singular set Df to whi
h all points (x; u(x)) with jux(x)j =1for minimizers u of I in A1 for any a; b; �; � must belong, and that Dfis of �rst 
ategory in R2. Later Sy
hev [58℄ proved that Df has two-dimensional Lebesgue measure zero.There is an important philosophi
al 
onsequen
e of the above dis
us-sion. Suppose for a moment that one of the variational integrals (2.1),(2.3) represented the energy of some physi
al system (of 
ourse this isnot the 
ase, but I will give a physi
al example later). Sin
e minimiz-ers in di�erent fun
tion spa
es 
an be di�erent, in other words di�erentfun
tion spa
es lead to di�erent predi
tions, it follows that the fun
tionspa
e is part of the model. This 
on
lusion seems to me ines
apable, butis an un
omfortable one in the sense that little attention is traditionallypaid to fun
tion spa
es when deriving mathemati
al models (an inter-esting ex
eption is quantum me
hani
s, in whi
h the underlying Hilbertspa
e is introdu
ed at the foundational level). If we a

ept it, then thenext question is where the fun
tion spa
e (for example, for a model of
ontinuum physi
s) should 
ome from? To the extent that it is made ex-pli
it, 
ommon pra
ti
e is to adopt a pragmati
 attitude to this question,making a partly phenomenologi
al 
hoi
e based on the experimentallyobserved singularities and the form of natural expressions su
h as energythat appear in the theory. A more satisfa
tory approa
h would be to de-rive the fun
tion spa
e (as well as the governing equations) from a moredetailed (e.g. atomisti
) model. The only example that I am familiar



Computation of minimizers 7with where this is done is in the paper of Braides, Dal Maso & Garroni[18℄, where a one-dimensional model for softening phenomena in fra
tureme
hani
s is derived from a (primitive) atomisti
 model 
omplete witha fun
tion spa
e (the spa
e BV of fun
tions of bounded variation).As was pointed out to me by J.F. Traub at the Oxford FoCM 
on-feren
e, the issue of the 
hoi
e of a fun
tion spa
e arises in 
ontinuous
omplexity theory, for example in analyzing the 
omplexity of the prob-lem of 
omputing the integral of a fun
tion (see, for example, Traub &Wers
hutz [61℄), where some a priori hypothesis has to be made aboutthe regularity of the fun
tion to be integrated. It would be interestingto analyze the 
omplexity of 
omputation of integrals of the 
al
ulus ofvariations, and of the problem of minimization of su
h integrals, in thelight of the Lavrentiev phenomenon.
3 Nonlinear elasti
ityAs des
ribed in the introdu
tion, the total elasti
 energy of a homoge-neous elasti
 body has the formI(y) = Z
W (Dy) dx: (3.1)Consider the problem of minimizing I among deformations y satisfyingthe boundary 
ondition yj�
1 = �y; (3.2)where �
1 � �
 has positive area and where �y : �
1 ! R3 is a givenmeasurable mapping. No 
ondition is spe
i�ed on the remainder of theboundary �
n�
1, where minimization leads to a natural boundary
ondition 
orresponding to zero applied tra
tion.To be physi
ally meaningful, the deformation y should be invertibleon 
. (This is another requirement on the fun
tion spa
e that we 
ouldask to be the 
onsequen
e of a derivation of (3.1) from a more detailedmodel.) In parti
ular this leads to the requirement thatdetDy(x) > 0 for a.e. x 2 
: (3.3)To guarantee (3.3) for deformations of �nite energy, suppose that W :M3�3+ ! R, where M3�3+ = fA 2M3�3 : detA > 0g, withW (A)!1 as detA! 0+: (3.4)If �
1 6= �
 there is the possibility of self-
onta
t of the boundary (for



8 J.M. Balla treatment of this see Ciarlet & Ne
as [24℄), and for this reason y neednot be invertible on the 
losure �
 of 
. However, even if �
1 = �
 therequirement of invertibility leads to diÆ
ulties. Consider for examplethe mapping u : D ! R2, where D is the unit disk of R2, given inplane polar 
oordinates by (r; �) 7! ( 1p2r; 2�). It is easily seen that u isLips
hitz with detDu(x) = 1 a.e., but u is not lo
ally invertible at 0.Thus for mappings in Sobolev spa
es lo
al invertibility does not followfrom (3.3). This diÆ
ulty 
an be over
ome by an appropriate use ofdegree theory (see [4℄, �Sver�ak [55℄, Fonse
a & Gangbo [33℄).The problem of numeri
al minimization of I via �nite elements leadsnaturally to theOpen question. If y 2W 1;p is invertible, 
an y be approximated in W 1;pby pie
ewise aÆne invertible mappings?Here W 1;p = W 1;p(
;Rn), 
 � Rn, n � 2. This question is alsoof 
onsiderable theoreti
al interest, and I �rst heard of it from L.C.Evans [31℄ in the 
ontext of his attempts to prove a version of his partialregularity theorem [32℄ for quasi
onvex integrals that would be valid forelasti
 energies satisfying (3.4). He remarked to me that the existingliterature on simpli
ial approximation (see e.g. [46℄) did not 
over the
ase of mappings in Sobolev spa
es, sin
e the te
hniques used relied on
omposition of mappings, and mappings in Sobolev spa
es are not 
losedunder 
omposition.Consider the simplest 
ase n = 2. For a 
ontinuous y 2 W 1;p withdetDy(x) > 0 a.e. a natural algorithm is to triangulate 
 with a regu-lar mesh of size h and de�ne the approximating mapping yh to be thatpie
ewise aÆne mapping 
oin
iding with y at the mesh points. Unfortu-nately this fails be
ause even if y 2W 1;1 with detDy(x) � � > 0 there
an be, for arbitrarily small h, triangles on whi
h detDyh is negative.An algorithm is needed for 
hoosing a sequen
e of �ner and �ner mesheswithout this undesirable behaviour.The existen
e theory for minimizers of (3.1) has been reviewed inmany pla
es (see, for example, [7, 8℄, Ciarlet [23℄, Da
orogna [28℄, �Silhav�y[63℄, Pedregal [51℄). For the existen
e of minimizers it is ne
essary toimpose growth and 
onvexity 
onditions on the stored-energy fun
tionW . The natural 
onvexity 
ondition is that of quasi
onvexity. In fa
tfor the variational problem of minimizingI(y) = Z
 f(Dy) dx



Computation of minimizers 9subje
t to yj�
1 = �y;where 
 � Rn is a bounded Lips
hitz domain, y : 
 ! Rm and f :Mm�n ! R is 
ontinuous and satis�es suitable growth 
onditions, it isnow understood (Morrey [47℄, A
erbi & Fus
o [1℄) that for the existen
eof minimizers it is suÆ
ient (and, up to the addition of lower-order terms,ne
essary, see Ball & Murat [15℄) that f be quasi
onvex.De�nition 3.1 Let f : Mm�n ! R [ f+1g be 
ontinuous. Then f isquasi
onvex if Z
 f(Dv) dx � Z
 f(A) dxfor all A 2Mm�n and all v 2 Ax+ C10 (
;Rm).(This 
ondition seems to, but does not, depend on 
.) No tra
tablene
essary and suÆ
ient 
ondtions are known for a fun
tion f to bequasi
onvex. If f is quasi
onvex then f is rank-one 
onvex, that isthe mapping t 7! W (A + t� 
 �) is 
onvex for all A 2 Mm�n; � 2Rm; � 2 Rn, but it was shown by �Sver�ak [56℄ that the 
onverse is falsefor n � 2;m � 3. Based on �Sver�ak's example, Kristensen [36℄ proved thestriking result that for the same dimensions there is no lo
al ne
essaryand suÆ
ient 
ondition for quasi
onvexity.Unfortunately, the known existen
e theorems for quasi
onvex inte-grands do not apply to elasti
ity, be
ause they assume growth 
onditionsin
ompatible with (3.4). For this reason it is at present ne
essary (seethe referen
es 
ited above), to make the stronger 
onvexity hypothesisthat W be poly
onvex, namelyW (A) = g(A; 
of A; detA)for some 
onvex g, where 
of A denotes the matrix of 2 � 2 subdeter-minants of A. Then the existen
e of an absolute minimzer is assured,provided the growth 
onditionW (A) � 
0(jAj2 + j
of Aj 32 )� 
1 (3.5)holds, where 
0 > 0; 
1 are 
onstants (see M�uller, Qi &Yan [49℄ for thisimproved version of a result of [3℄). However essentially nothing is knownabout the smoothness of absolute minimizers y� for stri
tly poly
onvexor stri
tly quasi
onvex W . It is not even known if the usual weak form



10 J.M. Ballof the Euler-Lagrange equation is satis�ed (though 
ertain weak formsmay be obtained, see [5, 2℄, Bauman, Owen & Phillips [17℄), or ifdetDy�(x) � � > 0 for a.e. x 2 
: (3.6)Of 
ourse a proof of smoothness and of (3.6) would lead to a justi�-
ation of standard �nite-element minimization s
hemes for (3.1), (3.2).Otherwise the above Open Problem makes the 
onstru
tion of a s
hemegenerating invertible approximate minimizers problemati
. Another ap-proa
h is to tolerate a small set on whi
h the approximate minimizersfail to satisfy (3.3). This approa
h is taken in Li [42℄, who applies theelement removal method to �nd a sequen
e of su
h (possibly nonin-vertible) approximate minimizers 
onverging, at least theoreti
ally, to aminimizer of (3.1),(3.2).Under the hypotheses of the existen
e theorem it is not known whetherthe Lavrentiev phenomenon 
an hold. However if the growth 
ondition(3.5) is slightly weakened then there is a physi
ally interesting exampleinvolving 
avitation.As an illustrative example of 
avitation 
onsider the problem of min-imizing I(y) = ZB(0;1)W (Dy) dxsubje
t to the pure displa
ement boundary 
onditionyj�B(0;1) = �x; � > 0;where B(0; 1) denotes the unit ball in R3, and whereW (A) = jAj2 + h(detA);with h : (0;1) ! R smooth and satisfying h00 > 0; limÆ!1 h(Æ)Æ =limÆ!0+ h(Æ) = 1. Note that (3.5) does not hold, but that W is poly-
onvex. Hen
e, sin
e poly
onvexity implies quasi
onvexity, the mini-mizer of I among smooth (or even W 1;3) y is given by~y�(x) � �x:But among radial maps y(x) = r�(jxj) xjxjwe have nontrivial minimizers for � > �
r for some 
riti
al value �
r.



Computation of minimizers 11These radial minimizers satisfy r�(0) > 0. Thus a hole is formed at theorigin. Furthermore we have the Lavrentiev phenomenon in the forminfA1 I < infA3 I = I(~y�);where Ap = fy 2W 1;p(B(0; 1);R3) : yj�B(0;1) = �xg. In fa
t 
avitationis a 
ommon failure me
hanism in polymers. See Lazzeri & Bu
knall [38℄for some striking images of almost radial 
avitation of roughly spheri
alrubber parti
les imbedded in a matrix of nylon-6; su
h rubber-toughenedplasti
s are used, for example, in 
ar bumpers. See [7℄ for further remarksabout 
avitation and fun
tion spa
es.
4 Computation of mi
rostru
ture4.1 Nonattainment of minimum energy and mi
rostru
tureConsider a single 
rystal of a material (for example, some metalli
 alloy)that 
an undergo a phase transformation involving a 
hange of shape atsome 
riti
al temperature � = �
 from a higher symmetry austenitephase to a lower symmetry martensite phase. The 
rystal is assumedto be elasti
 with stored-energy fun
tion W�(Dy) that depends on thetemperature �. IfW attains a �nite minimum, then by adding a suitablefun
tion of � there is no loss of generality in assuming thatminA W�(A) = 0:Consider the 
orresponding set of energy-minimizing gradientsK� = fA 2M3�3 :W�(A) = 0g:Sin
e the stored-energy fun
tion must satisfy the frame-indi�eren
e 
on-dition W�(QA) =W�(A) for all Q 2 SO(3)it follows that K� = SO(3)K�. Let U = UT > 0 be the linear transfor-mation des
ribing the 
hange of shape at � = �
 relative to undistortedaustenite. Then at � = �
K�
 = SO(3) [ N[i=1SO(3)Ui;where the Ui are the distin
t matri
es RURT for R belonging to thesymmetry group S of the material (assumed to be a subgroup of SO(3)).The energy well SO(3) 
orresponds to the austenite, while ea
h energy



12 J.M. Ballwell SO(3)Ui 
orresponds to one of the N variants of the martensite.If, as is often the 
ase, the austenite is stable for temperatures � > �
then for these temperatures K� = �(�)SO(3), where �(�) a

ounts forthermal expansion, while, for � < �
, K� is given by the N martensiti
variants, with U = U(�).An important example is provided by a 
ubi
 to tetragonal transfor-mation. Here N = 3, and the three variants 
orrespond to the matri
esU1 = diag (�2; �1; �1);U2 = diag (�1; �2; �1);U3 = diag (�1; �1; �2);where �1; �2 are latti
e parameters.Interfa
es between variants are des
ribed by rank-one 
onne
tions be-tween the 
orresponding energy wells SO(3)Ui; SO(3)Uj, i.e. by pairsof matri
es RiUi; RjUj withRiUi �RjUj = �
 �;where i 6= j and Ri; Rj 2 SO(3), and where � is the interfa
e normal.Su
h rank-one 
onne
tions exist between any pair of the three tetragonalwells in a 
ubi
 to tetragonal transformation. Given su
h a rank-one
onne
tion, the fun
tion t 7!W�(RiUi+ t�
�) has a double-well form,and therefore is not 
onvex. Hen
e W� is not rank-one 
onvex, and sonot quasi
onvex either, leading to the expe
tation that the minimum ofI�(y) = Z
W�(Dy) dx (4.1)in W 1;1(
;R3) subje
t to the boundary 
onditionyj�
1 = �y; (4.2)is in general not attained. In fa
t this has been proved in 
ertain 
ases(see Ball & James [11℄Theorem 7.1, Ball & Carstensen [9℄Theorems 3.1,3.2). Minimizing sequen
es y(j) typi
ally have gradients Dy(j) that os-
illate more and more �nely as j in
reases, generating in the limit anin�nitely �ne mi
rostru
ture.Real mi
rostru
tures are not of 
ourse in�nitely �ne, and their limited�neness 
an be modelled by introdu
ing interfa
ial energy. For example,a 
rude way of doing this is to 
hange the energy fun
tional toI"� (y) = Z
[W�(Dy) + 12"2jD2yj2℄ dx; (4.3)



Computation of minimizers 13for some small " > 0.I refer the reader to Ball & James [10, 11℄, Luskin [44℄, M�uller [48℄,Pedregal [51℄ for further details 
on
erning the physi
al model and itsanalysis.
4.2 What should we 
ompute and how?A

ording to the elasti
ity model des
ribed above, minimizing sequen
esfor the total elasti
 energy may develop in�nitely �ne mi
rostru
ture.Thus, however �ne a �nite-element mesh is used, numeri
al minimizationof the energy 
an be expe
ted to yield os
illations in Dy at a length-s
ale
omparable with the mesh size. For a model su
h as (4.3) in
orporatinginterfa
ial energy a very �ne mesh is still needed to 
apture the detailsof the mi
rostru
ture, whi
h in real materials 
an have a length-s
ale ofas little as a few atomi
 spa
ings. Thus numeri
al minimization of theenergy is 
omputationally highly intensive.A se
ond diÆ
ulty is that, be
ause os
illations 
an develop at the levelof the mesh, and the problem has preferred 
rystallographi
 dire
tions,the 
omputations will in general be sensitive to mesh orientation.A third diÆ
ulty is that the dis
retized energy has a huge number oflo
al minimizers. Consider, for example, the one-dimensional problemof minimizing I(u) = Z 10 [(u2x � 1)2 + u2℄ dxin W 1;1(0; 1) (so that there are no end 
onditions). TheninfW 1;1 I = 0but the in�mum is not attained. Consider the dis
retized problem ofminimizing I among pie
ewise aÆne fun
tions on a mesh of size h = 1N2 .Let uh be a minimizer and set I(uh) = Eh. Then (Carstensen [19℄)there exists a family K 
onsisting of NN lo
al minimizers of the samedis
retized problem, su
h that(i) K is a subset of the ball in L2(0; 1) with 
entre uh, radius 5h,(ii) I(v) < (1 + 24ph)Eh for ea
h v 2 K,(iii) if v0; v1 are distin
t points of K then supt2[0;1℄ I(v(t)) > 13h Eh forany 
ontinuous path v : [0; 1℄! L2(0; 1) with v(0) = v0; v(1) = v1.Be
ause of the exponential number of lo
al minimizers, and the rela-tively high energy thresholds between them, lo
al des
ent methods willtypi
ally fail to dete
t a global minimizer of the dis
retized problem.



14 J.M. BallBut what should we 
ompute? For the problem (4.1),(4.2) (simi-lar issues arise for problems in
orporating small interfa
ial energy) onepossible answer is the set of possible Young measures (�x)x2
 
orre-sponding to sequen
es of deformation gradients Dy(j) for minimizingsequen
es y(j) (for the de�nition and properties of these measures see,for example, [6, 59, 48, 50, 62℄). For ea
h x 2 
, �x is a probabilitymeasure on M3�3. The Young measure determines through the formulaDy(x) = ��x, where ��x = RM3�3 Ad�x(A) denotes the 
entre of massof �x, the ma
ros
opi
 deformation gradient Dy, where y is the weaklimit of the minimizing sequen
e y(j) in an appropriate Sobolev spa
edetermind by the growth of W .In prin
iple y 
an be 
omputed by minimizingIq
� (y) = Z
W q
� (Dy) dx; (4.4)subje
t to (4.2), where W q
� is the quasi
onvex envelope of W�, that isthe supremum of all quasi
onvex fun
tions that are less than W�. Thisis the 
ontent of the relaxation theorem of Da
orogna [27℄, though as forthe existen
e theorems assuming quasi
onvexity, the theorem does notstri
tly speaking apply to elasti
ity be
ause the growth hypotheses arein
onsistent with the property W�(A) ! 1 as detA ! 0+. Thus qua-si
onvexi�
ation des
ribes the passage from mi
ros
opi
 to ma
ros
opi
stored-energy fun
tions for these materials.The idea of minimizing (4.4) to 
ompute y is attra
tive, but a veryserious drawba
k is that the la
k of a suitable 
hara
terization of qua-si
onvexity means that it is only in rare 
ases (see, for example, Kohn[35℄, Pipkin [52, 53℄, LeDret & Raoult [39℄) thatW q
� is known. Further,to 
ompute W q
� numeri
ally leads to a problem of similar diÆ
ulty tothe original one.Despite all these diÆ
ulties there have been a number of interesting
omputations of martensiti
 mi
rostru
ture, though it is fair to say thatthere is a long way to go before the 
omputer 
an be used as an e�e
tivepredi
tive tool in these problems. Some key referen
es are Carstensenand Ple
h�a�
 [21, 20, 22℄, Collins, Kinderlehrer & Luskin [25℄, Collins& Luskin [26℄, Dolzmann [30℄, Killough [34℄, Li & Luskin [40℄ (theselast two papers 
on
erning 
omputations of needle-like martensiti
 mi-
rostru
tures), and the review arti
le of Luskin [44℄.As an illustration of what 
an be a
hieved, in Figure 1 are shown theresults of some 
omputations due to P. Ple
h�a�
 [54℄. These 
omputationswere 
arried out for a two-dimensional version of I"� (see (4.3)) with
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a. t = 0, " = 10�3 t = 80 t = 1000

b. t = 10, " = 5:10�3 t = 30 t = 200Fig. 1. Mi
rostru
ture evolution a. for a single 
rystal b. for two adja
entgrains.
W =W� :M2�2 ! R given byW (A) = �1(C11 � (1 + Æ2))2 + �2(C22 � 1)2 + �3(C212 � Æ2)2; (4.5)where C = ATA. In this 
ase we have thatK = fA 2M2�2 :W (A) = 0g = SO(2)U1 [ SO(2)U2;where U1 = � 1 0�Æ 1 � ; U2 = � 1 0Æ 1 � :The two energy wells are rank-one 
onne
ted withU2 � U1 = �
 �;where � = (0; 2Æ); � = (1; 0). In the 
omputations, 
 = (0; 1)2, theboundary 
ondition was taken to be linear with gradient 12 (U1 + U2),that is y(x) = x for x 2 �
;and the 
onstants in (4.5) had the values �i = 1; Æ = 0:5. For theseboundary 
onditions with " = 0 the minimum of the energy (4.3) is not



16 J.M. Ballattained, and the Young measure of any minimizing sequen
e is givenby �x = 12(ÆU1 + ÆU2):Similarly, for small " we expe
t a �nely layered 
on�guration to evolve inwhi
h Dy mostly takes the values U1; U2. The minimization algorithmwas to solve the evolution equation�yt = �div �(Dy) + "2�2y;where �(A) = DW (A). (This equation, used in the 
al
ulations as anumeri
al solver, 
an also be thought of as a vis
oelasti
 model for theevolution of y that negle
ts inertia; however it should be noted thatthe damping term �yt is not frame-indi�erent.) The time-dis
retizationwas a fully impli
it s
heme, approximating the H�1-gradient 
ow for I"�by a 
orresponding minimization problem at ea
h time step. The meshwas uniform with 500 � 500 elements. This algorithm is of 
ourse notguaranteed to tend as time t!1 to a global minimizer. In Figure 1a areshown stages in the evolution starting from sinusoidal initial data, with" = 10�3, the shading varying from white when Dy(x) 2 SO(2)U1 tobla
k when Dy(x) 2 SO(2)U2. Note how the re�nement of the layeringis via the initiation of new layers at the boundary; a similar e�e
t wasobserved earlier in the 
omputations of Swart (see Swart & Holmes [57℄).For the 
omputation in Figure 1b the 
rystal 
onsists of two adja
entgrains, 
orresponding to the stored-energy fun
tion W =W (x;A) givenby W (x;A) = � W (A) x 2 
1 = (0; 1)� (1=2; 1)W (AR�=4) x 2 
2 = (0; 1)� (0; 1=2) ;where R�=4 denotes a planar rotation through the angle �=4, and " =5:10�3. The initial data was taken to be the identity with a small smoothperturbation in a neighbourhood of the 
entre of the square. Two simplelaminates are formed meeting at the grain boundary.
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