
1Singularities and omputation of minimizersfor variational problemsJ.M. BallMathematial InstituteUniversity of Oxford24-29 St. Giles'Oxford OX1 3LBU.K.Email ball�maths.ox.a.ukAbstratVarious issues are addressed related to the omputation of minimizersfor variational problems. Speial attention is paid (i) to problems withsingular minimizers, whih natural numerial shemes may fail to de-tet, and the role of the hoie of funtion spae for suh problems, and(ii) to problems for whih there is no minimizer, whih lead to diÆultnumerial questions suh as the omputation of mirostruture for elas-ti materials that undergo phase transformations involving a hange ofshape.
1 IntrodutionIn this artile I give a brief tour of some issues related to the omputationof minimizers for integrals of the alulus of variations. In this I takethe point of view not of a numerial analyst, whih I am not, but of anapplied mathematiian for whom questions of omputation have arisennot just beause of the need to understand phenomena inaessible toontemporary analysis, but also beause they are naturally motivatedby attempts to apply analysis to variational problems.I will onentrate on two spei� issues. The �rst is that minimizersof variational problems may have singularities, but natural numerialshemes may fail to detet them. Conneted with this is the surprisingLavrentiev phenomenon, aording to whih minimizers in di�erent fun-tion spaes may be di�erent. The seond issue is that minimizers maynot exist, in whih ase the question naturally arises as to what the be-haviour of numerial shemes designed to ompute suh minimizers willbe. In this ase the preditive power of the variational problem may still1



2 J.M. Ballbe retained, for example as a explanatory mehanism for the formationof mirostruture in materials. A key tool here is the elusive onept ofquasionvexity, whih helps to desibe the passage from mirosales tomarosales.As a motivating example, onsider (nonlinear) elastiity theory. For ahomogeneous elasti body the total elasti energy is given by the integralI(y) = Z
W (Dy) dx;wher W is the stored-energy funtion of the material. Here 
 is abounded open subset of R3, with Lipshitz boundary �
, that the bodyoupies in a referene on�guration, and y : 
! R3 denotes a typialdeformation with gradientDy(x) = � �yi�xj� :Thus for eah x, Dy(x) 2M3�3, whereMm�n = freal m�n matriesg.In this ase the singularities of minimizers ould potentially be relatedto various kinds of frature or its onset, disloations, or phase bound-aries, while mirostruture arises in materials undergoing phase trans-formations, for whih the minimum of I subjet to suitable boundaryonditions may not be attained.
2 Singular minimizers and the Lavrentiev phenomenon2.1 The Lavrentiev phenomenon and repulsion propertyConsider �rst the simple problem due to Mani�a [45℄ of minimizing theintegral I(u) = Z 10 (u3 � x)2u6x dx (2.1)among absolutely ontinuous funtions u satisfying the end onditionsu(0) = 0; u(1) = 1: (2.2)The unique minimizer of this problem is easily seen to beu�(x) = x 13 :In fat I(u�) = 0, and if �u were any other funtion satisfying the endonditions (2.2) with I(�u) = 0 then �ux(x) = 0 for x 2 E and �u(x) =



Computation of minimizers 3u�(x) for x 2 (0; 1)nE, where E has positive one-dimensional Lebesguemeasure. Thus 0 = Z 10 (u�x � �ux) dx = ZE 13x� 23 dx > 0;a ontradition.Consider now a very natural �nite-element sheme for omputing theminimizer. Take a uniform mesh subdividing [0; 1℄ into N subintervals oflength h = 1=N and minimize I among ontinuous funtions satisfyingthe end onditions (2.2) whih are aÆne on eah element (i=N; (i+1)=N).For any suh funtion vh the integral I(vh) an be omputed exatly (dueto the expliit form of the integrand), so that questions of quadraturean in the �rst instane be ignored. For eah h there is at least oneminimizer u�h to this disrete problem. What is the behaviour of u�h ash ! 0? Remarkably, u�h onverges as h ! 0, but not to the minimizeru�! In fat the limit u0 is a monotone inreasing funtion that is smoothin (0; 1) but has in�nite slope at the end-points x = 0; 1.This behaviour is hard to redit at a �rst glane. An illuminatinginitial alulation is to ompute I(uh) for the funtionuh(x) = � h� 23x if x 2 (0; h)u�(x) if x 2 (h; 1)in whih u� is altered only on the �rst element. Surely limh!0 I(uh) =I(u�) = 0? But no, Z 10 (u3h � x)2u6hx dx = 8105h�1;whih tends to +1 as h! 0 !In fat it an be shown (see Ball & Knowles [12℄) that if 1 � p � 1and Ap = fv 2W 1;p(0; 1) : v(0) = 0; v(1) = 1g(so that A1 is the admissible lass of funtions onsidered above) theninfA1 I = minA3=2 I > minA1 I = 0:The fat that the in�mum of I in di�erent funtion spaes an be dif-ferent is known as the Lavrentiev phenomenon (see Lavrentiev [37℄ forthe original example). The initial alulation above has the followinggeneralization, let us all it the repulsion property, that if u(j) 2 A3=2and u(j) ! u� a.e. in (0; 1) then I(u(j))!1.



4 J.M. BallIn the Mani�a example the integrand f(x; u; p) = (u3�x)2p6 is onvexin p, but not stritly onvex. However, as was shown by Ball & Mizel[13, 14℄, the Lavrentiev phenomenon and the repulsion property hold forellipti integrands, i.e. those for whih fpp(x; u; p) � � > 0 for all x; u; p.Suh an example is given by the problem [14℄ of minimizingI(u) = Z 1�1[(x4 � u6)2u28x + "u2x℄ dx (2.3)in Ap = fv 2 W 1;p(�1; 1) : v(�1) = �1; v(1) = 1g. Note that theintegrand f(x; u; p) = (x4�u6)2p28+"p2 satis�es fpp � 2" > 0. Here, forsuÆiently small " > 0, there is an absolute minimizer u� of I in A1 thatis a smooth solution of the Euler-Lagrange equation in [�1; 0)[(0; 1℄ buthas derivative +1 at x = 0, where u�(x) � jxj 23 sign x. The Lavrentievphenomenon holds in the forminfA1 I = minA3 I > infA1 I = I(u�): (2.4)As indiated in (2.4), I attains its in�mum in A3, and every suh mini-mizer is a smooth solution of the Euler-Lagrange equation in the wholeinterval [�1; 1℄. The repulsion property also holds in the form that ifu(j) 2 A3 with u(j) ! u� a.e. then I(u(j))!1.
2.2 Computation of singular minimizersWhat are possible numerial methods for deteting suh singular mini-mizers? Consider the problem of minimizingI(u) = Z ba f(x; u; ux) dxin A1 = fu 2W 1;1(a; b) : u(a) = �; u(b) = �g;where �; � are given onstants.A �rst method proposed by Ball & Knowles [12℄ onsists in deouplingu from its derivative. Thus given " > 0 we minimizeI(u; v) = Z ba f(x; u; v) dxamong pieewise aÆne funtions u in A1 on a uniform mesh of size h,



Computation of minimizers 5and funtions v that are pieewise onstant on the same grid, subjet tothe onstraint Z ba '(ux � v) dx � ";where ' � 0 is a suitable even ontinuous funtion satisfying (i) '(p) �jvjs for all v 2 R, where 1 � s <1, (ii) '(p1+p2) � C('(p1)+'(p2)) forall p1; p2 2 R. Then under suitable growth and onvexity hypotheses onf (in partiular guaranteeing that the in�mum of I(u) in A1 is attained)it an be shown that minimizers fuh;"; vh;"g, with h < (") for a suitablefuntion , onverge to minimizers fu�; u�xg of I in A1, possibly afterextration of a subsequene, and thatlimh;"!0; 0<h<(") I(uh;"; vh;") = infu2A1 I(u) = I(u�):The e�et of numerial quadrature is also studied in [12℄; in fat for theMani�a example a diret numerial minimization of (2.1) among pieewiseaÆne funtions in A1 using the trapezoidal rule sueeds in �nding u�,but this is a freak resulting from the speial form of the integrand andin partiular its degeneray when u3 = x.A seond idea (see Li [43℄) is the trunation method, in whih f =f(x; u; p) is replaed by a trunated integrand fM (x; u; p) satisfyingfM (x; u; p) = f(x; u; p) whenever jpj � M , and fM ! f monotoni-ally as M !1. If fM has suitable mild growth properties as jpj ! 1,ensuring in partiular that the trunated integralIM (u) = Z ba fM (x; u; ux) dxdoes not have the Lavrentiev phenomenon, then we an �rst minimizeIM , and then let M !1. Although this method works theoretially, ithas pratial drawbaks in that it may not be easy to �nd an absoluteminimizer of IM (for example, in the ase when I attains a minimumamong smooth funtions, as for the integral (2.3), there is the danger of�nding this minimizer instead, sine it is a loal minimizer of IM for allsuÆiently large M).A more interesting method (see Li [41℄) is that of element removal.Here we use pieewise aÆne approximations, but for eah h minimizeZ[a;b℄nE f(x; u; ux) dxwhere E onsists of a (ontrolled) small number of elements (in pratie



6 J.M. Ballthese turn out to be elements where u�x is large). As for the methodin [12℄ the number of unknowns is inreased, in this ase by variablestraking whih elements are removed.A potentially promising method, whih as far as I am aware has notbeen studied, is that of using nononforming elements. It seems possiblethat this ould lead to ways of deteting minimizers in a ontinuous saleof Sobolev spaes.There is a growing literature on singular minimizers of one-dimensionalvariational problems. These singular minimizers do not in general sat-isfy the Euler-Lagrange equation in weak or integrated form on the wholeinterval [a; b℄. For ellipti integrands the Euler-Lagrange equation is sat-is�ed on the omplement of a losed set of Lebesgue measure zero. Thisis part of the ontent of the Tonelli partial regularity theorem [60℄IIp. 359. This theorem is shown to be optimal in [14℄ (where a slightlyimproved version an be found), and in Davie [29℄. The singularitiesof minimizers an also be studied in the (x; u) plane; it was shown byBall & Nadirashvili [16℄ that under natural hypotheses on f there is auniversal singular set Df to whih all points (x; u(x)) with jux(x)j =1for minimizers u of I in A1 for any a; b; �; � must belong, and that Dfis of �rst ategory in R2. Later Syhev [58℄ proved that Df has two-dimensional Lebesgue measure zero.There is an important philosophial onsequene of the above disus-sion. Suppose for a moment that one of the variational integrals (2.1),(2.3) represented the energy of some physial system (of ourse this isnot the ase, but I will give a physial example later). Sine minimiz-ers in di�erent funtion spaes an be di�erent, in other words di�erentfuntion spaes lead to di�erent preditions, it follows that the funtionspae is part of the model. This onlusion seems to me inesapable, butis an unomfortable one in the sense that little attention is traditionallypaid to funtion spaes when deriving mathematial models (an inter-esting exeption is quantum mehanis, in whih the underlying Hilbertspae is introdued at the foundational level). If we aept it, then thenext question is where the funtion spae (for example, for a model ofontinuum physis) should ome from? To the extent that it is made ex-pliit, ommon pratie is to adopt a pragmati attitude to this question,making a partly phenomenologial hoie based on the experimentallyobserved singularities and the form of natural expressions suh as energythat appear in the theory. A more satisfatory approah would be to de-rive the funtion spae (as well as the governing equations) from a moredetailed (e.g. atomisti) model. The only example that I am familiar



Computation of minimizers 7with where this is done is in the paper of Braides, Dal Maso & Garroni[18℄, where a one-dimensional model for softening phenomena in fraturemehanis is derived from a (primitive) atomisti model omplete witha funtion spae (the spae BV of funtions of bounded variation).As was pointed out to me by J.F. Traub at the Oxford FoCM on-ferene, the issue of the hoie of a funtion spae arises in ontinuousomplexity theory, for example in analyzing the omplexity of the prob-lem of omputing the integral of a funtion (see, for example, Traub &Wershutz [61℄), where some a priori hypothesis has to be made aboutthe regularity of the funtion to be integrated. It would be interestingto analyze the omplexity of omputation of integrals of the alulus ofvariations, and of the problem of minimization of suh integrals, in thelight of the Lavrentiev phenomenon.
3 Nonlinear elastiityAs desribed in the introdution, the total elasti energy of a homoge-neous elasti body has the formI(y) = Z
W (Dy) dx: (3.1)Consider the problem of minimizing I among deformations y satisfyingthe boundary ondition yj�
1 = �y; (3.2)where �
1 � �
 has positive area and where �y : �
1 ! R3 is a givenmeasurable mapping. No ondition is spei�ed on the remainder of theboundary �
n�
1, where minimization leads to a natural boundaryondition orresponding to zero applied tration.To be physially meaningful, the deformation y should be invertibleon 
. (This is another requirement on the funtion spae that we ouldask to be the onsequene of a derivation of (3.1) from a more detailedmodel.) In partiular this leads to the requirement thatdetDy(x) > 0 for a.e. x 2 
: (3.3)To guarantee (3.3) for deformations of �nite energy, suppose that W :M3�3+ ! R, where M3�3+ = fA 2M3�3 : detA > 0g, withW (A)!1 as detA! 0+: (3.4)If �
1 6= �
 there is the possibility of self-ontat of the boundary (for



8 J.M. Balla treatment of this see Ciarlet & Neas [24℄), and for this reason y neednot be invertible on the losure �
 of 
. However, even if �
1 = �
 therequirement of invertibility leads to diÆulties. Consider for examplethe mapping u : D ! R2, where D is the unit disk of R2, given inplane polar oordinates by (r; �) 7! ( 1p2r; 2�). It is easily seen that u isLipshitz with detDu(x) = 1 a.e., but u is not loally invertible at 0.Thus for mappings in Sobolev spaes loal invertibility does not followfrom (3.3). This diÆulty an be overome by an appropriate use ofdegree theory (see [4℄, �Sver�ak [55℄, Fonsea & Gangbo [33℄).The problem of numerial minimization of I via �nite elements leadsnaturally to theOpen question. If y 2W 1;p is invertible, an y be approximated in W 1;pby pieewise aÆne invertible mappings?Here W 1;p = W 1;p(
;Rn), 
 � Rn, n � 2. This question is alsoof onsiderable theoretial interest, and I �rst heard of it from L.C.Evans [31℄ in the ontext of his attempts to prove a version of his partialregularity theorem [32℄ for quasionvex integrals that would be valid forelasti energies satisfying (3.4). He remarked to me that the existingliterature on simpliial approximation (see e.g. [46℄) did not over thease of mappings in Sobolev spaes, sine the tehniques used relied onomposition of mappings, and mappings in Sobolev spaes are not losedunder omposition.Consider the simplest ase n = 2. For a ontinuous y 2 W 1;p withdetDy(x) > 0 a.e. a natural algorithm is to triangulate 
 with a regu-lar mesh of size h and de�ne the approximating mapping yh to be thatpieewise aÆne mapping oiniding with y at the mesh points. Unfortu-nately this fails beause even if y 2W 1;1 with detDy(x) � � > 0 therean be, for arbitrarily small h, triangles on whih detDyh is negative.An algorithm is needed for hoosing a sequene of �ner and �ner mesheswithout this undesirable behaviour.The existene theory for minimizers of (3.1) has been reviewed inmany plaes (see, for example, [7, 8℄, Ciarlet [23℄, Daorogna [28℄, �Silhav�y[63℄, Pedregal [51℄). For the existene of minimizers it is neessary toimpose growth and onvexity onditions on the stored-energy funtionW . The natural onvexity ondition is that of quasionvexity. In fatfor the variational problem of minimizingI(y) = Z
 f(Dy) dx



Computation of minimizers 9subjet to yj�
1 = �y;where 
 � Rn is a bounded Lipshitz domain, y : 
 ! Rm and f :Mm�n ! R is ontinuous and satis�es suitable growth onditions, it isnow understood (Morrey [47℄, Aerbi & Fuso [1℄) that for the existeneof minimizers it is suÆient (and, up to the addition of lower-order terms,neessary, see Ball & Murat [15℄) that f be quasionvex.De�nition 3.1 Let f : Mm�n ! R [ f+1g be ontinuous. Then f isquasionvex if Z
 f(Dv) dx � Z
 f(A) dxfor all A 2Mm�n and all v 2 Ax+ C10 (
;Rm).(This ondition seems to, but does not, depend on 
.) No tratableneessary and suÆient ondtions are known for a funtion f to bequasionvex. If f is quasionvex then f is rank-one onvex, that isthe mapping t 7! W (A + t� 
 �) is onvex for all A 2 Mm�n; � 2Rm; � 2 Rn, but it was shown by �Sver�ak [56℄ that the onverse is falsefor n � 2;m � 3. Based on �Sver�ak's example, Kristensen [36℄ proved thestriking result that for the same dimensions there is no loal neessaryand suÆient ondition for quasionvexity.Unfortunately, the known existene theorems for quasionvex inte-grands do not apply to elastiity, beause they assume growth onditionsinompatible with (3.4). For this reason it is at present neessary (seethe referenes ited above), to make the stronger onvexity hypothesisthat W be polyonvex, namelyW (A) = g(A; of A; detA)for some onvex g, where of A denotes the matrix of 2 � 2 subdeter-minants of A. Then the existene of an absolute minimzer is assured,provided the growth onditionW (A) � 0(jAj2 + jof Aj 32 )� 1 (3.5)holds, where 0 > 0; 1 are onstants (see M�uller, Qi &Yan [49℄ for thisimproved version of a result of [3℄). However essentially nothing is knownabout the smoothness of absolute minimizers y� for stritly polyonvexor stritly quasionvex W . It is not even known if the usual weak form



10 J.M. Ballof the Euler-Lagrange equation is satis�ed (though ertain weak formsmay be obtained, see [5, 2℄, Bauman, Owen & Phillips [17℄), or ifdetDy�(x) � � > 0 for a.e. x 2 
: (3.6)Of ourse a proof of smoothness and of (3.6) would lead to a justi�-ation of standard �nite-element minimization shemes for (3.1), (3.2).Otherwise the above Open Problem makes the onstrution of a shemegenerating invertible approximate minimizers problemati. Another ap-proah is to tolerate a small set on whih the approximate minimizersfail to satisfy (3.3). This approah is taken in Li [42℄, who applies theelement removal method to �nd a sequene of suh (possibly nonin-vertible) approximate minimizers onverging, at least theoretially, to aminimizer of (3.1),(3.2).Under the hypotheses of the existene theorem it is not known whetherthe Lavrentiev phenomenon an hold. However if the growth ondition(3.5) is slightly weakened then there is a physially interesting exampleinvolving avitation.As an illustrative example of avitation onsider the problem of min-imizing I(y) = ZB(0;1)W (Dy) dxsubjet to the pure displaement boundary onditionyj�B(0;1) = �x; � > 0;where B(0; 1) denotes the unit ball in R3, and whereW (A) = jAj2 + h(detA);with h : (0;1) ! R smooth and satisfying h00 > 0; limÆ!1 h(Æ)Æ =limÆ!0+ h(Æ) = 1. Note that (3.5) does not hold, but that W is poly-onvex. Hene, sine polyonvexity implies quasionvexity, the mini-mizer of I among smooth (or even W 1;3) y is given by~y�(x) � �x:But among radial maps y(x) = r�(jxj) xjxjwe have nontrivial minimizers for � > �r for some ritial value �r.



Computation of minimizers 11These radial minimizers satisfy r�(0) > 0. Thus a hole is formed at theorigin. Furthermore we have the Lavrentiev phenomenon in the forminfA1 I < infA3 I = I(~y�);where Ap = fy 2W 1;p(B(0; 1);R3) : yj�B(0;1) = �xg. In fat avitationis a ommon failure mehanism in polymers. See Lazzeri & Buknall [38℄for some striking images of almost radial avitation of roughly spherialrubber partiles imbedded in a matrix of nylon-6; suh rubber-toughenedplastis are used, for example, in ar bumpers. See [7℄ for further remarksabout avitation and funtion spaes.
4 Computation of mirostruture4.1 Nonattainment of minimum energy and mirostrutureConsider a single rystal of a material (for example, some metalli alloy)that an undergo a phase transformation involving a hange of shape atsome ritial temperature � = � from a higher symmetry austenitephase to a lower symmetry martensite phase. The rystal is assumedto be elasti with stored-energy funtion W�(Dy) that depends on thetemperature �. IfW attains a �nite minimum, then by adding a suitablefuntion of � there is no loss of generality in assuming thatminA W�(A) = 0:Consider the orresponding set of energy-minimizing gradientsK� = fA 2M3�3 :W�(A) = 0g:Sine the stored-energy funtion must satisfy the frame-indi�erene on-dition W�(QA) =W�(A) for all Q 2 SO(3)it follows that K� = SO(3)K�. Let U = UT > 0 be the linear transfor-mation desribing the hange of shape at � = � relative to undistortedaustenite. Then at � = �K� = SO(3) [ N[i=1SO(3)Ui;where the Ui are the distint matries RURT for R belonging to thesymmetry group S of the material (assumed to be a subgroup of SO(3)).The energy well SO(3) orresponds to the austenite, while eah energy



12 J.M. Ballwell SO(3)Ui orresponds to one of the N variants of the martensite.If, as is often the ase, the austenite is stable for temperatures � > �then for these temperatures K� = �(�)SO(3), where �(�) aounts forthermal expansion, while, for � < �, K� is given by the N martensitivariants, with U = U(�).An important example is provided by a ubi to tetragonal transfor-mation. Here N = 3, and the three variants orrespond to the matriesU1 = diag (�2; �1; �1);U2 = diag (�1; �2; �1);U3 = diag (�1; �1; �2);where �1; �2 are lattie parameters.Interfaes between variants are desribed by rank-one onnetions be-tween the orresponding energy wells SO(3)Ui; SO(3)Uj, i.e. by pairsof matries RiUi; RjUj withRiUi �RjUj = �
 �;where i 6= j and Ri; Rj 2 SO(3), and where � is the interfae normal.Suh rank-one onnetions exist between any pair of the three tetragonalwells in a ubi to tetragonal transformation. Given suh a rank-oneonnetion, the funtion t 7!W�(RiUi+ t�
�) has a double-well form,and therefore is not onvex. Hene W� is not rank-one onvex, and sonot quasionvex either, leading to the expetation that the minimum ofI�(y) = Z
W�(Dy) dx (4.1)in W 1;1(
;R3) subjet to the boundary onditionyj�
1 = �y; (4.2)is in general not attained. In fat this has been proved in ertain ases(see Ball & James [11℄Theorem 7.1, Ball & Carstensen [9℄Theorems 3.1,3.2). Minimizing sequenes y(j) typially have gradients Dy(j) that os-illate more and more �nely as j inreases, generating in the limit anin�nitely �ne mirostruture.Real mirostrutures are not of ourse in�nitely �ne, and their limited�neness an be modelled by introduing interfaial energy. For example,a rude way of doing this is to hange the energy funtional toI"� (y) = Z
[W�(Dy) + 12"2jD2yj2℄ dx; (4.3)



Computation of minimizers 13for some small " > 0.I refer the reader to Ball & James [10, 11℄, Luskin [44℄, M�uller [48℄,Pedregal [51℄ for further details onerning the physial model and itsanalysis.
4.2 What should we ompute and how?Aording to the elastiity model desribed above, minimizing sequenesfor the total elasti energy may develop in�nitely �ne mirostruture.Thus, however �ne a �nite-element mesh is used, numerial minimizationof the energy an be expeted to yield osillations in Dy at a length-saleomparable with the mesh size. For a model suh as (4.3) inorporatinginterfaial energy a very �ne mesh is still needed to apture the detailsof the mirostruture, whih in real materials an have a length-sale ofas little as a few atomi spaings. Thus numerial minimization of theenergy is omputationally highly intensive.A seond diÆulty is that, beause osillations an develop at the levelof the mesh, and the problem has preferred rystallographi diretions,the omputations will in general be sensitive to mesh orientation.A third diÆulty is that the disretized energy has a huge number ofloal minimizers. Consider, for example, the one-dimensional problemof minimizing I(u) = Z 10 [(u2x � 1)2 + u2℄ dxin W 1;1(0; 1) (so that there are no end onditions). TheninfW 1;1 I = 0but the in�mum is not attained. Consider the disretized problem ofminimizing I among pieewise aÆne funtions on a mesh of size h = 1N2 .Let uh be a minimizer and set I(uh) = Eh. Then (Carstensen [19℄)there exists a family K onsisting of NN loal minimizers of the samedisretized problem, suh that(i) K is a subset of the ball in L2(0; 1) with entre uh, radius 5h,(ii) I(v) < (1 + 24ph)Eh for eah v 2 K,(iii) if v0; v1 are distint points of K then supt2[0;1℄ I(v(t)) > 13h Eh forany ontinuous path v : [0; 1℄! L2(0; 1) with v(0) = v0; v(1) = v1.Beause of the exponential number of loal minimizers, and the rela-tively high energy thresholds between them, loal desent methods willtypially fail to detet a global minimizer of the disretized problem.



14 J.M. BallBut what should we ompute? For the problem (4.1),(4.2) (simi-lar issues arise for problems inorporating small interfaial energy) onepossible answer is the set of possible Young measures (�x)x2
 orre-sponding to sequenes of deformation gradients Dy(j) for minimizingsequenes y(j) (for the de�nition and properties of these measures see,for example, [6, 59, 48, 50, 62℄). For eah x 2 
, �x is a probabilitymeasure on M3�3. The Young measure determines through the formulaDy(x) = ��x, where ��x = RM3�3 Ad�x(A) denotes the entre of massof �x, the marosopi deformation gradient Dy, where y is the weaklimit of the minimizing sequene y(j) in an appropriate Sobolev spaedetermind by the growth of W .In priniple y an be omputed by minimizingIq� (y) = Z
W q� (Dy) dx; (4.4)subjet to (4.2), where W q� is the quasionvex envelope of W�, that isthe supremum of all quasionvex funtions that are less than W�. Thisis the ontent of the relaxation theorem of Daorogna [27℄, though as forthe existene theorems assuming quasionvexity, the theorem does notstritly speaking apply to elastiity beause the growth hypotheses areinonsistent with the property W�(A) ! 1 as detA ! 0+. Thus qua-sionvexi�ation desribes the passage from mirosopi to marosopistored-energy funtions for these materials.The idea of minimizing (4.4) to ompute y is attrative, but a veryserious drawbak is that the lak of a suitable haraterization of qua-sionvexity means that it is only in rare ases (see, for example, Kohn[35℄, Pipkin [52, 53℄, LeDret & Raoult [39℄) thatW q� is known. Further,to ompute W q� numerially leads to a problem of similar diÆulty tothe original one.Despite all these diÆulties there have been a number of interestingomputations of martensiti mirostruture, though it is fair to say thatthere is a long way to go before the omputer an be used as an e�etivepreditive tool in these problems. Some key referenes are Carstensenand Pleh�a� [21, 20, 22℄, Collins, Kinderlehrer & Luskin [25℄, Collins& Luskin [26℄, Dolzmann [30℄, Killough [34℄, Li & Luskin [40℄ (theselast two papers onerning omputations of needle-like martensiti mi-rostrutures), and the review artile of Luskin [44℄.As an illustration of what an be ahieved, in Figure 1 are shown theresults of some omputations due to P. Pleh�a� [54℄. These omputationswere arried out for a two-dimensional version of I"� (see (4.3)) with
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a. t = 0, " = 10�3 t = 80 t = 1000

b. t = 10, " = 5:10�3 t = 30 t = 200Fig. 1. Mirostruture evolution a. for a single rystal b. for two adjaentgrains.
W =W� :M2�2 ! R given byW (A) = �1(C11 � (1 + Æ2))2 + �2(C22 � 1)2 + �3(C212 � Æ2)2; (4.5)where C = ATA. In this ase we have thatK = fA 2M2�2 :W (A) = 0g = SO(2)U1 [ SO(2)U2;where U1 = � 1 0�Æ 1 � ; U2 = � 1 0Æ 1 � :The two energy wells are rank-one onneted withU2 � U1 = �
 �;where � = (0; 2Æ); � = (1; 0). In the omputations, 
 = (0; 1)2, theboundary ondition was taken to be linear with gradient 12 (U1 + U2),that is y(x) = x for x 2 �
;and the onstants in (4.5) had the values �i = 1; Æ = 0:5. For theseboundary onditions with " = 0 the minimum of the energy (4.3) is not



16 J.M. Ballattained, and the Young measure of any minimizing sequene is givenby �x = 12(ÆU1 + ÆU2):Similarly, for small " we expet a �nely layered on�guration to evolve inwhih Dy mostly takes the values U1; U2. The minimization algorithmwas to solve the evolution equation�yt = �div �(Dy) + "2�2y;where �(A) = DW (A). (This equation, used in the alulations as anumerial solver, an also be thought of as a visoelasti model for theevolution of y that neglets inertia; however it should be noted thatthe damping term �yt is not frame-indi�erent.) The time-disretizationwas a fully impliit sheme, approximating the H�1-gradient ow for I"�by a orresponding minimization problem at eah time step. The meshwas uniform with 500 � 500 elements. This algorithm is of ourse notguaranteed to tend as time t!1 to a global minimizer. In Figure 1a areshown stages in the evolution starting from sinusoidal initial data, with" = 10�3, the shading varying from white when Dy(x) 2 SO(2)U1 toblak when Dy(x) 2 SO(2)U2. Note how the re�nement of the layeringis via the initiation of new layers at the boundary; a similar e�et wasobserved earlier in the omputations of Swart (see Swart & Holmes [57℄).For the omputation in Figure 1b the rystal onsists of two adjaentgrains, orresponding to the stored-energy funtion W =W (x;A) givenby W (x;A) = � W (A) x 2 
1 = (0; 1)� (1=2; 1)W (AR�=4) x 2 
2 = (0; 1)� (0; 1=2) ;where R�=4 denotes a planar rotation through the angle �=4, and " =5:10�3. The initial data was taken to be the identity with a small smoothperturbation in a neighbourhood of the entre of the square. Two simplelaminates are formed meeting at the grain boundary.
AknowledgmentsI am grateful to Petr Pleh�a� for permission to inlude his omputationsand to him, Carsten Carstensen, Craig Evans, Matt Killough, Bob Kohnand Joe Traub for useful omments that helped improve the paper andleture at the 1999 Oxford FoCM onferene on whih it was based. This



Computation of minimizers 17work was supported by EC TMR Contrat ERBFMRX CT 98-229 on`Phase transformations in rystalline solids'.
Bibliography

[1℄ E. Aerbi and N. Fuso. Semiontinuity problems in the alulus ofvariations. Arh. Rat. Meh. Anal., 86:125{145, 1984.[2℄ J.M. Ball. Some open problems in elastiity. To appear.[3℄ J.M. Ball. Convexity onditions and existene theorems in nonlinearelastiity. Arh. Rat. Meh. Anal., 63:337{403, 1977.[4℄ J.M. Ball. Global invertibility of Sobolev funtions and theinterpenetration of matter. Pro. Royal So. Edinburgh, 88A:315{328,1981.[5℄ J.M. Ball. Minimizers and the Euler-Lagrange equations. In Pro.ISIMM onferene, Paris. Springer-Verlag, 1983.[6℄ J.M. Ball. A version of the fundamental theorem for Young measures.In M. Rasle, D. Serre, and M. Slemrod, editors, Proeedings of onfereneon `Partial di�erential equations and ontinuum models of phasetransitions', pages 3{16. Springer Leture Notes in Physis. No. 359, 1989.[7℄ J.M. Ball. Nonlinear elastiity and materials siene; a survey of somereent developments. In P.J. Aston, editor, Nonlinear Mathematis and ItsAppliations, pages 93{119. Cambridge University Press, 1996.[8℄ J.M. Ball. The alulus of variations and materials siene. Quart.Appl. Math., 56:719{740, 1998.[9℄ J.M. Ball and C. Carstensen. Compatibility onditions formirostrutures and the austenite-martensite transition. Materials Siene& Engineering A, 273-275:231{236, 1999.[10℄ J.M. Ball and R.D. James. Fine phase mixtures as minimizers ofenergy. Arh. Rat. Meh. Anal., 100:13{52, 1987.[11℄ J.M. Ball and R.D. James. Proposed experimental tests of a theory of�ne mirostruture, and the two-well problem. Phil. Trans. Roy. So.London A, 338:389{450, 1992.[12℄ J.M. Ball and G. Knowles. A numerial method for deteting singularminimizers. Numerishe Math., 92:193{204, 1986.[13℄ J.M. Ball and V.J. Mizel. Singular minimizers for regularone-dimensional problems in the alulus of variations. Bull. Amer. Math.So., 11:143{146, 1984.[14℄ J.M. Ball and V.J. Mizel. One-dimensional variational problems whoseminimizers do not satisfy the Euler-Lagrange equations. Arh. Rat. Meh.Anal., 90:325{388, 1985.[15℄ J.M. Ball and F. Murat. W 1;p-quasionvexity and variational problemsfor multiple integrals. J. Funtional Analysis, 58:225{253, 1984.[16℄ J.M. Ball and N. Nadirashvili. Universal singular sets forone-dimensional variational problems. Calulus of Variations and PartialDi�erential Equations, 1:429{438, 1993.[17℄ P. Bauman., N.C. Owen, and D. Phillips. Maximum priniples and apriori estimates for a lass of problems from nonlinear elastiity. Annalesde l'Institut Henri Poinar�e - Analyse non lin�eaire, 8:119{157, 1991.



18 J.M. Ball[18℄ A. Braides, G. Dal Maso, and A. Garroni. Variational formulation forsoftening phenomena in frature mehanis: the one-dimensional ase.Arh. Rat. Meh. Anal., 146:23{58, 1999.[19℄ C. Carstensen. Numerial analysis of nononvex minimizationproblems allowing mirostrutures. Zeitshrift f�ur AngewandteMathematik und Mehanik, 76(S2):437{438, 1996.[20℄ C. Carstensen and P. Pleh�a�. Adaptive algorithms for salarnon-onvex variational problems. Appl. Numer. Math., 26:203{216, 1997.[21℄ C. Carstensen and P. Pleh�a�. Numerial solution of the salardouble-well problem allowing mirostruture. Math. Comp., 6:997{1026,1997.[22℄ C. Carstensen and P. Pleh�a�. Numerial analysis of ompatible phasetransitions in. SIAM J. Numer. Anal., 37:2061{2081, 2000.[23℄ P.G. Ciarlet. Mathematial Elastiity, Vol.I: Three-DimensionalElastiity. North-Holland, 1988.[24℄ P.G. Ciarlet and J. Ne�as. Unilateral problems in nonlinearthree-dimensional elastiity. Arh. Rat. Meh. Anal., 87:319{338, 1985.[25℄ C. Collins, D. Kinderlehrer, and M. Luskin. Numerial approximationof the solution of a variational problem with a double well potential.SIAM J. Numerial Analysis, 28:321{332, 1991.[26℄ C. Collins and M. Luskin. Optimal-order error-estimates for the�nite-element approximation of the solution of a nononvex variationalproblem. Mathematis of Computation, 57:621{637, 1991.[27℄ B. Daorogna. Quasionvexity and relaxation of non onvex variationalproblems. J. Funt. Anal., 46:102{118, 1982.[28℄ B. Daorogna. Diret methods in the alulus of variations. Springer,New York, 1989.[29℄ A.M. Davie. Singular minimizers in the alulus of variations in onedimension. Arh. Rat. Meh. Anal., 101:161{177, 1988.[30℄ G. Dolzmann. Numerial omputation of rank-one onvex envelopes.SIAM J. Numer. Anal., 36(5):1621{1635, 1999.[31℄ L.C. Evans. Private ommuniation.[32℄ L.C. Evans. Quasionvexity and partial regularity in the alulus ofvariations. Arh. Rat. Meh. Anal., 95:227{268, 1986.[33℄ I. Fonsea and W. Gangbo. Loal invertibility of Sobolev funtions.SIAM J. Math. Anal., 26:280{304, 1995.[34℄ M. Killough. A di�use interfae approah to the development ofmirostruture in martensite. PhD thesis, Courant Institute, New YorkUniversity, 1998.[35℄ R.V. Kohn. The relaxation of a double-well energy. ContinuumMehanis and Thermodynamis, 3:193{236, 1991.[36℄ J. Kristensen. On the non-loality of quasionvexity. Ann. Inst. HenriPoinar�e{Analyse Nonlin�eaire, 16:1{13, 1999.[37℄ M. Lavrentiev. Sur quelques probl�emes du alul des variations. Ann.Mat. Pura Appl., 4:7{28, 1926.[38℄ A. Lazzeri and C.B. Buknall. Appliations of a dilatational yieldingmodel to rubber-toughened polymers. Polymer, 36:2895{2902, 1995.[39℄ H. LeDret and A. Raoult. The quasionvex envelope of the SaintVenant-Kirhho� stored energy funtion. Pro. Royal So. Edinburgh,125A:1179{1192, 1995.[40℄ B. Li and M. Luskin. Theory and omputation for the mirostruture



Computation of minimizers 19near the interfae between twinned layers and a pure variant ofmartensite. Materials Siene & Engineering A, 273:237{240, 1999.[41℄ Z.-P. Li. Element removal method for singular minimizers invariational problems involving Lavrentiev phenomenon. Pro. R. So.Lond. A, 439:131{137, 1992.[42℄ Z.-P. Li. Element removal method for singular minimizers in problemsof hyperelastiity. Math. Models and Mthods in Appl. Si., 5:387{399,1995.[43℄ Z.-P. Li. A numerial method for omputing singular minimizers.Numer. Math., 71:317{330, 1995.[44℄ M. Luskin. On the omputation of rystalline mirostruture. AtaNumeria, 5:191{258, 1996.[45℄ B. Mani�a. Sopra un esempio di Lavrentie�. Bull. Un. Mat. Ital.,13:36{41, 1934.[46℄ E.E. Moise. Geometri topology in dimensions 2 and 3, volume 47 ofGraduate texts in Mathematis. Springer-Verlag, New York, 1977.[47℄ C.B. Morrey. Quasi-onvexity and the lower semiontinuity of multipleintegrals. Pai� J. Math., 2:25{53, 1952.[48℄ S. M�uller. Variational methods for mirostruture and phasetransitions. In Calulus of variations and geometri evolution problems,volume 1713 of Leture Notes in Math., pages 85{210. Springer, Berlin,1999.[49℄ S. M�uller, T. Qi, and B.S. Yan. On a new lass of elasti deformationsnot allowing for avitation. Ann. Inst. Henri Poinar�e,AnalyseNonlin�eaire, 11:217{243, 1994.[50℄ P. Pedregal. Parametrized measures and variational priniples,volume 30 of Progress in nonlinear di�erential equations and theirappliations. Birkh�auser, Basel, 1991.[51℄ P. Pedregal. Variational methods in nonlinear elastiity. SIAM,Philadelphia, 2000.[52℄ A.C. Pipkin. The relaxed energy density for isotropi elastimembranes. IMA Journal of Applied Mathematis, 36:85{99, 1986.[53℄ A.C. Pipkin. Elasti materials with two preferred states. Quarterly J.Meh. Appl. Math., 44:1{15, 1991.[54℄ P. Pleh�a�. Computation of mirostruture with interfaial energies. InProeedings ENUMATH 97, (Heidelberg), Singapore, 1998. WorldSienti�.[55℄ V. �Sver�ak . Regularity properties of deformations with �nite energy.Arh. Rat. Meh. Anal., 100:105{127, 1988.[56℄ V. �Sver�ak . Rank-one onvexity does not imply quasionvexity. Pro.Royal So. Edinburgh, 120A:185{189, 1992.[57℄ P.J. Swart and P.J. Holmes. Energy minimization and the formation ofmirostruture in dynami anti-plane shear. Arh. Rat. Meh. Anal.,121:37{85, 1992.[58℄ M.A. Syhev. Lebesgue measure of the universal singular set for thesimplest problems in the alulus of variations. Siberian Mathematial J.,35:1220{1233, 1994.[59℄ L. Tartar. The ompensated ompatness method applied to systemsof onservation laws. In J.M. Ball, editor, Systems of Nonlinear PartialDi�erential Equations, pages 263{285. NATO ASI Series, Vol. C111,Reidel, 1982.



20 J.M. Ball[60℄ L. Tonelli. Fondamenti di Calolo delle Variazioni, Volumes I, II.Zanihelli, 1921-23.[61℄ J.F. Traub and A.G. Wershulz. Complexity and information. LezioniLinei. Cambridge Univ. Press, 1998.[62℄ M Valadier. A ourse on Young measures. Rend. Istit. Mat. Univ.Trieste, 26:suppl., 349{394, 1994.[63℄ M. �Silhav�y. The mehanis and thermodynamis of ontinuous media.Springer, 1997.


