Convergence in \mathcal{D}' and in L^1 under strict convexity

Haïm BREZIS Université P. et M. Curie 4 place Jussieu 75252 Paris Cedex 05

Dedicated to Enrico Magenes with esteem and affection

Let $\Omega \subset \mathbb{R}^N$ be a bounded open set and let (u_n) be a sequence in $L^1(\Omega; \mathbb{R}^M)$ which converges "weakly" to some limit $u \in L^1(\Omega; \mathbb{R}^M)$. Let $j: \mathbb{R}^M \to \mathbb{R}$ be a convex function such that

(1)
$$\limsup_{n\to\infty} \int_{\Omega} j(u_n) \le \int_{\Omega} j(u).$$

Many authors have studied the question whether (u_n) converges strongly in L^1 if, in addition, j is assumed to be strictly convex (see [8], [2], [3], [4], [6] and the references therein). In these works it is often assumed that (u_n) converges to u weakly in L^1 , that is, for the weak $\sigma(L^1, L^\infty)$ topology. Unfortunately, the convergence in $\sigma(L^1, L^\infty)$ is a very restrictive assumption and it is desirable to replace it by the much weaker and more natural assumption that (u_n) converges to u in the sense of distributions

(2)
$$u_n \to u \text{ in } \mathcal{D}'(\Omega; \mathbb{R}^M).$$

Throughout this paper we shall assume, for convenience, that $j: \mathbb{R}^M \to \mathbb{R}$ is a continuous convex function such that

(3)
$$|j(t)| \le C(|t|+1) \qquad \forall t \in \mathbb{R}^M$$

for some constant C.

Our main result is the following

THEOREM 1. Let (u_n) be a sequence in $L^1(\Omega; \mathbb{R}^M)$ and let $u \in L^1(\Omega; \mathbb{R}^M)$ be such that (1) and (2) hold. Assume that

(4) j is strictly convex.

(i) Then

(5)
$$u_n \to u \text{ strongly in } L^1_{loc}(\Omega; \mathbb{R}^M).$$

(ii) If, in addition, we suppose that

(6)
$$\lim_{|t| \to \infty} j(t) = +\infty$$

then

(7)
$$u_n \rightarrow u \text{ strongly in } L^1(\Omega; \mathbb{R}^M).$$

Remark 1. If we assume that $u_n \to u$ weakly in $\sigma(L^1, L^{\infty})$, then (1) and (4) imply (7) without having to assume (6) (see [8], Theorem 2). However, if we assume only (1), (2) and (4) without (6) then conclusion (7) may fail as the following example shows:

Example 1. Let j be any (smooth) strictly convex function on $\mathbb R$ satisfying

$$(8) j(t) > 0 \forall t \in \mathbb{R}$$

and

(9)
$$\lim_{t \to +\infty} j(t) = 0.$$

Let $\Omega = (0,1)$ and let

$$u_n(x) = \begin{cases} 0 & \text{if } 0 < x < 1 - \frac{1}{n} \\ n^2 & \text{if } 1 - \frac{1}{n} < x < 1 \end{cases}$$

so that

$$u_n \to 0$$
 in $\mathcal{D}'(\Omega)$.

We have

$$\int_{\Omega} j(u_n) = (1 - \frac{1}{n})j(0) + \frac{1}{n}j(n^2)$$

and thus (1) holds. But (7) fails and we even have $||u_n||_{L^1} \to \infty$. An easy consequence of Theorem 1 is the following:

COROLLARY 1. Let (u_n) be a sequence in $W^{1,1}(\Omega; \mathbb{R})$ and let $u \in W^{1,1}(\Omega; \mathbb{R})$ be such that

(10)
$$u_n \to u \quad \text{in } L^1_{loc}(\Omega).$$

Assume that $j: \mathbb{R}^N \to \mathbb{R}$ satisfies (3) and (4) and that

(11)
$$\limsup_{n\to\infty} \int_{\Omega} j(\nabla u_n) \leq \int_{\Omega} j(\nabla u).$$

(i) Then we have

(12)
$$\nabla u_n \to \nabla u \quad \text{strongly in } L^1_{loc}(\Omega; \mathbb{R}^N).$$

(ii) If, in addition, (6) holds then we have

(13)
$$\nabla u_n \to \nabla u \quad \text{strongly in } L^1(\Omega; \mathbb{R}^N).$$

Assertion (ii) in Corollary (1) corresponds essentially to the conclusion of Theorem 8.6 in [1].

The proof of Theorem 1 is divided into 6 steps.

Step 1. Assume j is a convex function satisfying (3) and that (2) holds, then

(14)
$$\liminf_{n\to\infty} \int_{\Omega} j(u_n)\zeta \ge \int_{\Omega} j(u)\zeta \qquad \forall \zeta \in C^{\infty}(\Omega) \text{ with } 0 \le \zeta \le 1.$$

Proof. Let j^* be the conjugate convex function of j. Then

(15)
$$\int_{\Omega} j(u_n)\zeta \ge \int_{\Omega} u_n \varphi \zeta - \int_{\Omega} j^*(\varphi)\zeta$$

for every $\varphi \in \mathcal{D}(\Omega; \mathbb{R}^M)$. Passing to the limit in (15) we see that

(16)
$$\liminf_{n \to \infty} \int_{\Omega} j(u_n \zeta) \ge \int_{\Omega} u \varphi \zeta - \int_{\Omega} j^{\star}(\varphi) \zeta.$$

Next we observe (as in [5], Proposition 1) that

$$\sup_{\varphi\in\mathcal{D}(\Omega;\mathbb{R}^M)} \{ \int_{\Omega} u\varphi\zeta - \int_{\Omega} j^*(\varphi)\zeta \} = \int_{\Omega} j(u)\zeta.$$

Remark 2. The spirit of Step 1 has been essentially known for a long time (see e.g. [7]).

Step 2. Assume (1), (2) and (4). Then, there is a subsequence (u_{n_k}) such that

$$u_{n_k} \to u \quad \text{a.e.}$$

Proof. Set

(18)
$$f_n = \frac{1}{2}j(u) + \frac{1}{2}j(u_n) - j\left(\frac{u+u_n}{2}\right) \ge 0.$$

By (1) and Step 1 (applied to $\frac{u+u_n}{2}$ and $\zeta \equiv 1$) we have

(19)
$$\limsup_{n\to\infty} \int_{\Omega} f_n \leq \int_{\Omega} j(u) - \liminf_{n\to\infty} \int_{\Omega} j\left(\frac{u+u_n}{2}\right) \leq 0.$$

Hence $f_n \to 0$ in $L^1(\Omega)$ and thus there is a subsequence n_k such that

$$f_{n_k} \to 0 \quad \text{a.e.}$$

We conclude easily with the help of the following standard

LEMMA 1. Assume j is strictly convex on \mathbb{R}^M . Let $a \in \mathbb{R}^M$ and let (b_n) be a sequence in \mathbb{R}^M such that

$$\frac{1}{2}j(a) + \frac{1}{2}j(b_n) - j\left(\frac{a+b_n}{2}\right) \to 0.$$

Then $b_n \to a$.

Step 3. Assume (1), (2) and (4). Then

(21)
$$j(u_{n_k}) \to j(u) \quad \text{in } \mathcal{D}'(\Omega).$$

Proof. Since j is convex there exist some $\S \in \mathbb{R}^M$ and a constant C such that

(22)
$$j(t) \ge t - C \qquad \forall t \in \mathbb{R}^M.$$

Set

$$\tilde{j}(t) = j(t) - 3t + C$$

so that \tilde{j}' is convex and $\tilde{j}(t) \geq 0 \ \forall t$. Set

$$g_k(x) = \tilde{j}(u_{n_k}(x)) - |\tilde{j}(u_{n_k}(x)) - \tilde{j}(u(x))|,$$

so that

(23)
$$|g_k(x)| \leq \tilde{j}(u(x))$$

(since $\tilde{j} \geq 0$).

On the other hand, by Step 2, we know that

(24)
$$g_k(x) \to \widetilde{j}(u(x))$$
 a.e.

We deduce from (23) and (24), by dominated convergence, that

$$g_k \to \widetilde{j}(u)$$
 in $L^1(\Omega)$.

But

$$g_k - \widetilde{j}(u) = -2(\widetilde{j}(u_{n_k}) - \widetilde{j}(u))^{-1}$$

and thus we conclude that

(25)
$$\int_{\Omega} (\widetilde{j}(u_{n_k}) - \widetilde{j}(u))^- \to 0.$$

Finally, we observe that

(26)
$$|\widetilde{j}(u_{n_k}) - \widetilde{j}(u)| = \widetilde{j}(u_{n_k}) - \widetilde{j}(u) + 2(\widetilde{j}(u_{n_k}) - \widetilde{j}(u))^{-1}.$$

Let $\zeta \in \mathcal{D}(\Omega)$ with $0 \le \zeta \le 1$ and write

(27)
$$\int_{\Omega} \widetilde{j}(u_{n_k})\zeta = \int_{\Omega} [j(u_{n_k})\zeta - \xi u_{n_k}\zeta + C\zeta] \\
= \int_{\Omega} j(u_{n_k}) - \int_{\Omega} j(u_{n_k})(1-\zeta) - \int_{\Omega} \xi u_{n_k}\zeta + C\int_{\Omega} \zeta.$$

Passing to the limit in (27) with the help of (1) and Step 1 (applied with $1 - \zeta$ in place of ζ) we are led to

(28)
$$\limsup_{k\to\infty} \int_{\Omega} \widetilde{j}(u_{n_k})\zeta \leq \int_{\Omega} \widetilde{j}(u)\zeta.$$

Combining (25), (26) and (28) we obtain

(29)
$$\limsup_{k \to \infty} \int_{\Omega} |\widetilde{j}(u_{n_k}) - \widetilde{j}(u)| \zeta \le 0.$$

In particular, $\widetilde{j}(u_{n_k}) \to \widetilde{j}(u)$ in $\mathcal{D}'(\Omega)$ and consequently $j(u_{n_k}) = \widetilde{j}(u_{n_k}) + \xi u_{n_k} - C$ converges in $\mathcal{D}'(\Omega)$ to j(u).

Step 4. We shall need the following:

LEMMA 2. Let (ψ_n) be a sequence in $L^1(\Omega; \mathbb{R})$ and let $\psi \in L^1(\Omega; \mathbb{R})$ such that

$$(30) \psi_n \ge 0 a.e., \forall n,$$

$$\psi_n \to \psi \quad a.e.$$

and

(32)
$$\psi_n \to \psi \quad \text{in } \mathcal{D}'(\Omega).$$

Then

(33)
$$\psi_n \to \psi \quad \text{in } L^1_{loc}(\Omega).$$

Proof. Note that, by (30),

$$\psi - \psi_n \leq \psi$$

and thus

$$(\psi - \psi_n)^+ \leq \psi.$$

By dominated convergence we deduce that

(34)
$$(\psi - \psi_n)^+ \rightarrow 0 \quad \text{in } L^1(\Omega).$$

But

$$(\psi - \psi_n)^- = (\psi - \psi_n)^+ - (\psi - \psi_n)$$

and thus

(35)
$$\int_{\Omega} (\psi - \psi_n)^{-} \zeta = \int_{\Omega} (\psi - \psi_n)^{+} \zeta - \int_{\Omega} (\psi - \psi_n) \zeta \rightarrow 0$$

for every $\zeta \in \mathcal{D}(\Omega)$, by (32) and (34). The conclusion (33) follows from (34) and (35).

Step 5. We shall need the following:

LEMMA 3. Let K be a closed convex set in \mathbb{R}^M , $K \neq \mathbb{R}^M$, and K strictly convex. Let (v_n) be a sequence in $L^1(\Omega; \mathbb{R}^M)$ and let $v \in L^1(\Omega; \mathbb{R}^M)$. Assume

$$v_n(x) \in K$$
 a.e., $\forall n$,

$$v_n \rightarrow v$$
 a.e.

and

(38)
$$v_n \to v \quad \text{in } \mathcal{D}'(\Omega; \mathbb{R}^M).$$

Then

(39)
$$v_n \hookrightarrow v \quad \text{in } L^1_{loc}(\Omega; \mathbb{R}^M).$$

Proof. Let I_K^* denote the conjugate function of the indicator function I_K of K, i.e.

$$I_K^{\star}(y) = \sup_{x \in K} yx$$
, for $y \in \mathbb{R}^M$.

Note that $I_K^*(0) = 0$, $I_K^*(y) \in [0, \infty] \ \forall y \ \text{and} \ I_K^*(\lambda y) = \lambda I_K^*(y) \ \forall \lambda > 0, \forall y$. Hence

$$D(I_K^{\star}) = \{ y \in \mathbb{R}^M : I_K^{\star}(y) < \infty \}$$

is a convex cone with vertex at 0. We claim that

(40)
$$D(I_K^*)$$
 has non empty interior.

For otherwise $D(I_K^*)$ would be contained in some hyperplane, say $y_M = 0$. Then

$$I_K(x) = \sup_{y \in \mathbb{R}^M} \{xy - I_K^{\star}(y)\} = \sup_{[y_M = 0]} \{xy - I_K^{\star}(y)\}$$

and consequently

$$I_K(x + te_M) = I_K(x) \quad \forall t \in \mathbb{R}, \ \forall x$$

where e_M denote the unit vector normal to the hyperplane $y_M = 0$. This means that K is a cylinder of the form

$$K = Q \times \mathbb{R}$$

where $Q = K \cap [y_M = 0]$. This is impossible since K is assumed to be strictly convex and $K \neq \mathbb{R}^M$. Hence we have proved the claim (40).

Next, let $\xi_1, \xi_2, ... \xi_M$ be a collection of unit vectors in $D(I_K^*)$ which are linearly independent (such a collection exists by (40)). Set

$$C_i = I_K^{\star}(\xi_i) < \infty.$$

For each fixed i = 1, 2, ...M, consider the function

$$\psi_n^i(x) = C_i - v_n(x)\xi_i.$$

It is easy to see, using (36)-(38), that ψ_n^i satisfies (30)-(32) and therefore, by Lemma 2,

$$\psi_n^i \xrightarrow[n\to\infty]{} \psi_i \quad \text{in } L^1_{\text{loc}}, \ \forall i.$$

Since the directions ξ_i are linearly independent we conclude that

$$v_n \to v \quad \text{in } L^1_{\text{loc}}(\Omega; \mathbb{R}^M).$$

Step 6. Proof of Theorem 1.

Part (i). Let $K = epi \ j = \{[t, \lambda] \in \mathbb{R}^M \times \mathbb{R}; \lambda \geq j(t)\}$, so that K is a closed convex set in \mathbb{R}^{M+1} , $K \neq \mathbb{R}^{M+1}$, and K is strictly convex (because j is strictly convex). Set

$$v_n(x) = [u_n(x), j(u_n(x))].$$

Clearly, $v_n(x) \in K$ a.e., $\forall n$. By Step 2 we know that

$$v_{n_k} \rightarrow v = [u, j(u)]$$
 a.e.

By assumption (2) and by Step 3 we know that

$$v_{n_k} \to v \quad \text{in } \mathcal{D}'(\Omega; \mathbb{R}^{M+1}).$$

Applying Lemma 3 (with (M+1) instead of M) we conclude that

$$v_{n_k} \to v \quad \text{in } L^1_{\text{loc}}(\Omega; \mathbb{R}^{M+1})$$

and in particular

$$u_{n_k} \to u \quad \text{in } L^1_{\text{loc}}(\Omega; \mathbb{R}^M).$$

The uniqueness of the limit implies, as usual, that

$$u_n \to u$$
 in $L^1_{loc}(\Omega; \mathbb{R}^M)$.

Part (ii). The additional assumption (6) implies that

$$j(t) \ge \alpha |t| - C \quad \forall t$$

for some constants $\alpha > 0$ and C. Adding a constant to j we may always assume that

$$(41) j(t) \ge \alpha |t| \ge 0 \forall t.$$

Applying Step 1 with $\zeta \equiv 1$ and combining this with assumption (1) we see that

(42)
$$\int_{\Omega} j(u_n) \to \int_{\Omega} j(u).$$

We write once more (as in the proof of Lemma 2)

$$(j(u) - j(u_n))^+ \le j(u),$$

so that, by Step 2 and dominated convergence

(43)
$$\int_{\Omega} (j(u) - j(u_{n_k}))^+ \to 0.$$

Finally we recall that

$$(j(u) - j(u_n))^- = (j(u) - j(u_n))^+ - (j(u) - j(u_n))$$

and consequently (using (42) and (43)) we conclude that

(44)
$$\int_{\Omega} (j(u) - j(u_{n_k}))^{-} \to 0.$$

From (43) and (44) we deduce that

$$j(u_{n_k}) \to j(u)$$
 in L^1

Passing to a further subsequence we may always assume that

$$(45) |j(u_{n_k})| \le f \forall k. \text{ a.c.}$$

for some fixed function $f \in L^1(\Omega)$. Combining (41) and (45) we conclude that

$$|u_{n_k}| \le \frac{1}{\alpha}f \quad \forall k, \text{ a.e.}$$

From Step 2 and dominated convergence we infer that

$$u_{n_k} \to u \quad \text{in } L^1(\Omega; \mathbb{R}^M).$$

Again, the uniqueness of the limit implies the convergence of the full sequence.

References.

- [1] F. Almgren and E. Lieb, Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Soc. 2 (1989), p. 683-773.
- [2] A. Amrani, C. Castaing and M. Valadier, Méthodes de troncature appliquées à des problèmes de convergence faible ou forte dans L^1 , Archive Rat. Mech. Anal., 117 (1992), p. 167-191.
- [3] E. Balder, On weak convergence implying strong convergence in L_1 -spaces, Bull. Austral. Math. Soc. 33 (1986), p. 363-368.
- [4] H. Benabdellah, Extremalité, stricte convexité et convergence dans L_E^1 , Séminaire d'Analyse Convexe, Montpellier 1991.
- [5] H. Brezis, Integrales convexes dans les espaces de Sobolev, Israel J. Math. 13 (1972), p. 9-23.
- [6] D. Kinderlehrer and P. Pedregal, Gradient Young measures generated by sequences in Sobolev spaces, J. Geometric Analysis (to appear).
- [7] J. Serrin, On the definition and properties of certain variational integrals, Trans. Amer. Math. Soc. 101 (1961), p. 139-167.
- [8] A. Visintin, Strong convergence results related to strict convexity, Comm. P.D.E. 9 (1984), p. 439-466.