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Let @ C RY be a bounded open set and let (un) be a sequence in
LY(; RM) which converges “weakly" to some limit u € LYQ;RM). Let
7 : RM — R be a convex function such that

1) ~ timewp [ ) < [ jtu)

n-—oc

Many authors have studied the question whether (u,) converges strongly in
L' if, in addition, j is assumed to be strictly convex (see [8], [2], [3], [4],
(6] and the references therein). In these works it is often assumed that (un)
converges to u weakly in L1, that is. for the weak o(L!, L*) topology. Unfor-
tunately, the convergence in o(L!, L) is a very restrictive assumption and
it is desirable to replace it by the much weaker and more natural assumption
that (un) converges to u in the sense of distributions

(2) Un, >u  in D'(:RM).

Throughout this paper we shall assume. for convenience, that j : RM — R
is a continuous convex function such that

(3) i@ <C(tf+1)  vte RM

for some constant C.
Our main result is the following
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THEOREM 1. Let (un) be a sequence in L}(; RM) and let u € L1(Q; RM)
be such that (1) and (2) hold. Assume that

4) J Is strictly convex.
(i) Then
(5) . Un —>u strongly in L;o (&% RM).

(i) If, in addition, we suppose that

6 lim (t) = +
(6) kggﬂ) oc

then

) un >u strongly in L'(Q; RM).

Remark 1. If we assume that u, — u weakly in o(L!,L>), then (1) and
(4) imply (7) without having to assume (6) (see [8], Theorem 2). However,
if we assume only (1), (2) and (4) without (6) then conclusion (7) may fail
as the following example shows :

Example 1. Let j be any (smooth) strictly convex function on R satisfying

(8) ‘ﬂﬂ>o Vte R
and
9) dim _j(t) = 0.

Let 2 = (0,1) and let

1
0 if 0<z<l--=
tn(z) = "

n® ﬁl—l<w<l
n
so that
Un —30 in D'(Q).
We have
: 1. 1. .
/Jw = (1= 2)j(0) + ~j(n?)
Q n n

and thus (1) holds. But (7) fails and we even have flun ||, — oo.
An easy consequence of Theorem ! is the following :
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CoRrOLLARY 1. Let (u,) be a sequence in WH(Q;R) and let u. €
Wi1(Q;R) be such that

(10) u, Su in L}OC(Q).

Assume that j : RV — R satisfies (3) and (4) and that

(11) limsup/ﬂj(Vun)S/Qj(Vu).

n-yoo
(i) Then we have
(12) Vi, 2 Vu strongly in L}OC(Q; RM).
(ii) If, in addition, (6) holds then we have
(13) Vu, = Vu strongly in L'(§; RY).

Assertion (ii) in Corollary (1) corresponds essentially to the conclusion of
Theorem 8.6 in [1].

The proof of Theorem 1 is divided into 6 steps.
Step 1. Assume j is a convex function satisfying (3) and that (2) holds,
then

(14) liminf/ (un)C > / JC Ve e C®(R) with0 < ¢ < 1.
n—>00 Jo 0

Proof. Let j* be the conjugate convex function of j. Then

(15) [tz [unee = [ 5o
Q Ja Q
for every ¢ € D(; RM). Passing to the limit in (15) we see that
16) limint / Junl > / ol — / .
( iminf | jung 2 | ugd~ | J(0)

Next we observe (as in {5], Proposition 1) that

sup {/Q upC — ./S;J’*(’»O)g} = '/K;J'(U)C-

PED(SHRM)



Remark 2. The spirit of Step 1 has been essentially known for a long time
(see e.g. [7]).

Step 2. Assume (1), (2) and ( 4). Then, there is a subsequence (un, ) such
that

(17) Un, =dUu a.e.
Proof. Set
1, 1 U Un
(18) fo = 53 + 35(un) 3 (2522 2 0.
U+ Un

By (1) and Step 1 (applied to and ¢ = 1) we have

(19) limsup/fns/j(u)-—liminf j(u+u")$ 0.
Q Q 2

n—oo n—oo /0

Hence f, — 0 in L!(Q) and thus there is a subsequence ni such that
(20) foe 20 ae.

We conclude easily with the help of the following standard

LEMMA 1. Assume j is strictly convex on RM. Let a € RM and let (b) be
a sequence in RM such that

1., 1, a4+ by
§J(a)+§J(bn)—J( > )—.-0.
Then b, — a.

Step 3. Assume (1), (2) and (4). Then

(21) Jun,) 2> j(u) in D'(N).

Proof. Since j is convex there exist some § € RM and a constant C such
that

(22) Jjt)>8 -C  vteRM

Set
o~ 3 .
J) = j(t) -t + C
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so that ;Iis convex and 3'(t) >0Vt Set

9k(2) = 3 (ttng (2)) = [J(un, () - j(u(@)),
so that
(23) 9k (z)] < F(u(z))

(since j > 0).
On the other hand, by Step 2. we know that

(24) 9k(z) — F(u(z)) ae.
We deduce from (23) and (24). by dominated convergence, that
g =5 in LY(Q).

But
gk = 7(u) = =2(F(un,) - F(w))~

and thus we conclude that
(25) /Q Glins) = Tw))~ — 0.

Finally, we observe that

(26) Flune) = 5@l = Tln,) = Tw) + 2lun, ) - Flw))~
Let ¢ € D(Q?) with 0 < ¢ <1 and write

. 41 F(tny )¢ = fa [ (uny ) = Eun, g + C(]
0 =/Qﬂum,)—/Qﬂunk)(l—o—/nsumuC/ﬂc-

Passing to the limit in (27) with the help of (1) and Step 1 (applied with
1 — ¢ in place of ¢) we are led to

(28) limsup | Flun, )¢ < [ Fluic
k~»c0 JQ Q
Combining (25), (26) and (28) we obtain

(29) lim sup/ m'u,,,,) —'J".(’u)lg,' <.
k> JOQ .

In particular, 7(11,.,,:) - '?(Ju) in D'(2) and consequently j(un,) = 'ﬂunk) +
&Un, — C converges in D/'(Q) to j(u).

Step 4. We shall need the following :
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ILEMMA 2. Let (¥n) be a sequence in L'(;R) and let ¥ € LY(;R) such
that

(30) Yo >0 ae.,Vn,
(31) | Un >¢P ae
and

(32) Yoy nD(Q).
Then '

(33) pn =y inLj, (Q).

Proof. Note that, by (30),
P-—Yn <V
and thus
(p—pa)" < 9.

By dominated convergence we deduce that
(34) (= ya)* <0 inL}(Q),

But
(l(’ - Lfn)— = U{' - wn)+ - (y’ - wn)

(35) /Q(ﬂ’)—wn)'§=/g;(¢'—vm)?—/ﬂ(zp—gbn)c 50

for every ¢ € D(Q), by (32) and (34). The conclusion (33) follows from (34)
and (35).

Step 5. We shall need the following :
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LeMMA 3. Let K be a closed convex set in R, K # RM, and K strictly
convex. Let (vn) be a sequence in L' (Q; RM) and let v € LY(Q; RM). Assume

vn(z) € K a.e.,Vn,

Un 2 U 4a.e.

and

(38) Un v inD'(Q;RM).
Then

(39)  ae>v in Ll (RM).

Proof. Let I} denote the conjugate function of the indicator function I K
of K, i.e.

I (y) = sup yz, fory € RM.
€K

Note that I (0) = 0, Ix(y) € [0.0c] Vy and I (\y) = Al (y) VA > 0,Vy.
Hence
D(Ix) = {y e RM: I (y) < oc}

is a convex cone with vertex at 0. \We claim that
(40) D(Iy) has non empty interior.

For otherwise D(I) would be contained in some hyperplane, say yp = 0.
Then
Ik(z) = sup {zy - Ik (y)} = sup {zy - Ik (v)}
YyERM [vm=0]

and consequently
I(z +tey) = Ix(x) Vte R, Vz

where ey denote the unit vector normal to the hyperplane yp = 0. This
means that K is a cylinder of the form

K=0QxR

where @ = KN[ym = 0]. This is impossible since K is assumed to be strictly
convex and K # RM. Hence we have proved the claim (40).
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Next, let &1,&2,...Em be a collection of unit vectors in D(I}%) which are
linearly independent (such a collection exists by (40)). Set

Ci = I;((E,) < o¢C.
For each fixed i = 1,2, ...M, consider the function .
¥5(z) = C; — va(2)&.

It is easy to see, using (36)-(38), that v, satisfies (30)-(32) and therefore, by
Lemma 2,

Up —> ¥ inLj Vi
Since the directions &; are linearly independent we conclude that

va =»u in L (% RY).
Step 6. Proof of Theorem 1.
Part (i). Let K = epi j = {[t,\] € RM x R; A > j(¢)}, so that K is a
closed convex set in RM+1, K £ RM+! and K is strictly convex (because j
is strictly convex). Set

vn(z) = [un(x)J(un(x))]
Clearly, vn(z) € K a.e., Vn. By Step 2 we know that

Vn, > v =[u,j(u)] ae.
By assumption (2) and by Step 3 we know that

Une DU in D(Q;RMHY,
Applying Lemma 3 (with (M + 1) instead of M) we conclude that

Un, U in Lf (Q;RM*1)

and in particular
Uny, =>u in L} (Q:RM).
loc

The uniqueness of the limit implies. as usual. that

un =»u in L{  (:RY).
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Part (ii). The additional assumption (6) implies that
Jt)2alt|-C Wt

for some constants @ > 0 and C. Adding a constant to j we may always
assume that

(41) it)>alt|>0 Vi

Applying Step 1 with ¢ = 1 and combining this with assumption (1) we see
that

(42) o /Q ) > /Q i),
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We write once more (as in the proof of Lemma 2)

() = j(ua))™ < (),

so that, by Step 2 and dominated convergence
(43) [ 6w = ity o

Finally we recall that
(W) = J(un))™ = (G(u) = §(ua))™ — (§(u) — 5(un))

and consequently (using (42) and (43)) we conclude that

(44) /ﬂ ((a) = j(ting))~ =0,

From (43) and (44) we deduce that

Jun,) = j(u) inL!
Passing to a further subsequence we may always assume that
(45) lJ(un )| < f Yk. a.c.

for some fixed function f € L!'(Q). Combining (41) and (45) we conclude
that

1
fn d < ‘—x-f vk, a.c.
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From Step 2 and dominated convergence we infer that
Un, S>u in L'(Q; RM).

Again, the uniqueness of the limit implies the convergence of the full se-
quence. :
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