Exercise sheet 3

(due Wed. 23.4.14)
Exercise 7. [Weak convergence] Give an example of $u_{n} \in L^{2}(0,1)$ so that u_{n} is weakly convergent but not strongly convergent. For such a sequence, find $f, g: \mathbb{R} \rightarrow \mathbb{R}$ continuous so that $f \circ u_{n}$ is strongly convergent, $\left(g \circ u_{n}\right)^{3}$ is weakly but not strongly convergent.
Exercise 8. [Strong L^{p} convergence] Let $u_{n} \rightarrow u$ strongly in $L^{1}(0,1)$ and $\left\{u_{n}\right\}$ be bounded in $L^{p}(0,1)$ for some $p>1$. Prove that $u_{n} \rightarrow u$ strongly in $L^{q}(0,1)$ for all $q<p$ and give a counterexample for $q=p$.
Exercise 9. [First-order operators] Let $H=L^{2}(0,1)$ and define $D(A)=\left\{u \in H^{1}(0,1) \mid u(0)=0\right\}$ and $A: H \rightarrow H$ defined as $A(u)=u^{\prime}$. Prove that A is maximal monotone and check that the equation $u^{\prime}+f(u)=g$ has unique (strong) solution for all $f: \mathbb{R} \rightarrow \mathbb{R}$ monotone, Lipschitz continuous, and coercive (in \mathbb{R}) and any $g \in L^{2}(0,1)$.

Exercise sheet 3

(due Wed. 23.4.14)
Exercise 7. [Weak convergence] Give an example of $u_{n} \in L^{2}(0,1)$ so that u_{n} is weakly convergent but not strongly convergent. For such a sequence, find $f, g: \mathbb{R} \rightarrow \mathbb{R}$ continuous so that $f \circ u_{n}$ is strongly convergent, $\left(g \circ u_{n}\right)^{3}$ is weakly but not strongly convergent.
Exercise 8. [Strong L^{p} convergence] Let $u_{n} \rightarrow u$ strongly in $L^{1}(0,1)$ and $\left\{u_{n}\right\}$ be bounded in $L^{p}(0,1)$ for some $p>1$. Prove that $u_{n} \rightarrow u$ strongly in $L^{q}(0,1)$ for all $q<p$ and give a counterexample for $q=p$.
Exercise 9. [First-order operators] Let $H=L^{2}(0,1)$ and define $D(A)=\left\{u \in H^{1}(0,1) \mid u(0)=0\right\}$ and $A: H \rightarrow H$ defined as $A(u)=u^{\prime}$. Prove that A is maximal monotone and check that the equation $u^{\prime}+f(u)=g$ has unique (strong) solution for all $f: \mathbb{R} \rightarrow \mathbb{R}$ monotone, Lipschitz continuous, and coercive (in \mathbb{R}) and any $g \in L^{2}(0,1)$.

Exercise sheet 3

(due Wed. 23.4.14)
Exercise 7. [Weak convergence] Give an example of $u_{n} \in L^{2}(0,1)$ so that u_{n} is weakly convergent but not strongly convergent. For such a sequence, find $f, g: \mathbb{R} \rightarrow \mathbb{R}$ continuous so that $f \circ u_{n}$ is strongly convergent, $\left(g \circ u_{n}\right)^{3}$ is weakly but not strongly convergent.
Exercise 8. [Strong L^{p} convergence] Let $u_{n} \rightarrow u$ strongly in $L^{1}(0,1)$ and $\left\{u_{n}\right\}$ be bounded in $L^{p}(0,1)$ for some $p>1$. Prove that $u_{n} \rightarrow u$ strongly in $L^{q}(0,1)$ for all $q<p$ and give a counterexample for $q=p$.
Exercise 9. [First-order operators] Let $H=L^{2}(0,1)$ and define $D(A)=\left\{u \in H^{1}(0,1) \mid u(0)=0\right\}$ and $A: H \rightarrow H$ defined as $A(u)=u^{\prime}$. Prove that A is maximal monotone and check that the equation $u^{\prime}+f(u)=g$ has unique (strong) solution for all $f: \mathbb{R} \rightarrow \mathbb{R}$ monotone, Lipschitz continuous, and coercive (in \mathbb{R}) and any $g \in L^{2}(0,1)$.

