Exercise sheet 4

(due Wed. 14.5.14)

Exercise 10. [Moreau-Yosida approximation] Let H be a Hilbert space and $\phi : H \to (-\infty, +\infty]$ be convex, proper, and lower semicontinuous.

(1) Let $\lambda > 0$ and $u \in H$. Prove that the functional

$$v \mapsto \frac{|u-v|^2}{2\lambda} + \phi(v)$$

has a minimum. Call this minimum $\phi_{\lambda}(u)$.

- (2) Prove that $u \mapsto \phi_{\lambda}(u)$ is convex and $\phi_{\lambda}(u) \leq \phi(u)$.
- (3) Show that ϕ_{λ} is differentiable (it is indeed $C^{1,1}$).

Exercise sheet 4

(due Wed. 14.5.14)

Exercise 10. [Moreau-Yosida approximation] Let H be a Hilbert space and $\phi : H \to (-\infty, +\infty]$ be convex, proper, and lower semicontinuous.

(1) Let $\lambda > 0$ and $u \in H$. Prove that the functional

$$v\mapsto \frac{|u\!-\!v|^2}{2\lambda} + \phi(v)$$

has a minimum. Call this minimum $\phi_{\lambda}(u)$.

- (2) Prove that $u \mapsto \phi_{\lambda}(u)$ is convex and $\phi_{\lambda}(u) \leq \phi(u)$.
- (3) Show that ϕ_{λ} is differentiable (it is indeed $C^{1,1}$).

Exercise sheet 4

(due Wed. 14.5.14)

Exercise 10. [Moreau-Yosida approximation] Let H be a Hilbert space and $\phi : H \to (-\infty, +\infty]$ be convex, proper, and lower semicontinuous.

(1) Let $\lambda > 0$ and $u \in H$. Prove that the functional

$$v\mapsto \frac{|u-v|^2}{2\lambda}+\phi(v)$$

has a minimum. Call this minimum $\phi_{\lambda}(u)$.

- (2) Prove that $u \mapsto \phi_{\lambda}(u)$ is convex and $\phi_{\lambda}(u) \leq \phi(u)$.
- (3) Show that ϕ_{λ} is differentiable (it is indeed $C^{1,1}$).