Exercise sheet 4
(due Wed. 14.5.14)

Exercise 10. [Moreau-Yosida approximation] Let H be a Hilbert space and ¢ : H — (—o0,+0o0] be convex,
proper, and lower semicontinuous.

(1) Let A > 0 and w € H. Prove that the functional
u—v|?

2

+é(v)

has a minimum. Call this minimum ¢y (u).
(2) Prove that u — ¢y (u) is convex and ¢ (u)
(3) Show that ¢, is differentiable (it is indeed

< ¢(u).
chl).
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