Exercise sheet 5

(due Wed. 4.6.14)

Exercise 11. [Again Moreau-Yosida]

(1) Let $\phi(u) = u^+ = \max\{0, u\}$ in \mathbb{R} and $\lambda > 0$. Compute

$$\phi_{\lambda}(u), \quad \phi'_{\lambda}(u), \quad (\phi_{\lambda})_{\lambda}(u), \quad (\phi_{\lambda})'_{\lambda}(u), \quad \dots$$

(2) Let $H = H_0^1(\Omega), \lambda > 0$, and $\phi : H \to \mathbb{R}$ be the Dirichlet integral

$$\phi(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 \mathrm{d}x$$

Compute ϕ_{λ} and $D\phi_{\lambda}$.

Exercise 12. [Asymptotic behavior]

(1) Let *H* be Hilbert, $\phi : H \to [0, \infty]$ be convex with compact sublevels and $u^0 \in D(\phi)$. We have proved that, for all T > 0, the gradient flow

$$u' + \partial \phi(u) \ni 0$$
 a.e. in $(0, T)$, $u(0) = u^0$.

Check that indeed such solution can be uniquely extended for all times (namely there exists $u : [0, \infty) \to H$ solving the gradient flow on (0, T) for all T > 0).

- (2) Prove that there exists a sequence $t_n \to \infty$ such that $\lim_n u(t_n) = u_\infty$ for some $u_\infty \in D(\phi)$.
- (3) Characterize u_{∞} (What is u_{∞} solving?)

Exercise sheet 5

(due Wed. 4.6.14)

Exercise 11. [Again Moreau-Yosida]

(1) Let $\phi(u) = u^+ = \max\{0, u\}$ in \mathbb{R} and $\lambda > 0$. Compute

 $\phi_{\lambda}(u), \quad \phi'_{\lambda}(u), \quad (\phi_{\lambda})_{\lambda}(u), \quad (\phi_{\lambda})'_{\lambda}(u), \quad \dots$

(2) Let $H = H_0^1(\Omega), \lambda > 0$, and $\phi : H \to \mathbb{R}$ be the Dirichlet integral

$$\phi(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2 \mathrm{d}x$$

Compute ϕ_{λ} and $D\phi_{\lambda}$.

Exercise 12. [Asymptotic behavior]

(1) Let H be Hilbert, $\phi : H \to [0, \infty]$ be convex with compact sublevels and $u^0 \in D(\phi)$. We have proved that, for all T > 0, the gradient flow

$$u' + \partial \phi(u) \ge 0$$
 a.e. in $(0, T)$, $u(0) = u^0$.

Check that indeed such solution can be uniquely extended for all times (namely there exists $u : [0, \infty) \to H$ solving the gradient flow on (0, T) for all T > 0).

(2) Prove that there exists a sequence $t_n \to \infty$ such that $\lim_n u(t_n) = u_\infty$ for some $u_\infty \in D(\phi)$.

(3) Characterize u_{∞} (What is u_{∞} solving?)