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Abstract

This note addresses the analysis of an abstract doubly nonlinear Volterra equation with a nonsmooth ker-
nel and possibly unbounded and degenerate operators. By exploiting a suitable implicit time-discretization
technique, we obtain the existence of a global strong solution. As a by-product, the discrete scheme is
proved to be conditionally stable and convergent.
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1. Introduction

Let Ω ⊂ R
d , d � 1, be a bounded and open set with smooth boundary ∂Ω . Consider the

doubly nonlinear equation

(
β(u)

)
t
− div

(
α(∇u) + k ∗ α(∇u)

) � f in Ω, (1.1)

where

β ⊂ R × R and α ⊂ R
d × R

d are maximal monotone graphs
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with [0,0] ∈ α, the kernel

k ∈ BV(0, T ), (1.2)

and f :Ω × [0, T ] → R are given. Of course the convolution sign has to be understood in the
sense of the standard product in (0, t) ⊂ (0, T ) where T > 0 denotes some reference final time.
In particular, (a ∗ b)(t) := ∫ t

0 a(t − s)b(s) ds whenever it makes sense.
The main purpose of this paper is to provide an existence result for a suitable initial and

boundary value problem for (1.1) in case of

any graph β and a suitably coercive and bounded graph α. (1.3)

More precisely, we will ask for a (suitably big) constant C > 0 and an exponent p ∈ (1,∞) such
that

1

C
|η|p − C � w · η and |w|q � C|(1 + |η|p) ∀[η,w] ∈ α, (1.4)

where q denotes the conjugate exponent of p and | · | is the euclidean norm.
Equations of the form of (1.1) arise as mathematical models of the evolution of materials with

thermal memory and generally correspond to the energy balance of the body, possibly including
nonlinear operators. In particular, the choice β = id + H where id is the identity in R and H

stands for the Heaviside graph, is connected with the Stefan problem in materials with memory
(see [23,24] among others) and equations like (1.1) also arise in connection with some models for
diffusion in fissured media [42,43]. Our interest in possibly unbounded and degenerate graphs β

is however motivated by some recent contributions focusing on the entropy balance of a phase
changing material with memory [16–20]. Referring the reader to the above mentioned papers
for a thorough discussion of this modeling perspective as well as for some analytical results, we
limit ourselves in observing that the evolution of a substance with thermal memory occupying
the region Ω may be described (up to some approximation) by the entropy balance

st + div(Q + k ∗ Q) = f.

Here u > 0 is the absolute temperature, s = s(u) ∈ R is the entropy density, Q + k ∗ Q where
Q = Q(∇u) ∈ R

d is the nonlocal entropy density flux, and f is a given external entropy source.
Within the framework of continuum thermo-mechanics [29] the latter quantities are classically
related to the free energy density ψ : (0,+∞) → R and the pseudo-potential of dissipation den-
sity of the medium φ : Rd → [0,+∞) where the latter fulfill

ψ is concave and φ is convex. (1.5)

In particular, we have (see [31])

s = ∂(−ψ) and Q = −∂φ,



G. Gilardi, U. Stefanelli / J. Differential Equations 228 (2006) 707–736 709
where the symbol ∂ stands for the subdifferential in the sense of convex analysis. Taking into
account the latter positions and defining β = s and α = −Q, the latter entropy balance reduces
to (1.1). Let us now stress that a fairly usual choice for the free energy density ψ is

ψ(u) = −c0u lnu,

where c0 denotes some specific heat density. In this concern, we shall be interested in study-
ing problem (1.1) with the choice β(u) = c0 lnu + c0 which is both unbounded and degenerate
(see (1.3)). However, let us mention that, in the spirit of (1.3), our analysis allows full generality
with respect to the choice of ψ , as long as (1.5) is fulfilled. On the other hand, some requirements
on the possible growth and nondegeneracy of the pseudo-potential of dissipation density have to
be accomplished (see (1.4)). In addition to (1.5), one should notice that the pseudo-potential of
dissipation density is usually asked to attain its minimum in 0. Hence, the assumption [0,0] ∈ α

(which will however not be exploited in the subsequent analysis) is fully justified in connection
with the latter modeling perspective.

Instead of focusing on the above introduced concrete equation, we will look for some more
generality and address a suitable abstract version of (1.1). To this aim, let V be a reflexive Banach
space and denote by V ∗ its dual. Moreover, let H be a Hilbert space such that V ⊂ H , and
A :V → V ∗ and B :H → H be two possibly multivalued maximal monotone operators. The
present analysis is concerned with the following abstract Cauchy problem

(Bu)′ + Au + k ∗ Au � f (Bu)(0) � v0, (1.6)

where the prime denotes the derivative with respect to time, the equation is fulfilled in V ∗ almost
everywhere with respect to time, and f and v0 are given data.

The present contribution proves that problem (1.6) admits at least a solution whenever

B is a subdifferential, A is suitably coercive and bounded, (1.7)

and some compatibility condition is fulfilled. Indeed, (1.7) corresponds in the abstract setting to
the former (1.3) and the above stated coercivity and boundedness will be strictly related to (1.4)
(see (2.1)). The full generality of β in (1.3) has to be reconsidered here explicitly by stressing
that

B is allowed to be unbounded and degenerate.

Let us stress that some coercivity assumption on A seems mandatory since we aim to allow for
strong degeneracy of B . In fact, our result includes the (noninteresting) case B = 0. In the latter
situation, by letting V be a finite-dimensional space and A a subdifferential, it is easy to check
that problem (1.6) has a solution for every f and v0 = 0 if and only if A is coercive. Hence, some
coerciveness assumption for A seems mandatory.

Let us now comment on the relation between (1.1) and problem (1.6). We shall start, for the
sake of simplicity, from the case of homogeneous Dirichlet boundary conditions (other choices
are of course admissible, see below) and choose (the reader is referred to [1] for definitions and
properties of Sobolev spaces) H = L2(Ω), V = W

1,p
(Ω), B :H → H , and A :V → V ∗ as
0
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(Bu)(x) := β
(
u(x)

)
for a.e. x ∈ Ω and (1.8)

∀w ∈ A(u) (w,v) :=
∫
Ω

z · ∇v ∀v ∈ V and some z ∈ α(∇u) a.e. in Ω. (1.9)

The latter position makes sense owing to (1.4) which entails, in particular, (1.7) in the present
case. Hence, relation (1.6) stems as a suitable abstract formulation of our original problem (1.1).

As mentioned above, in addition to (1.7), a suitable compatibility condition between A and B

has to be imposed. Let us firstly comment the concrete case of relation (1.1). By choosing
ε ∈ (0,1) and denoting by βε := (id − (id + εβ)−1)/ε the standard Yosida approximation of β

at level ε (see [21, p. 28]), one readily checks that

∫
Ω

∇(
βε(u)

) · z � 0 ∀u ∈ W
1,p

0 (Ω) and z ∈ α(∇u) a.e. in Ω. (1.10)

Whenever (1.1) is complemented with boundary conditions such that

∫
∂Ω

βε(u)z · n � 0 for z ∈ α(∇u) a.e. in Ω, (1.11)

and for admissible u (here n is the outward unit normal to ∂Ω), the latter straightforward com-
patibility between the nonlinearities of (1.1) can be suitably reformulated within our abstract
framework as

(
Bε(u),w

)
� 0 ∀u ∈ V, w ∈ A(u) ∩ H, (1.12)

where now Bε is the Yosida approximation of B at level ε and we used a standard notation for
the scalar product in H . Of course, assumption (1.12) is not new and has to be traced back to
Brezis and Pazy [22]. The reader may find an extensive discussion in the monograph [21].

As stated above, rather than restricting ourselves solely to Dirichlet homogeneous data, we are
in the position of allowing some more general boundary conditions as well. The two issues that
need to be checked in this direction are from the one hand the coercivity of the related operator
A and from the other hand the validity of the side condition (1.11). We shall not go into details
but mention that we could consider nonhomogeneous Dirichlet conditions with suitable constant
data, mixed nonhomogeneous Dirichlet–Neumann conditions, and so-called third-type boundary
conditions as well. On the other hand, homogeneous Neumann conditions are excluded since the
coercivity of A would be lost (and one is forced to require B to be nondegenerate, see Remark 2.2
and Section 6 below).

The proof of our existence result relies on the possibility of implementing an effective implicit
time-discretization procedure of (1.6). In particular, letting τ := T/N (N ∈ N) denote the time-
step and {ki}Ni=1 ∈ R

N , and {Aui}Ni=1 ∈ V ∗ be approximations of k and Au, respectively, we
replace k ∗ Au by the quantities

τ

i∑
ki−j+1Auj , i = 1, . . . ,N.
j=1
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This choice is especially well-suited for the aim of studying Volterra equations of convolu-
tion type (see also [48]). Indeed, it entails a useful discrete Young inequality (see Lemma 3.2
below) which turns out to be crucial in order to prove the conditional stability of the time-
discretization scheme. Moreover, the above introduced discrete approximation of the convolution
product k ∗ Au converges to its continuous counterpart as time-step τ tends to zero (see Corol-
lary 3.4 below). In particular, the existence of a solution to (1.6) follows from the convergence
of the approximation method.

A remarkable drawback of the above described time-discretization technique relies in the
possibility of considering convolution kernels of bounded variation (see (1.2)). In particular, no
continuity is assumed on k. We shall stress that the latter regularity requirement is especially
justified within the applicative framework of materials with thermal memory. In fact, memory
kernels may be surely expected to be nonnegative, nonincreasing, and bounded. We will however
complement our existence theory with some comment on the possibility of considering kernels
with unbounded variation. In particular, by exploiting our results in the case (1.2) and restricting
our assumptions on the operators A and B , we will obtain some existence result for k ∈ L1(0, T )

as well.
Let us now try to give some brief comment on the current literature for nonlinear Volterra

equations of the type of (1.6). Of course the local-in-time case k = 0 has been deeply studied
and is beyond our purposes to try to give here a survey of the current quite extensive literature.
We limit ourselves in mentioning the classical references of Grange and Mignot [32], Barbu
[13], Di Benedetto and Showalter [27], Alt and Luckhaus [6], and Bernis [15]. In connection
with some possibly unbounded operators the reader may refer to Barbu [13], Hokkanen [34–36],
Aizicovici and Hokkanen [4,5], Maitre and Witomski [39], and Gajewski and Skrypnik [30],
among many others.

We now turn to the nonlocal case k �= 0. We shall start by quoting a number of results for the
situation of V being a Hilbert space, k ∈ W 1,1(0, T ), and A be linear. In this connection let us
refer the reader to Aizicovici, Colli and Grasselli [2] and Barbu et al. [14] where B is assumed
to be a subdifferential. By assuming further the operator B to be nondegenerate, Stefanelli [48]
addresses a time-discretization of the problem. The latter turns out to be conditionally stable
and convergent (the same discretization technique is indeed exploited in this paper in order to
deal with the doubly nonlinear problem (1.6)). Moreover, an a priori error estimate is recovered
and the analysis in [48] includes the treatment of some compact perturbation of the equation.
In connection with the weaker assumption k ∈ L1(0, T ), one should recall Aizicovici, Colli and
Grasselli [3] and Colli and Grasselli [25,26]. Moreover, the situation of k ∈ L1(0, T ) and of
positive type [33, Section 20.2] has been considered by Stefanelli in both the Hilbert [49] and the
reflexive Banach space case [50].

The case of a nonlinear operator A has recently attracted some attention. In this direction,
one should mention Hokkanen [35] where the author devises an abstract theory which applies
to (1.6) under some restrictive assumptions (see also [36] for some related results). In fact, B is
assumed to be a subdifferential whose corresponding potential is finite in zero, A is asked to be
a subdifferential complying with additional compatibility properties, and the kernel is assumed
to be smooth, i.e., k ∈ W 2,1(0, T ) and such that k(0) > 0.

As for possibly less regular kernels, we refer the reader to Aizicovici, Colli and Grasselli [3]
where the authors face the doubly nonlinear problem

(Bu)′ + Au + k ∗ Lu ∈ f, (1.13)
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where B is a linearly bounded and nondegenerate operator, A is a coercive and bounded subdif-
ferential, k ∈ W 1,1(0, T ), and L :V → V ∗ is linear. Moreover, either B is a subdifferential or A

decomposes into the sum of a linear and a compact operator. Finally, the doubly nonlinear situ-
ation for k ∈ L1(0, T ) and of positive type is also addressed in [49,50] where the author focuses
in particular on (1.13) with A coercive and linearly bounded, L :V → V ∗ linear continuous,
positive, and self-adjoint, and B is suitably bounded in some intermediate space.

This is the plan of the paper. We will recall our assumptions and state the main existence result
in Section 2. Some details in the direction of an effective implicit time-discretization procedure
are given in Section 3. In particular, we recall a discrete convolution technique from [48] and
address a useful discrete version of Young’s theorem as well as some discrete resolvent theory.
Next, some a priori estimates on the discrete solutions are obtained in Section 4, while Section 5
describes the passage to the limit in the approximation and concludes the existence proof. Finally,
some existence result for the case k ∈ L1(0, T ) is given in Section 6.

2. Main results

We start by listing our assumptions on data.

(A0) Let H be a real Hilbert space and V be a real reflexive Banach space densely and compactly
embedded in H . Moreover, let p,q > 1 such that 1/p + 1/q = 1.

The space H is identified with its dual H ∗, whence V ⊂ H ⊂ V ∗ with dense and compact
embeddings. The symbol (·,·) denotes both the duality pairing between V ∗ and V and the inner
product in H . We let ‖ · ‖, | · |, and ‖ · ‖∗ denote the norms in V,H , and V ∗, respectively.
Moreover, ‖ · ‖E stands for the norm in the generic normed space E.

The reader is referred to [7] for an extensive discussion on functions of bounded variation. Let
us however recall some notation that will be exploited later on. First of all, for any u ∈ L1(0, T ),
let us set

Var(u) := sup

{ T∫
0

uϕ′: ϕ ∈ C1
c (0, T ), ‖ϕ‖L∞(0,T ) � 1

}
,

and recall that

BV(0, T ) := {
u ∈ L1(0, T ): Var(u) < +∞}

.

The latter of course turns out to be a Banach space whenever endowed with the norm

‖u‖BV(0,T ) := ‖u‖L1(0,T ) + Var(u).

For all u ∈ BV(0, T ) there exists a (unique) right-continuous function ũ such that ũ = u almost
everywhere in (0, T ) and

Var(u) = Var(ũ) = sup

{
N∑∣∣ũ(ti ) − ũ(ti−1)

∣∣ for 0 < t1 < · · · < tN < T

}

i=2
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(see [7, Theorem 3.28, p. 136]). One should notice that ũ is bounded and can be represented
as the difference of two (bounded) monotone functions. In particular, ũ turns out to admit right
(left) limit in zero (T , respectively). Hence, by defining ũ(0) := ũ(0+) and ũ(T ) := ũ(T−) with
obvious notations, one readily has that

Var(ũ) = sup

{
N∑

i=1

∣∣ũ(ti) − ũ(ti−1)
∣∣ for 0 = t0 < · · · < tN = T

}
,

as well. Owing to the latter notation we ask for

(A1) k ∈ BV(0, T ).
(A2) A :V → V ′ is a maximal monotone operator. Moreover, A is coercive and bounded in

the sense that there exist positive constants α,λA, and ΛA such that, for all u ∈ V and
w ∈ A(u),

α‖u‖p − λA � (w,u), ‖w‖q∗ � ΛA

(
1 + ‖u‖p

)
. (2.1)

(A3) ψ :H → (−∞,+∞] is a convex, proper, and lower semicontinuous function with
D(ψ) ∩ V �= ∅, and B = ∂ψ .

(A4) Letting ε ∈ (0,1) and Bε be the Yosida approximation of B (see [21, p. 28]), one has

(v,w) � 0 ∀u ∈ V, w ∈ A(u) ∩ H, v = Bε(u). (2.2)

(A5) f ∈ Lq(0, T ;V ∗) ∩ L2(0, T ;H), v0 ∈ D(ψ∗).

In the latter ψ∗ is the conjugate of ψ [12, formula (2.3), p. 52]. We shall be concerned with the
following abstract system:

v′ + w + k ∗ w = f a.e. in (0, T ), (2.3)

v ∈ B(u) a.e. in (0, T ), (2.4)

w ∈ A(u) a.e. in (0, T ), (2.5)

v(0) = v0. (2.6)

Theorem 2.1. Under assumptions (A0)–(A5) there exist u ∈ Lp(0, T ;V ), v ∈ W 1,q (0, T ;V ∗) ∩
L∞(0, T ;H), and w ∈ Lq(0, T ;V ∗) fulfilling (2.3)–(2.6).

Remark 2.2. The latter existence result may be generalized with little effort in many directions.
First of all, our analysis may be readily extended to the situation where the first relation in (2.1)
is replaced by the weaker

α‖u‖p − λA � (w,u) + λ∗
A

(
ψ∗(v) − (v, z)

)
,

where u ∈ V , w ∈ A(u), v = Bε(u) for ε ∈ (0,1), and λ∗
A � 0 and z ∈ D(ψ) ∩ V are given.

Moreover, whenever some nondegeneracy in B is assumed, one would be able to treat the sit-
uation of a weakly coercive operator A as well. This would allow us, for instance, to consider
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the case of homogeneous Neumann conditions within our applicative framework. As an exam-
ple in this direction, let us refer to (1.8), (1.9) and consider the case of the p-laplacian operator
with homogeneous Neumann conditions by letting α(η) = |η|p−2η for all η ∈ R

d , and choosing
V = W 1,p(Ω) (we let p > 2d(d + 2) for d � 3 in order to have that V ⊂ L2(Ω) compactly).
Whenever the graph β is suitably nondegenerate (the case β(r) = |r|p−2r for all r ∈ R being
admissible, for instance) our existence result could be extended to this situation.

Secondly, we shall point out that one could allow suitable compact/linear perturbations of the
problem, even of nonlocal type. In particular, whenever B is nondegenerate, we could consider
some additional term G(u), where G :L2(0, T ;H) → L2(0, T ;H) is causal, i.e.,

if u1, u2 ∈ L2(0, T ;H), t ∈ (0, T ), and u1 = u2 a.e. in (0, t)

then G(u1) = G(u2) a.e. in (0, t),

and Lipschitz continuous [48]. An example in this direction is given by the Volterra opera-
tor G(u)(t) := ∫ t

0 h(t, s)γ (u(s)) ds for all t ∈ (0, T ), where h ∈ L1((0, T )2) and γ : R → R is
smooth and linearly bounded.

Remark 2.3. Of course we tailored assumption (A4) to the specific example that we have in
mind. Let us however comment that (2.2) could be weakened. For instance, one could ask for a
positive constant CAB such that, for all u ∈ V , w ∈ A(u) ∩ H , and v = Bε(u), one has

(v,w) � −CAB

(
1 + |v|2 + ‖u‖p

)
.

Moreover, we shall refer the reader to [46, Proposition 5.4, p. 199] where some list of equivalent
conditions to (2.2) are presented and the reader finds some further discussion in the forthcoming
Remark 3.7.

Remark 2.4. It is well known that strong nonuniqueness phenomena may occur for problem
(2.3)–(2.6). Let us remark that nonuniqueness is not related to our Banach space setting nor
to the nonlocal nature of the problem. No uniqueness is expected even in the case of local in
time doubly nonlinear equations. In this concern, we refer the reader to [27, Section 5] where
nonuniqueness for u is proved for V = R, A,B subdifferentials and k = 0. Of course, whenever
A is linear, continuous, and symmetric and the sum A+B is strictly monotone, we easily extend
to our nonlocal in time case the former uniqueness result [27, Theorem 4].

Remark 2.5. If the compatibility condition (2.2) fails, the component v of the solution to
(2.3)–(2.6) is not to be expected to take values in H . In fact, let V be an infinite-dimensional
Hilbert space, choose A :V → V ∗ to be the Riesz map, and let u0 ∈ V be such that Au0 /∈ H (in
particular, u0 �= 0). Assuming f = 0, k = 0, and ψ to be the indicator function of the singleton u0
(i.e., ψ(u0) = 0 and ψ(u) = +∞ for all u �= u0), we readily check that

u(t) = u0, v(t) = v0 − tAu0, w(t) = Au0 ∀t ∈ (0, T )

is the unique solution to (2.3)–(2.6) and v(t) /∈ H for all t > 0 (it can be easily checked that the
compatibility condition (2.2) holds iff u0 = 0).
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3. Time-discretization

To the aim of proving our existence results, we shall consider a fully implicit time-
discretization of problem (2.3)–(2.6). The latter is based on a discrete convolution procedure
that has been originally presented in [48]. The very same approximation technique has been later
exploited as the main existence tool in the analysis of [44,45]. As a first step, we recall from [48]
some notation and results. Let us start by fixing a uniform partition of the time interval [0, T ] by
choosing a constant time-step τ = T/N , N ∈ N.

3.1. Discrete convolution

The forthcoming material is to some extent imported from [48]. The reader shall be referred
to [11,38,40,41] and references therein for some detailed discussion on discrete convolution pro-
cedures.

Definition 3.1. Let a = {ai}Ni=1 be a real vector and let b = {bi}Ni=1 ∈ EN , where E stands for a
real linear space. Then, we define the vector {(a ∗τ b)i}Ni=0 ∈ EN+1 as

(a ∗τ b)i :=
{

0 if i = 0,

τ
∑i

j=1 ai−j+1bj if i = 1, . . . ,N.
(3.1)

Let us list some properties of the latter discrete convolution product. First of all, we readily
check that, for all {ai}Ni=1, {bi}Ni=1 ∈ R

N , {ci}Ni=1 ∈ EN , one has

(a ∗τ b) = (b ∗τ a),
(
(a ∗τ b) ∗τ c

) = (
a ∗τ (b ∗τ c)

)
.

In the forthcoming discussion the following notation will be extensively used. Letting z = {zi}Ni=0
be a vector, we denote by zτ and zτ two functions of the time interval [0, T ] which interpolate the
values of the vector z piecewise linearly and backward constantly on the partition of diameter τ ,
respectively. Namely,

zτ (0) := z0, zτ (t) := γi(t)zi + (
1 − γi(t)

)
zi−1,

zτ (0) := z0, zτ (t) := zi for t ∈ (
(i − 1)τ, iτ

]
, i = 1, . . . ,N,

where

γi(t) := (
t − (i − 1)τ

)
/τ for t ∈ (

(i − 1)τ, iτ
]
, i = 1, . . . ,N.

Let us also set

δzi := zi − zi−1

τ
for i = 1, . . . ,N. (3.2)

Then, of course δz stands for the vector {δzi}Ni=1. Owing to the previous notation, it is not difficult
to check the following equality

(a ∗τ b)τ (t) = (aτ ∗ bτ )(iτ ) for t ∈ (
(i − 1)τ, iτ

]
, i = 1, . . . ,N, (3.3)
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and that the function

aτ ∗ bτ is piecewise affine on the time partition. (3.4)

The reader should notice that the above discussion yields, in particular,

(a ∗τ b)τ = aτ ∗ bτ in [0, T ]. (3.5)

Moreover, given {ai}Ni=0 ∈ R
N+1 and {bi}Ni=1 ∈ EN , we have

δ(a ∗τ b)i =
i∑

j=1

ai−j+1bj −
i−1∑
j=1

ai−j bj = a1bi +
i−1∑
j=1

τδai−j+1bj

= a1bi + (δa ∗τ b)i − τδa1bi = a0bi + (δa ∗τ b)i (3.6)

for i = 1, . . . ,N .
Finally, we recall a discrete version of Young’s theorem.

Lemma 3.2 (Discrete Young theorem). Let {ai}Ni=1 ∈ R
N , {bi}Ni=1 ∈ EN , where E denotes a real

linear space endowed with the norm ‖ · ‖E . Moreover, let p,q, r ∈ [1,∞] such that

1 + 1

r
= 1

p
+ 1

q
,

along with the standard convention 1/∞ = 0. Then the following inequality holds

∥∥(a ∗τ b)τ
∥∥

Lr(0,T ;E)
� ‖aτ‖Lp(0,T ;E)‖bτ‖Lq(0,T ;E). (3.7)

Proof. This proof follows from adapting to the discrete setting the well-known Young theorem
for continuous convolutions. Let us define αi := |ai | and βi := ‖bi‖E for i = 1, . . . ,N and focus
with no loss of generality on the proof of the following

∥∥(α ∗τ β)τ
∥∥

Lr(0,T )
� ‖ατ‖Lp(0,T )‖βτ‖Lq(0,T ). (3.8)

First of all, owing to (3.4) one checks that

‖α ∗τ β‖L∞(0,T ;E) = ‖ατ ∗ βτ‖L∞(0,T ;E)

and a straightforward application of Young’s theorem for continuous convolutions entails (3.8)
in the case r = ∞.

Let us turn to the case r < ∞ (where one has p,q < ∞ as well). A straightforward homo-
geneity argument ensures that (3.8) is equivalent to the following

‖α ∗τ β‖r � ‖α‖p‖β‖q, (3.9)
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where, for all vectors γ = {γi}Ni=1 ∈ R
N , we have set

‖γ ‖s :=
{(∑N

i=1 |γi |s
)1/s if s ∈ [1,∞),

max1�i�N |γi | if s = ∞.

We directly check (3.9) in the case p = q = r = 1. This is indeed an easy computation since

‖α ∗τ β‖1 =
N∑

i=1

N−i+1∑
j=1

αiβj �
N∑

i,j=1

αiβj = ‖α‖1‖β‖1. (3.10)

In the present proof, we will use the standard notation p′ and q ′ in order to indicate the
conjugate exponents of p and q , respectively. The next step will be to check (3.9) for p = 1
(equivalently for q = 1). In this case, one has that

i∑
j=1

αi−j+1βj =
i∑

j=1

(
α

1/q

i−j+1βj

)
α

1/q ′
i−j+1 �

(
i∑

j=1

αi−j+1β
q
j

)1/q(
i∑

j=1

αi−j+1

)1/q ′

for i = 1, . . . ,N . In the latter we used the finite-dimensional Hölder inequality. Hence, taking
the q-power and the sum above we get that

‖α ∗τ β‖q
q �

N∑
i=1

(
i∑

j=1

αi−j+1β
q
j

)
‖α‖q/q ′

1

� ‖α‖1‖βq‖1‖α‖q/q ′
1 = ‖α‖q

1‖β‖q
q,

where we used (3.10).
Finally, we turn to the case when r < ∞ and p,q > 1. One starts by observing that

∑
1�j�i�N

α
p

i−j+1β
q
j =

N∑
j=1

β
q
j

(
N∑

i=j

α
p

i−j+1

)
� ‖α‖p

p‖β‖q
q . (3.11)

Then, since αi−j+1βj = (α
p

i−j+1β
q
j )1/rα

1−p/r

i−j+1β
1−q/r
j and 1/r + 1/p′ + 1/q ′ = 1 we readily

check that, for i = 1, . . . ,N ,

i∑
j=1

αi−j+1βj �
(

i∑
j=1

α
p

i−j+1β
q
j

)1/r( i∑
j=1

α
(1−p/r)q ′
i−j+1

)1/q ′(
i∑

j=1

β
(1−q/r)p′
j

)1/p′

.

Hence, also considering that

(
1 − p

r

)
q ′ = p,

(
1 − q

r

)
p′ = q,

pr

q ′ = r − p,
qr

p′ = r − q,
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one computes by means of (3.11) that

‖α ∗τ β‖r
r =

N∑
i=1

(
i∑

j=1

αi−j+1βj

)r

�
N∑

i=1

((
i∑

j=1

α
p

i−j+1β
q
j

)(
i∑

j=1

α
p

i−j+1

)r/q ′(
i∑

j=1

β
q
j

)r/p′)

�
N∑

i=1

(
i∑

j=1

α
p

i−j+1β
q
j

)
‖α‖r−p

p ‖β‖r−q
q � ‖α‖r

p‖β‖r
q ,

and the assertion follows. �
Let us stress that, from now on, the exponents p and q will be considered to be fixed according

to assumption (A0).
Finally, we point out an estimate which will play a crucial role in Section 5. The reader can

check [48] for an analogous result in a somehow different setting.

Proposition 3.3. Let r ∈ [1,∞], {ai}N+1
i=0 ∈ R

N+1, and {bi}Ni=1 ∈ EN , where E denotes a real
Banach space. Then, we have∥∥(a ∗τ b)τ − aτ ∗ bτ

∥∥
Lr(0,T ;E)

� τCr

(
Var(aτ ) + |a0|

)‖bτ‖Lr(0,T ;E), (3.12)

where Cr := (1 + r)−1/r < 1 for r ∈ [1,∞) and C∞ := 1.

Proof. Let us start by checking (3.12) for r ∈ [1,∞). This argument was already sketched in
[48, Proposition 4.4] for r = 1 and is here reported for the sake of completeness. The left-hand
side of (3.12) may be easily controlled by virtue of relations (3.3) and (3.5) as follows

∥∥(a ∗τ b)τ − aτ ∗ bτ

∥∥r

Lr (0,T ;E)
=

N∑
i=1

iτ∫
(i−1)τ

∥∥(aτ ∗ bτ )(iτ ) − (aτ ∗ bτ )(t)
∥∥r

E
dt

= 1

1 + r

N∑
i=1

τ 1+r
∥∥(aτ ∗ bτ )

′∥∥r

E
= 1

1 + r

N∑
i=1

τ 1+r
∥∥δ(a ∗ b)τ

∥∥r

E
.

Hence, by making use of (3.6) and applying Lemma 3.2, we compute that

∥∥(a ∗τ b)τ − aτ ∗ bτ

∥∥r

Lr (0,T ;E)
= τ r

1 + r

T∫
0

∥∥(δa ∗τ b)τ + a0bτ

∥∥r

E

� τ r

1 + r

(
Var(aτ ) + |a0|

)r‖bτ‖r
Lr (0,T ;E).

As for the case r = ∞, once more by Lemma 3.2 we check that

∥∥(a ∗τ b)τ − aτ ∗ bτ

∥∥
L∞(0,T ;E)

= τ
∥∥(aτ ∗ bτ )

′∥∥
L∞(0,T ;E)

= τ
∥∥(δ(a ∗τ b))τ

∥∥
L∞(0,T ;E)

� τ
(∥∥(δa ∗τ b)τ

∥∥ ∞ + |a0|‖bτ‖L∞(0,T ;E)

)
� τ

(
Var(aτ ) + |a0|

)‖bτ‖L∞(0,T ;E).
L (0,T ;E)
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Before closing this proof we shall explicitly observe that the constant in (3.12) is sharp as the
elementary example E = R, aτ = bτ = 1 shows. �

Along the same lines above, starting from some {ai}Ni=1 ∈ R
N+1, and {bi}Ni=0 ∈ EN+1, one

could also prove that, for all r ∈ [1,∞],∥∥(a ∗τ b)τ − aτ ∗ bτ

∥∥
Lr(0,T ;E)

� τCr

(‖b′
τ‖L1(0,T ;E) + ‖b0‖E

)‖aτ‖Lr(0,T ). (3.13)

We shall use the latter result in order to suitably pass to limits within discrete convolution
products. Namely, let us state for later reference the following:

Corollary 3.4. Let r ∈ [1,∞] and E be a real reflexive Banach space. If aτ → a strongly in
L1(0, T ), aτ are equibounded in BV(0, T ), and bτ → b weakly star (strongly) in Lr(0, T ;E),
then (a ∗τ b)τ → a ∗ b weakly star (strongly, respectively) in Lr(0, T ;E).

Proof. Let us start by claiming that, within the present framework, the values aτ (0) turn out to
be bounded in terms of ‖aτ‖BV(0,T ). In particular, aτ (0) are equibounded. Then, it suffices to
compute

(a ∗τ b)τ − a ∗ b = (
(a ∗τ b)τ − aτ ∗ bτ

) + (aτ − a) ∗ bτ + a ∗ (bτ − b),

and exploit (3.12) and the assumptions in order to check that the three terms in the above right-
hand side weakly star (strongly, respectively) converge to 0 in Lr(0, T ;E). �
3.2. Approximation of the kernel

Let us restrict ourselves to the case of a kernel k : [0, T ] → R such that

Var(k) = sup

{
N∑

i=0

∣∣k(ti) − k(ti−1)
∣∣ for 0 = t0 < · · · < tN = T

}
.

In fact, owing to the discussion of Section 2, this restriction entails no loss of generality with
respect to the proof of Theorem 2.1. To the aim of introducing our approximation of problem
(2.3)–(2.6) let us set

ki := k(iτ ) for i = 0,1, . . . ,N, (3.14)

whence it is a standard matter to verify that (see (A1))

‖k − kτ‖L1(0,T ) � τ Var(k). (3.15)

Moreover, we readily check that

‖kτ‖C[0,T ] � ‖k‖L∞(0,T ) and Var(kτ ) � Var(k), (3.16)

independently of τ . For notational convenience, we will use the same symbol for the function k

and the vector k = {ki}N whenever the latter is involved in a discrete convolution product.
i=0
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Let us now move in the direction of a discrete counterpart to the continuous resolvent theory
[33] and remark that this discussion was not originally presented in [48]. Namely, we shall look
for a vector {ρi}Ni=0 ∈ R

N+1 such that

ρi + (k ∗τ ρ)i = ki for i = 0,1, . . . ,N. (3.17)

The latter linear system may be solved whenever τ is small enough. Namely, by letting ρ0 = k0 =
k(0), it is straightforward to check that the remaining N ×N linear system is lower-triangular and
its determinant reads (1 + τk1)

N . Hence, the latter is solvable whenever we have, for instance,

τ |k1| � 1

2
, (3.18)

which, taking into account (A1) and definition (3.14), holds at least for small τ . We shall collect
some properties of ρ in the following proposition.

Proposition 3.5. Let (A1) and (3.18) hold and {ρi}Ni=0 ∈ R
N+1 be defined as above. Then

ρτ are uniformly bounded in BV(0, T ) in terms of ‖k‖BV(0,T ), (3.19)

ρτ → ρ strongly in L1(0, T ), ρ ∈ BV(0, T ), and ρ + k ∗ ρ = k a.e. in (0, T ).

(3.20)

Proof. It is a standard matter to check from (3.17) that

|ρi | � |ki | + τ

i∑
j=1

|ki−j+1||ρj | for i = 1, . . . ,N.

Hence, by exploiting (3.18), applying the discrete Gronwall lemma, i.e.,

for all {ai}Ni=0 ∈ [0,+∞)N+1 and {bi}Ni=1 ∈ [0,+∞)N ,

ai � a0 +
i−1∑
j=1

bjaj for i = 1, . . . ,N �⇒ ai � a0 exp

(
i−1∑
j=1

bj

)
for i = 1, . . . ,N,

(see, e.g., [37, Proposition 2.2.1]) and recalling Lemma 3.2 and (3.16) one has that ‖ρτ‖C[0,T ]
is bounded in terms ‖k‖L∞(0,T ) independently of τ as soon as the partition is fine enough. In
particular, we have that

‖ρτ‖C[0,T ] = sup
i=1,...,N

|ρi | � 2‖k‖L∞(0,T ) exp
(
2T ‖k‖L∞(0,T )

)
. (3.21)

Next, taking (3.6) into account we deduce that

δρi = δki − k0ρi − (δk ∗τ ρ)i for i = 1, . . . ,N. (3.22)



G. Gilardi, U. Stefanelli / J. Differential Equations 228 (2006) 707–736 721
Exploiting again Lemma 3.2 together with (3.6), (3.16), and (3.21) one gets that

Var(ρτ ) � Var(kτ ) + ∣∣k(0)
∣∣T ‖ρτ‖C[0,T ] + Var(kτ )‖ρτ‖C[0,T ]

� Var(k) + (∣∣k(0)
∣∣T + Var(k)

)
2‖k‖L∞(0,T ) exp

(
2T ‖k‖L∞(0,T )

)
,

and (3.19) follows.
Finally, we readily check that, owing to the compactness theorem in BV(0, T ) (see, e.g.,

[7, Theorem 3.23, p. 132]), for some not relabeled subsequence of diameters τ going to 0,
ρτ converges strongly in L1(0, T ) to some function ρ ∈ L1(0, T ). It is easy to prove that also
ρτ converges strongly to ρ in L1(0, T ) since

‖ρτ − ρτ‖L1(0,T ) =
N∑

i=1

iτ∫
(i−1)τ

∣∣γi(t)ρi + (
1 − γi(t)

)
ρi−1 − ρi

∣∣dt

= τ

2

N∑
i=1

|ρi − ρi−1| = τ

2
Var(ρτ ).

Next, we may recast (3.17) in the more compact form

ρτ + (k ∗τ ρ)τ = kτ a.e. in (0, T ).

Indeed, also owing to Corollary 3.4, we eventually pass to the limit in the above equation thanks
to (3.15) obtaining

ρ + k ∗ ρ = k a.e. in (0, T ).

Since the latter relation has at most one solution ρ ∈ L1(0, T ) by means of Gronwall’s lemma,
the whole sequence ρτ converges to ρ. Finally, one readily recovers ρ ∈ BV(0, T ) [7, (3.11),
p. 125]. �

Finally, owing to (3.17), we readily check that, given {ai}Ni=1, {bi}Ni=1 ∈ EN where E is some
real linear space,

ai + (k ∗τ a)i = bi for i = 1, . . . ,N ⇐⇒ bi − (ρ ∗τ b)i = ai for i = 1, . . . ,N.

Namely, assume ai + (k ∗τ a)i = bi for i = 1, . . . ,N . Then

bi − (ρ ∗τ b)i = ai + (k ∗τ a)i − (ρ ∗τ a)i − (
ρ ∗τ (k ∗τ a)

)
i

= ai + ((
k − ρ − (k ∗τ ρ)

) ∗τ a
)
i
= ai for i = 1, . . . ,N.

Conversely, let bi − (ρ ∗τ b)i = ai for i = 1, . . . ,N . It is easy to check that

ai + (k ∗τ a)i = bi − (ρ ∗τ b)i + (k ∗τ b)i − (
k ∗τ (ρ ∗τ b)

)
i

= bi − ((
ρ − k + (k ∗τ ρ)

) ∗τ b
) = bi for i = 1, . . . ,N.

i
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Hence, let us conclude that, for all a, b ∈ L1(0, T ;E), and {ai}Ni=1, {bi}Ni=1 ∈ EN , we have the
following

a + k ∗ a = b a.e. in (0, T ) ⇐⇒ b − ρ ∗ b = a a.e. in (0, T ), (3.23)

aτ + (k ∗τ a)τ = bτ a.e. in (0, T ) ⇐⇒ bτ − (ρ ∗τ b)τ = aτ a.e. in (0, T ). (3.24)

3.3. Discrete scheme

Taking (A5) into account, we will choose fi := τ−1
∫ iτ

(i−1)τ
f ∈ H for i = 1, . . . ,N so that

f̄τ → f strongly in Lq
(
0, T ;V ∗). (3.25)

Then, the discrete problem may be formulated as that of finding {ui}Ni=1 ∈ V N , {vi}Ni=0 ∈ HN+1,
and {wi}Ni=1 ∈ HN such that

δvi + wi + (k ∗τ w)i = fi for i = 1, . . . ,N, (3.26)

vi = Bε(ui) for i = 1, . . . ,N, (3.27)

wi ∈ A(ui) for i = 1, . . . ,N, (3.28)

v0 = v0. (3.29)

Hence, let us observe in particular that relations (3.26)–(3.28) take place in H .
We are in the position of proving the following lemma.

Lemma 3.6. Assuming (3.18), problem (3.26)–(3.29) admits a solution.

Proof. Thanks to the well-known Asplund’s result [8,9], let us assume the space V to be equiva-
lently renormed in such a way that V and its dual V ∗ are strictly convex and let i :V → H denote
the injection and id :H → H be the identity in H .

By defining I : i∗ ◦ id◦i :V → V ∗ and exploiting [12, Corollary 1.1, p. 39] it is straightforward
to check that the sum I +A :V → V ∗ turns out to be an everywhere defined, maximal monotone
operator. Moreover, taking into account (A2), we readily check that I + A is coercive and onto
[12, Theorem 1.3, p. 40]. In particular, for all h ∈ H there exist u ∈ V and w ∈ A(u) such that

Iu + w = i∗h.

As a consequence, w ∈ H , the set D(AH ) := {u ∈ V : A(u) ∩ H �= 0} is nonempty, and the
operator AH :H → H given by AH (u) := A(u) ∩ H is maximal monotone.

Given now ν > 0, we apply again [12, Corollary 1.1, p. 39] in order to check that Bε +
νAH :H → H is maximal monotone. Moreover, again owing to (A2), we have that νAH is
coercive on H since

(w,u) � αν‖u‖p − νλA ∀u ∈ D(AH ), w ∈ νAH (u).
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Hence, the sum Bε + νAH is onto [12, Theorem 1.3, p. 40] and the equation

Bε(u) + (
τ + τ 2k1

)
AH (u) � h,

has a solution u ∈ V for any h ∈ H and for all τ satisfying (3.18).
Then, we proceed by induction by observing that, at each level i, problem (3.26)–(3.28) re-

duces to

Bε(ui) + (
τ + τ 2k1

)
A(ui) � hi,

where

hi :=
{

τf1 + v0 if i = 1,

τfi + vi−1 − τ
∑i−1

j=1 τki−j+1wj ∈ H if i = 2, . . . ,N,

and the assertion follows. �
Owing to the latter lemma, we are entitled to rewrite relations (3.26)–(3.29) in a more compact

form as

v′
τ + wτ + (k ∗τ w)τ = f̄τ a.e. in (0, T ), (3.30)

vτ = Bε(uτ ) a.e. in (0, T ), (3.31)

wτ ∈ A(uτ ) a.e. in (0, T ), (3.32)

vτ (0) = v0. (3.33)

Let us once more stress that relations (3.30)–(3.33) actually take place in H .

Remark 3.7. We point that, by suitably passing to the limit as ε goes to 0 within assumption (2.2),
one readily obtains

(v,w) � 0 ∀u ∈ V, w ∈ A(u) ∩ H, v ∈ B(u). (3.34)

Nevertheless, one should consider that (3.34) is indeed weaker then (2.2) as it is shown by the
elementary counterexample

H := R, Au := −1/u ∀u ∈ D(A) := (−∞,0), B := ∂I[0,+∞).

On the other hand, whenever (3.34) holds and

(id + εB)−1(D(AH )
) ⊂ D(AH ) or (id + εAH )−1(D(B)

) ⊂ D(B)

for ε ∈ (0,1), one readily exploits the argument of [21, Lemma 4.4, p. 131] and deduces rela-
tion (2.2) as well.
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4. Estimates

We now establish some estimates on the discrete solutions whose existence is proved above.
To this aim let the symbol C(·) denote any constant with explicit dependencies. In particular,
C will be independent of both ε and τ . Of course the value of C may vary from line to line and
even in the same chain of inequalities.

4.1. First estimate

Let z ∈ V denote any (fixed) element of the domain of ψ (such an element exists by means
of (A3)) and denote by ψε the Yosida approximation of ψ . Moreover, let ψ∗

ε be the conjugate
of ψε . Making use of the fact that ψε(u) � ψ(u) for all u ∈ H [21, p. 39] we readily deduce that
ψ∗

ε (u) � ψ∗(u) for all u ∈ H and

ψ∗
ε (v) − (v, z) � ψ∗(v) − (v, z) � −ψ(z) > −∞ ∀v ∈ H. (4.1)

Moreover, we readily check that

ψ∗
ε (v) = ψ∗(v) + ε

2
|v|2 ∀v ∈ H. (4.2)

First of all, let us test relation (3.26) by τ(ui − z) in order to get that

(vi − vi−1, ui − z) + τ(wi, ui) = τ(fi, ui − z) − τ
(
(k ∗τ w)i, ui − z

) + τ(wi, z). (4.3)

Moreover, owing to (3.27), one checks that

vi = Bε(ui) = ∂ψε(ui) ⇐⇒ ui ∈ ∂ψ∗
ε (vi) �⇒ ψ∗

ε (vi) − ψ∗
ε (vi−1) � (vi − vi−1, ui).

(4.4)

Next, combining (4.3) and (4.4) and taking advantage of (A2), (A3), one can compute that

ψ∗
ε (vi) − ψ∗

ε (vi−1) − (vi − vi−1, z) + ατ‖ui‖p

� τ‖fi‖∗
(‖ui‖ + ‖z‖) + τ

∥∥(k ∗τ w)i
∥∥∗

(‖ui‖ + ‖z‖) + τ‖wi‖∗‖z‖ + τλA

� ατ

4
‖ui‖p + τC(α,p)

(‖fi‖q∗ + ∥∥(k ∗τ w)i
∥∥q

∗
)

+ τ‖z‖p + τC(p,ΛA)
(
1 + ‖ui‖p/q

)‖z‖ + τλA

� ατ

2
‖ui‖p + τC(α,p,λA,ΛA)

(
1 + ‖fi‖q∗ + ‖z‖p

) + τC(α,p)‖kτ‖q

Lp(0,T )

(
i∑

j=1

τ‖wj‖q∗

)

� ατ

2
‖ui‖p + τC

(
α,p,λA,ΛA,‖k‖L∞(0,T ), T

)(
1 + ‖fi‖q∗ + ‖z‖p +

i∑
j=1

τ‖uj‖p

)
,
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where we also exploited Lemma 3.2. Let us now take the sum above for i = 1, . . . ,m for arbitrary
m = 1, . . . ,N, and check that

ψ∗
ε (vm) − (vm, z) + α

2

m∑
i=1

τ‖ui‖p � ψ∗
ε

(
v0) − (

v0, z
) + C

(
α,p,λA,ΛA,‖z‖,‖k‖L∞(0,T ), T

)

×
m∑

i=1

τ

(
1 + ‖fi‖q∗ +

i∑
j=1

τ‖uj‖p

)
.

Finally, owing also to (4.1), by applying Lemma 3.2 and the discrete Gronwall lemma (the diam-
eter τ being small) and using (3.16) we have deduced that

ψ∗
ε (vm) − (vm, z) +

m∑
i=1

τ‖ui‖p

� C
(
α,p,λA,ΛA,‖z‖,‖k‖L∞(0,T ), T ,ψ∗(v0), ∣∣v0

∣∣,‖f ‖Lq(0,T ;V ∗)
)
.

Hence, we have obtained that

uτ is bounded in Lp(0, T ;V ) independently of ε and τ . (4.5)

Moving from (4.5), some consequent estimates follow from (A2) and a comparison in (3.30),
namely,

wτ and v′
τ are bounded in Lq(0, T ;V ∗) independently of ε and τ . (4.6)

4.2. Second estimate

It is a standard matter to exploit the argument of Section 3.2 (see (3.24)) in order to rewrite
Eq. (3.26) as

wi = fi − δvi − (ρ ∗τ f )i + (ρ ∗τ δv)i for i = 1, . . . ,N.

By exploiting (3.6) we deduce that

δvi + wi = fi − (ρ ∗τ f )i + (δρ ∗τ v)i + ρ0vi − ρiv
0 for i = 1, . . . ,N. (4.7)

Let us test the latter equation by τvi , recall that ρ0 = k0 = k(0), and obtain

1

2
|vi |2 + 1

2
|vi − vi−1|2 − 1

2
|vi−1|2 + τ(wi, vi)

= τ(fi, vi) − τ
(
(ρ ∗τ f )i, vi

) + τ
(
(δρ ∗τ v)i , vi

) + τk(0)|vi |2 − τρi

(
v0, vi

)
.
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Owing to (2.2) and Lemma 3.2, we take the sum above for i = 1, . . . ,m for any m = 1, . . . ,N,

and check that

1

2
|vm|2 � 1

2

∣∣v0
∣∣2 +

m∑
i=1

τ
(
1 + ∣∣k(0)

∣∣)|vi |2 + 1

2
mτ‖ρτ‖2

L∞(0,T )|v0|2

+ C

m∑
i=1

τ
(|fi |2 + ∣∣(ρ ∗τ f )i

∣∣2 + ∣∣(δρ ∗τ v)i
∣∣2)

� C
(∣∣k(0)

∣∣,Var(ρτ )
)( m∑

i=1

τ |vi |2
)

+ C
(∣∣v0

∣∣,‖ρτ‖L∞(0,T ), T ,‖f ‖L2(0,T ;H)

)
.

Finally, the bound in (3.19) and an application of the discrete Gronwall lemma entails, for all
diameters τ small enough,

vτ is bounded in C([0, T ];H) independently of ε and τ .

5. Limit

We shall now pass to the limit in (3.30)–(3.33) as ε and τ go to zero. Since the above estab-
lished estimates are independent of both ε and τ , we are entitled to fix, for instance, ε = τ and,
thanks to well-known compactness results (see, e.g., [47, Corollary 4]), to find three functions
u,v, and w such that, for some not relabeled subsequence of diameters,

uτ → u weakly in Lp(0, T ;V ), (5.1)

vτ → v weakly star in W 1,q
(
0, T ;V ∗) ∩ L∞(0, T ;H) and strongly in C

([0, T ];V ∗),
(5.2)

vτ → v weakly star in L∞(0, T ;H) and strongly in L∞(
0, T ;V ∗), (5.3)

wτ → w weakly in Lq
(
0, T ;V ∗). (5.4)

Of course, vτ and vτ have the same limit since

‖vτ − vτ‖q

L∞(0,T ;V ∗) �
N∑

i=1

‖vi − vi−1‖q∗ = τq−1
∥∥v′

τ

∥∥q

Lq(0,T ;V ∗),

and (4.6) holds. In view of (5.2), this leads to the second convergence in (5.3). These conver-
gences, (3.15), (3.16), and Corollary 3.4 are sufficient in order to pass to the limit in (3.30) and
obtain (2.3) as well as (2.6).

On the other hand, the functional ψε = ψτ converges to ψ in the sense of Mosco in H (see,
e.g., [10]). The first consequence of this fact is that indeed Bε = Bτ converges to B in the graph
sense in H × H and inclusion (2.4) follows from (3.27), the convergences (5.1) and (5.3), and
standard results on maximal monotone operators (see, e.g., [12, Proposition 1.2, p. 42]). A second
drawback of the stated Mosco convergence is that

ψ∗(x) � lim infψ∗
τ (xτ ) for all xτ → x weakly in H. (5.5)
τ→0
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In particular, we shall use (5.5) in order to check (2.5). Let us start from exploiting (3.24) and
obtain from (3.30)

δvτ + wτ = f̄τ − (ρ ∗τ f )τ + (ρ ∗τ δv)τ . (5.6)

Testing the latter by uτ , taking the integral over (0, T ), and using (4.4), one has that

T∫
0

(wτ ,uτ ) � −ψ∗
τ

(
vτ (T )

) + ψ∗
τ

(
v0) +

T∫
0

(
(f̄τ , uτ ) − (

(ρ ∗τ f )τ , uτ

) + (
(ρ ∗τ δv)τ , uτ

))
.

(5.7)

Our next aim will be to pass to the lim sup as τ goes to 0 in the above relation. To this end, let us
firstly exploit (5.5) in order to check that

lim sup
τ→0

(−ψ∗
τ

(
vτ (T )

) + ψ∗
τ

(
v0)) � −ψ∗(v(T )

) + ψ∗(v0). (5.8)

In fact, (5.2), (5.3) imply that v is continuous in T (in fact everywhere) with respect to the
weak topology of H . On the other hand, vτ obviously has the same property. Hence, the first
convergence in (5.3) implies that vτ (T ) converges to v(T ) weakly in H , whence (5.5) can be
used.

As for the terms containing v′
τ in the right-hand side of (5.7), we exploit Proposition 3.3 and

obtain

(ρ ∗τ δv)τ − ρτ ∗ v′
τ → 0 strongly in Lq

(
0, T ;V ∗).

On the other hand, by recalling that ρτ (0) = k(0) one readily computes that

ρτ ∗ v′
τ = ρτ ∗ v′

τ + (ρτ − ρτ ) ∗ v′
τ

= ρ′
τ ∗ vτ + k(0)vτ − ρτ v

0 + (ρτ − ρτ ) ∗ v′
τ

= ρ′
τ ∗ v + ρ′

τ ∗ (vτ − v) + k(0)vτ − ρτ v
0 + (ρτ − ρτ ) ∗ v′

τ

= ρτ ∗ v′ + ρτ v
0 − k(0)v + ρ′

τ ∗ (vτ − v) + k(0)vτ − ρτ v
0 + (ρτ − ρτ ) ∗ v′

τ

= ρτ ∗ v′ + k(0)(vτ − v) + ρ′
τ ∗ (vτ − v) + (ρτ − ρτ ) ∗ v′

τ .

By recalling (3.20) and (5.2), it is a standard matter to check that the above right-hand side
converges strongly to ρ ∗ v′ in Lq(0, T ;V ∗). Therefore, we readily conclude that

(ρ ∗τ δv)τ → ρ ∗ v′ strongly in Lq
(
0, T ;V ∗). (5.9)

Again, by (3.19), (3.20), (3.25), and Corollary 3.4 we easily check that

f̄τ − (ρ ∗τ f )τ → f − ρ ∗ f strongly in Lq
(
0, T ;V ∗). (5.10)
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Thus, by collecting (5.8)–(5.10) and exploiting (5.1) in (5.7), we have proved that

lim sup
τ→0

T∫
0

(wτ ,uτ ) � −ψ∗(v(T )
) + ψ∗(v0) +

T∫
0

(
(f − ρ ∗ f,u) + (ρ ∗ v′, u)

) =
T∫

0

(w,u).

In the latter we exploited the already established relations (2.3), (2.4) along with the classical
chain rule for convex functions (see [21, Lemma 3.3, p. 73] for p = 2, the present situation
p > 1 being completely analogous). Hence, relation (2.5) follows from standard properties of
maximal monotone operators (see, e.g., [12, Proposition 1.2, p. 42]).

Remark 5.1. The above detailed analysis of the discrete scheme could be generalized with no
particular intricacy to the situation of a family of approximating initial data v0

τ ∈ H such that

v0
τ → v0 weakly in H and ψ∗

τ

(
v0
τ

) → ψ∗(v0).
On the other hand, some different approximation {fi}Ni=1 ∈ HN of the function f could be con-
sidered as long as

f̄τ → f weakly in L2(0, T ;H) and strongly in Lq
(
0, T ;V ∗).

6. Kernels with unbounded variation

Let us conclude our analysis by explicitly observing that it is possible to argue along the lines
of Theorem 2.1 in order to recover some existence results for problem (1.6) in the case of kernels
with possibly unbounded variation, i.e.,

(A6) k ∈ L1(0, T ).

In fact, by assuming A to be a subdifferential and B to be bi-Lipschitz continuous (i.e., Lipschitz
continuous along with its inverse) one can prove that (1.6) admits a solution in case of (A6).
Note that in this setting the compatibility assumption (A4) plays no role and one is entitled not
to ask for (1.11). Moreover, since B is nondegenerate, homogeneous Neumann conditions may
be considered. To be precise, let us ask for the following (compare with (A2), (A3) and (A5)):

(A7) φ :V → [0,+∞] is a convex, proper, and lower semicontinuous function and A :=
∂φ :V → V ′. Moreover, A is coercive and bounded in the sense of (2.1).

(A8) ψ :H → (−∞,+∞] is a convex, proper, and lower semicontinuous function with B :=
∂ψ :H → H Lipschitz continuous and strongly monotone. Namely, there exist two posi-
tive constants cB,CB such that

cB |u1 − u2|2 �
(
B(u1) − B(u2), u1 − u2

)
,∣∣B(u1) − B(u2)

∣∣ � CB |u1 − u2| ∀u1, u2 ∈ H.

(A9) f ∈ Lq(0, T ;V ∗) ∩ L2(0, T ;H), u0 ∈ V , v0 = Bu0.
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Let us stress that clearly the latter assumptions are stronger than the corresponding ones of The-
orem 2.1. In particular, (A8), (A9) entail that v0 ∈ H = D(ψ∗). We are in the position of stating
the following:

Theorem 6.1. Under assumptions (A0), (A6)–(A9) there exist u ∈ H 1(0, T ;H) ∩ L∞(0, T ;V ),
v ∈ H 1(0, T ;H) ∩ W 1,q (0, T ;V ∗), and w ∈ L2(0, T ;H) ∩ Lq(0, T ;V ∗) fulfilling (2.3)–(2.6).

The latter result is aimed to suggest some application and it is not intended to be the best
possible in any sense. Let us observe that, whenever A is a subdifferential fulfilling (2.1), the
corresponding potential ϕ is coercive as well. In particular, there exist two positive constants ᾱ

and λ̄A such that

ᾱ‖u‖p − λ̄A � φ(u) ∀u ∈ V. (6.11)

Proof. We will not provide here a full proof but rather sketch the argument and refer to the above
analysis for the details. One shall start by approximating the kernel k ∈ L1(0, T ) by suitable
kernels kε ∈ W 1,1(0, T ) depending on the approximation parameter ε ∈ (0,1) which will later
tend to zero. The latter approximation may of course be accomplished in such a way that

kε → k and ρε → ρ strongly in L1(0, T ), (6.12)

where ρε and ρ are the resolvents of kε and k, respectively (see Section 3.2). Let us now solve
the evolution problem at some fixed level ε. To this end, one cannot simply exploit Theo-
rem 2.1 since we are missing the compatibility assumption (A4). Hence, one has to adapt our
time-discretization technique to the present situation. The operator B is now Lipschitz contin-
uous and we can assume with no loss of generality that ψ(0) = 0 so that the corresponding
conjugate ψ∗ is everywhere nonnegative. Moreover, there is actually no need to perform the
Yosida approximation of B in order to tackle the discrete problem on the uniform partition
{0 = t0 < t1 < · · · < tN−1 < tN = T } with diameter τ . In particular, letting kε,τ be defined via
kε,i := kε(ti) for i = 0,1, . . . ,N , one readily checks that

‖kε,τ‖L1(0,T ) and ‖ρε,τ‖L1(0,T ) are bounded independently of τ ,

where ρε,τ is of course the discrete resolvent of kε,τ in the sense of (3.17). Then, the discussion
of Section 3.3 entails the validity of Lemma 3.6, i.e., the existence of suitable discrete solutions
uε,τ , vε,τ ,wε,τ to relations (3.30)–(3.33) (where Bε is now replaced by B). Moreover, the esti-
mates (4.5), (4.6) (independent of the time-step τ but depending on ε) may be readily recovered.
The second estimate of Section 4 is no longer valid since we are not assuming (A4) (nor the
necessary regularity in time of the ingredients). One has to test instead the discrete equation (5.6)
by u′

ε,τ , take the integral in time, and exploit (A8). By letting gτ := f̄τ − (ρ ∗τ f )τ and making
use of Lemma 3.2, we get for all t ∈ (0, T ) that

t∫
0

(
v′
ε,τ , u

′
ε,τ

) + φ
(
uε,τ (t)

) − φ
(
u0)

�
t∫ (

gτ ,u
′
ε,τ

) +
t∫ (

(ρ ∗τ δv)τ , u
′
ε,τ

)

0 0
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� cB

2

t∫
0

∣∣u′
ε,τ

∣∣2 + C(cB)

(
‖gτ‖2

L2(0,t;H)
+

t∫
0

∣∣(ρ ∗τ δv)τ
∣∣2

)

� cB

2

t∫
0

∣∣u′
ε,τ

∣∣2 + C
(
cB,‖ρε,τ‖L1(0,T ),‖f̄τ‖L2(0,T ;H)

)

+ C
(
cB,CB,‖ρε,τ‖L2(0,T )

) t∫
0

∥∥u′
ε,τ

∥∥2
L2(0,s;H)

ds.

We readily conclude by Gronwall’s lemma that, for all fixed ε,

uε,τ and vε,τ are bounded in H 1(0, T ;H) independently of τ . (6.13)

Note that the latter bound depends on ε since the norms ‖ρε,τ‖L2(0,T ) need not be bounded
independently of ε.

We now pass to the limit as τ goes to zero. Arguing exactly as in Section 5, one readily finds a
triplet (uε, vε,wε) such that, at least for some (not relabeled) subsequence, the (suitable analogue
of) convergences (5.1)–(5.4) hold. Hence, since the kernels kε and ρε have a bounded variation,
we pass to the limit in the discrete problem and obtain that

v′
ε + wε + kε ∗ wε − f = v′

ε + wε − ρε ∗ v′
ε − f + ρε ∗ f = 0 a.e. in (0, T ), (6.14)

vε = B(uε) and wε ∈ A(uε) a.e. in (0, T ), vε(0) = v0. (6.15)

Let μ � 1 to be chosen later, test (6.14) by t �→ e−μtuε(t), and take the integral over (0, t) for
t ∈ (0, T ]. One has that

t∫
0

e−μs
(
v′
ε(s), uε(s)

)
ds +

t∫
0

e−μs
(
wε(s), uε(s)

)
ds

= −
t∫

0

e−μs
(
(kε ∗ wε)(s), uε(s)

)
ds +

t∫
0

e−μs
(
f (s), uε(s)

)
ds. (6.16)

As for the first term in the left-hand side of (6.16), one readily gets by integration by parts that

t∫
0

e−μs
(
v′
ε(s), uε(s)

)
ds =

t∫
0

e−μs d

ds
ψ∗(vε(s)

)
ds

= e−μtψ∗(vε(t)
) − ψ∗(v0) + μ

t∫
0

e−μsψ∗(vε(s)
)
ds

� e−μtψ∗(vε(t)
) − ψ∗(v0).
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Next, we exploit (2.1) and μ � 1 and get that

t∫
0

e−μs
(
wε(s), uε(s)

)
ds � α

t∫
0

e−μs
∥∥uε(s)

∥∥p
ds − λA

μ

(
1 − e−μt

)

� α

t∫
0

e−μs
∥∥uε(s)

∥∥p
ds − λA.

By letting

kμ(t) := e−μt/qkε(t), wμ(t) := e−μt/qwε(t), uμ(t) := e−μt/puε(t),

we handle the convolution term in (6.16) by means of Young’s theorem as follows

−
t∫

0

e−μs
(
(kε ∗ wε)(s), uε(s)

)
ds

= −
t∫

0

(kμ ∗ wμ,uμ) � α

4

t∫
0

‖uμ‖p + C(α,p)‖kμ‖q

L1(0,T )

t∫
0

‖wμ‖q∗

�
(

α

4
+ C(α,p,ΛA)‖kμ‖q

L1(0,T )

) t∫
0

e−μs
∥∥uε(s)

∥∥p
ds + C

(
α,p,ΛA,‖kε‖L1(0,T ), T

)
.

(6.17)

Finally, one readily checks that

t∫
0

e−μs
(
f (s), uε(s)

)
ds � α

4

t∫
0

e−μs
∥∥uε(s)

∥∥p
ds + C(α,p)‖f ‖q

Lq(0,T ;V ∗).

Let us now observe that limμ→+∞ ‖kμ‖L1(0,T ) = 0 uniformly with respect to ε. Indeed since
kε are equi-integrable by the Dunford–Pettis criterion [28], for all δ > 0 one may find ν ∈ (0, T )

such that

sup
ε∈(0,1)

ν∫
0

∣∣kε(t)
∣∣dt � δ.

Hence, one readily computes that

sup
ε∈(0,1)

‖kμ‖L1(0,T ) = sup
ε∈(0,1)

T∫
e−μt/q

∣∣kε(t)
∣∣dt
0
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= sup
ε∈(0,1)

( ν∫
0

e−μt/q
∣∣kε(t)

∣∣dt +
T∫

ν

e−μt/q
∣∣kε(t)

∣∣dt

)

� δ + e−μν/q sup
ε∈(0,1)

‖kε‖L1(0,T ).

Now, letting μ be such that the coefficient of the integral in the right-hand side of (6.17) is smaller
than α/4, we easily deduce from (6.16) that

e−μtψ∗(vε(t)
) + α

4

t∫
0

e−μs
∥∥uε(s)

∥∥p

� C
(
α,p,λA,ΛA,ψ∗(v0),‖kε‖L1(0,T ),‖f ‖Lq(0,T ;V ∗), T

)
.

In particular, we have recovered the estimates (see (4.5), (4.6))

uε is bounded in Lp(0, T ;V ), ψ∗
ε (vε) is bounded in L∞(0, T ), and

wε and v′
ε are bounded in Lq(0, T ;V ∗) independently of ε. (6.18)

The latter estimates have indeed a discrete equivalent that could have been exploited in the first
place in Section 4. We preferred however to sketch it here at the continuous level in order to
avoid technicalities.

Next, we test (6.14) by the function t �→ e−κtu′
ε(t) where κ � 1 has to be chosen later, take

the integral in time, and obtain, for all t ∈ (0, T ),

t∫
0

e−κs
(
v′
ε(s), u

′
ε(s)

)
ds +

t∫
0

e−κs
(
wε(s), u

′
ε(s)

)
ds

=
t∫

0

e−κs
(
(f − ρε ∗ f )(s), u′

ε(s)
)
ds +

t∫
0

e−κs
((

ρε ∗ v′
ε

)
(s), u′

ε(s)
)
ds. (6.19)

Owing to (A7), (A8), we easily compute that

t∫
0

e−κs
(
v′
ε(s), u

′
ε(s)

)
ds � cB

t∫
0

e−κs
∣∣u′

ε(s)
∣∣2

ds,

t∫
0

e−κs
(
wε(s), u

′
ε(s)

)
ds = e−κtφ

(
uε(t)

) − φ
(
u0) + κ

t∫
0

e−κsφ
(
uε(s)

)
ds

� e−κtφ
(
uε(t)

) − φ
(
u0).
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The term containing f in the right-hand side of (6.19) can be handled as follows

t∫
0

e−κs
(
(f − ρε ∗ f )(s), u′

ε(s)
)
ds

� cB

4

t∫
0

e−κs
∣∣u′

ε(s)
∣∣2

ds + C(cB)

t∫
0

e−κs
∣∣(f − ρε ∗ f )(s)

∣∣2
ds

� cB

4

t∫
0

e−κs
∣∣u′

ε(s)
∣∣2

ds + C
(
cB,‖ρε‖L1(0,T ),‖f ‖L2(0,T ;H)

)
.

As for the term containing v′
ε in the right-hand side of (6.19), we introduce the functions

ρκ(t) := e−κt/2ρε(t), v′
κ(t) := e−κt/2v′

ε(t), u′
κ (t) := e−κt/2u′

ε(t),

and use Young’s theorem in order to deduce that

t∫
0

e−κs
((

ρε ∗ v′
ε

)
(s), u′

ε(s)
)
ds

=
t∫

0

(
ρκ ∗ v′

κ , u′
κ

)
� cB

4

t∫
0

∣∣u′
κ

∣∣2 + C(cB,CB)‖ρκ‖2
L1(0,t)

t∫
0

∣∣u′
κ

∣∣2
. (6.20)

Since ρε are equi-integrable by the Dunford–Pettis criterion, for all δ > 0 one may find ν ∈ (0, T )

such that

sup
ε∈(0,1)

ν∫
0

∣∣ρε(t)
∣∣dt � δ,

and we have that

sup
ε∈(0,1)

‖ρκ‖L1(0,T )

= sup
ε∈(0,1)

T∫
0

e−κt/2
∣∣ρε(t)

∣∣dt = sup
ε∈(0,1)

( ν∫
0

e−κt/2
∣∣ρε(t)

∣∣dt +
T∫

ν

e−κt/2
∣∣ρε(t)

∣∣dt

)

� δ + e−κν/2 sup
ε∈(0,1)

‖ρε‖L1(0,T ).

We now choose δ and κ in such a way that the coefficient of the second term in the right-hand
side of (6.20) is bounded by cB/4. Then, relation (6.19) entails that (recall also (6.11))
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uε and vε are bounded in H 1(0, T ;H) and

uε is bounded in L∞(0, T ;V ) independently of ε. (6.21)

Let us now pass to the limit as ε goes to zero. Taking the above bounds into account and by
suitably extracting (not relabeled) subsequences, we get a triplet (u, v,w) such that (2.3), (2.4),
(2.6), and the convergences (5.1)–(5.4) hold. Moreover, owing to (6.21), we also get the extra
convergences

uε → u and vε → v weakly in H 1(0, T ;H) and strongly in C
([0, T ];H )

. (6.22)

Finally, in order to check for (2.5), we argue once again as in (5.6). In particular, let us test
(6.14) by uε and take the integral over (0, T ) getting

T∫
0

(wε,uε) = −ψ∗(vε(T )
) + ψ∗(v0) +

T∫
0

(
(f − ρε ∗ f,uε) + (

ρε ∗ v′
ε, uε

))
. (6.23)

Our next aim is to pass to the lim sup as ε goes to zero in the latter relation. To this end, we shall
exploit the lower semicontinuity of ψ∗, convergences (6.12) and (6.22), and observe that

ρε ∗ v′
ε → ρ ∗ v′ weakly in L2(0, T ;H),

in order to obtain

lim sup
ε→0

T∫
0

(wε,uε) � −ψ∗(v(T )
) + ψ∗(v0) +

T∫
0

(f − ρ ∗ f,u) +
T∫

0

(ρ ∗ v′, u) =
T∫

0

(w,u).

Finally, relation (2.5) follows from [12, Proposition 1.2, p. 42]. �
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