Einführung in die Analysis	Simulierte Prüfung - Teil 1
Name, Vorname	Matrikel
Unterschrift	

Dauer: 40 Minuten für Teil 1, 80 Minuten insgesamt. Jede Übung hat genau eine korrekte Antwort. Merken Sie sie so \blacksquare an. Für jede Antwort: Richtig = +3, Leer = 0, Falsch= -1. Keine Unterlagen, kein Handy/PC, kein Taschenrechner, keine Gruppenarbeit.

- 1. Sei $a_n \to a$ und a > 0. Dann: \blacksquare $a_{n^3} \to a$. $\boxed{\mathbf{b}}$ $a_{2n} \to 2a$. $\boxed{\mathbf{c}}$ $a_{n+1} \to a+1$. $\boxed{\mathbf{d}}$ $a_{n^2} \to a^2$.
- 2. Sei $a_n \to 0$. Dann: $\boxed{\mathbf{a}} \ \forall \varepsilon \in \mathbb{R} \ \exists n \in \mathbb{N} : |a_n| < \varepsilon$. $\boxed{\mathbf{b}} \ \exists n \in \mathbb{N} : |a_n| < 1/n$. $\boxed{\mathbf{c}} \ \exists N \in \mathbb{N} \ \forall n \geq N : |a_N| < 1/N$. $\boxed{\blacksquare} \ \exists n \in \mathbb{N} : |a_{n+1}| \leq |a_n| + 1$.
- 3. Sei $a_n > 0$ und $a_n \to a$. Dann: $\boxed{\mathbf{a}} \ a > 0$. $\boxed{\mathbf{b}} \ a_n a > 0$ fast immer. $\boxed{\blacksquare} \ \text{lim sup}_{n \to \infty} \ a_n \ge a$. $\boxed{\mathbf{d}} \ a \ne 0$.
- 4. Sei $a_n \in \mathbb{N}$ und $a_n \to +\infty$. Dann: $\boxed{\mathbf{a}}$ a_n ist nach oben beschränkt. $\boxed{\mathbf{d}}$ a_{a_n} ist nach unten beschränkt. $\boxed{\mathbf{d}}$ sin $(na_n) > 0$.
- 5. Sei $a_n > 0$, $\sum_{n=0}^{+\infty} a_n < +\infty$ und $b_n \to 1$. Dann: $\boxed{\mathbf{a}} \sum_{n=0}^{+\infty} b_n = 1$. $\boxed{\mathbf{b}} a_n b_n \to +\infty$. $\boxed{\mathbf{d}} \sum_{n=0}^{+\infty} a_n b_n = +\infty$.
- 6. Sei $a_nb_n \to 1$ und $a_n \to 0$. Dann: $\boxed{\mathbf{a}} \ a_nb_n^2 \to 0$. $\boxed{\mathbf{d}} \ a_n^2b_n \to 0$. $\boxed{\mathbf{c}} \ a_n^2b_n^2 \to 0$. $\boxed{\mathbf{d}} \ a_n+b_n \to 1$.
- 7. Sei $a_n > 0$ und $\sum_{n=1}^{+\infty} a_n < +\infty$. Dann: $\boxed{\mathbf{a}} \ln a_n$ ist beschränkt. $\boxed{\mathbf{b}} \sum_{n=1}^{+\infty} \sqrt{a_n} < +\infty$. $\boxed{\mathbf{d}} \sum_{n=1}^{+\infty} (1/a_n) < +\infty$.
- 8. Sei $a_n \to a$ und $b_n \to b$. Dann: $\boxed{\mathbf{a}}$ $ab \le 0 \Rightarrow a_n b_n < 0$ fast immer. $\boxed{\mathbf{d}}$ $ab < 0 \Rightarrow a_n b_n < 0$ fast immer. $\boxed{\mathbf{d}}$ $ab > 0 \Rightarrow a_n b_n = 0$ fast immer. $\boxed{\mathbf{d}}$ $ab > 0 \Rightarrow a_n > 0$ fast immer.
- 9. Sei $a_{2n} \to a$ und $a_{2n+1} \to -a$. Dann: $\blacksquare a_{7n} \to a \Leftrightarrow a = 0$. $\boxed{\mathbf{b}} \sum_{n=1}^{+\infty} a_n$ ist konvergent. $\boxed{\mathbf{c}} \sum_{n=1}^{+\infty} (-1)^n a_n$ ist konvergent. $\boxed{\mathbf{d}} a_{2n} \ge a_{2n+1}$ fast immer.
- 10. Sei a_n monoton und $\sum_{n=1}^{+\infty} a_n$ konvergent. Dann: $\boxed{\mathbf{a}} \sin(a_n)$ ist monoton. $\boxed{\mathbf{b}} \sum_{n=1}^{+\infty} (-1)^n a_n$ ist konvergent. $\boxed{\mathbf{c}} \ \forall n \in \mathbb{N} : a_{n+1} \geq a_n$. $\boxed{\mathbf{d}} \ a_n \geq 0$ fast immer.

Bitte nicht schreiben unter der Linie

Einführung in die Analysis	Simulierte Prüfung - Teil 2
Name, Vorname	Matrikel
Unterschrift	
Zeit: 40 Minuten für Teil 1, 80 Minuten insgesamt. Keine Unterlagen, kein Handy/PC, kein Taschenrechner, keine Gru	appenarbeit.
11. Für jedes $x \in \mathbb{R}$ betrachten wir die Reihe	
$\sum_{n=1}^{+\infty} \left(\frac{x^2 n^2 - 2 x ^3 n}{1 + 2xn^2} \right)^{\frac{1}{2}}$	7n
und definieren wir die Menge $A:=\{x\in\mathbb{R}:$ die Reihe konverg Merken Sie die richtige Antwort an:	gent ist $\}$. Wie viel gilt sup $A - 2\inf A$?
$ \boxed{-9} \boxed{-8} \boxed{-7} \boxed{-6} \boxed{-5} \boxed{-4} \boxed{-3} \boxed{-2} \boxed{-1} \boxed{0} \boxed{1} \boxed{} $	2 3 4 5 1 7 8 9
(Richtig = +5, Leer = 0, Falsch = -2)	
12. Berechnen Sie den Limes	
$\lim_{n \to +\infty} \left(\frac{n!}{2n^n} - \frac{3n^2 - 2n}{1 + n^2} - \ln \left(\frac{1}{n} + \frac{1}{n} \right) \right) $	-1) $\cos(n^2)$).
Merken Sie die richtige Antwort an:	
$ \boxed{-9} \boxed{-8} \boxed{-7} \boxed{-6} \boxed{-5} \boxed{-4} \boxed{-1} \boxed{0} \boxed{1} $	2 3 4 5 6 7 8 9
(Richtig = $+5$, Leer = 0 , Falsch= -2)	
13. Beweisen Sie den folgenden Satz:	
$\left((a_n \to a) \land (\exists k \in \mathbb{N} \forall n \in \mathbb{N} : a_{n+k} = a_n) \right)$	$\Rightarrow \forall n \in \mathbb{N} : a_n = a.$
(Bis zum = $+10$, Leer = Falsch = 0)	