Exercises to Applied Analysis, WS 2018

Ulisse Stefanelli

January 7, 2019

- 1. Let (X,d) be a metric space and $f,g:X\to\mathbb{R}\cup\{\infty\}$ be proper. Prove or disprove the following:
 - (a) f has compact support $\Rightarrow f$ is l.s.c. (lower semicontinuous).
 - (b) f and g have compact sublevels $\Rightarrow f + g$ is l.s.c.
 - (c) f and g have compact sublevels $\Rightarrow f g$ is l.s.c.
 - (d) $f(x) \ge d(x, x_0)$ for some $x_0 \in X$ and all $x \in X \Rightarrow$ the sublevels of f are bounded.
 - (e) g^2 has compact sublevels $\Leftrightarrow g$ has compact sublevels.
 - (f) f + g has compact sublevels and -g is l.s.c. $\Rightarrow f$ is l.s.c.
- 2. Let (X,d) be a metric space and $f:X\to\mathbb{R}\cup\{\infty\}$ be proper. Show that f is l.s.c. iff $\{x\in X\mid f(x)\leq\ell\}$ is closed for all $\ell\in\mathbb{R}$.
- 3. Show that $L^{\infty}(\mathbb{R}) \cap L^{1}(\mathbb{R}) \subset L^{2}(\mathbb{R}) \not\subset L^{1}(\mathbb{R})$.
- 4. Check that $\{u \in L^2(0,1) : |u|=1 \text{ a.e.}\}$ contains a weakly convergent sequence in $L^2(0,1)$.
- 5. Use Lax-Milgram-Lions in order to check that the elliptic problem $u + \Delta^2 u = 1$ on $B = \{x \in \mathbb{R}^d : |x| < 1\}, u = \Delta u = 0$ on ∂B has a unique solution in $H^2(B)$.
- 6. Find conditions on $b \in L^{\infty}(\Omega; \mathbb{R}^d)$ and $c \in L^{\infty}(\Omega)$ with $\Omega \subset \mathbb{R}^d$ nonempty, open, smooth, and bounded in order the bilinear form

$$\int_{\Omega} \nabla u(x) \cdot \nabla v(x) \, dx + \int_{\Omega} b(x) \cdot \nabla u(x) v(x) \, dx + \int_{\Omega} c(x) u(x) v(x) \, dx$$

to be coercive on $H^1(\Omega)$.

- 7. Prove that $-\Delta u + u^+ = 0$ admits a unique solution on $u \in H^1_0(B)$ with $B = \{x \in \mathbb{R}^d : |x| < 1\}$
- 8. Prove that $-\Delta u + e^u = 0$ admits a unique solution $u \in H_0^1(B)$ with $B = \{x \in \mathbb{R}^d : |x| < 1\}$. Hint: truncate, solve, remove the truncation.
- 9. Let $\Omega \subset \mathbb{R}^d$ be nonempty, open, smooth, and bounded. Prove that the integropartial differential equation $\partial_t u(x,t) \Delta u(x,t) = 1 + \int_0^t \sin(u(x,s)) ds$ for $(x,t) \in \Omega \times (0,T)$ with $u(\cdot,0) = 0$ and u = 0 on $\partial\Omega \times (0,T)$ has a unique solution. Hint: try a fixed point.
- 10. Find the eigenvalues of the operator $-\Delta$ on $[0,\pi]^2$ with homogeneous Dirichlet boundary conditions. Hint: try to solve for $u(x,y) = \sin(nx)\sin(my)$.