Exercises to Stochastic PDEs, WS 2018

Ulisse Stefanelli

November 14, 2018

1. Let $x \in \mathbb{R} \mapsto y(x, \omega)$ solve $y^{\prime}=\omega y$ on \mathbb{R} and $y(0)=1$ with $\omega \in\{0,1,2\}$ equiprobable. Compute

$$
P(\{y(1) \geq 1\}), P(\{y(1) \leq 1\}), P(\{y(1) \leq 5\}), E(y(x)), E\left((y(x)-E(y(x)))^{2} .\right.
$$

2. Let $x \in \mathbb{R} \mapsto y(x, \omega)$ solve $y^{\prime}=\omega y$ on \mathbb{R} and $y(0)=1$ with ω being a real random variable with probability distribution ρ given by $\rho(t)=1$ for $t \in[0,1]$ and $\rho=0$ otherwise. Compute

$$
P(\{y(1) \geq 1\}), P(\{y(1) \leq 1\}), P(\{y(1) \geq 2\}), E(y(x)), E\left((y(x)-E(y(x)))^{2} .\right.
$$

3. Let X be a real random variable and $f: \mathbb{R} \rightarrow \mathbb{R}$ be smooth. Check that the variance fulfills $E\left((X-E(X))^{2}\right)=E\left(X^{2}\right)-E(X)^{2}$ and use a Taylor expansion of f at $E(X)$ in order to check that $E(f(X)) \sim f(E(X))+f^{\prime \prime}(E(X)) E\left((X-E(X))^{2}\right) / 2$ for $E\left((X-E(X))^{2}\right)$ small (assume all integrals to be finite).
4. Let X be a real random variable on the space $(\Omega, \mathcal{F}, \mu)$ with $\Omega=\{1,2,3,4\}, \mathcal{F}$ power set of Ω (set of all subsets of Ω), and $\mu(A)=\# A / 4$, where $\# A$ is the cardinality of A. Let the σ-algebra $\mathcal{G}=\{\emptyset,\{1,2\},\{3,4\}, \Omega\}$ be given. Find the conditional expectation $E(X \mid \mathcal{G})$.
5. Let the random variables X_{n} be independent and take the values ± 1 with equal probability (coin toss). Are the processes

$$
A_{n}=\sum_{i=2}^{n}\left(X_{i}-X_{i-1}\right), \quad B_{n}=\sum_{i=1}^{n} \sum_{j=1}^{i} X_{j}, \quad C_{n}=\max _{j=1, \ldots, n}\left\{X_{j}\right\}
$$

markovian? Are they martingales?
6. Let $X_{0}=1$ and $X_{n} \in \mathbb{N}$ be the total result of the roll of X_{n-1} regular dice (6 faces, numbered 1 to 6, equiprobable). Is X_{n} markovian? Is it a martingale? Compute $E\left(X_{n}\right)$.
7. Write the variational formulation of the boundary value problem in one dimension: $-u^{\prime \prime}+u=1$ in $(0,1), u(0)=0$, and $u^{\prime}(1)=3$. Prove that it admits a weak solution.
8. Find conditions on $\eta>0, \gamma \geq 0$, and $\beta \in \mathbb{R}$ such that the bilinear form

$$
a(u, v)=\int_{0}^{1} \eta u^{\prime} v^{\prime}+\beta u^{\prime} v+\gamma u v \mathrm{~d} x
$$

is coercive on $H^{1}(0,1)$ (namely, such that there exists $\alpha>0$ with $a(u, u) \geq \alpha \int_{0}^{1}\left(u^{\prime}\right)^{2}+u^{2} \mathrm{~d} x$ for all $\left.u \in H^{1}(0,1)\right)$.

The list will be progressively expanded along the course.

