Exercises to Stochastic PDEs, WS 2018

Ulisse Stefanelli

November 14, 2018

- 1. Let $x \in \mathbb{R} \mapsto y(x, \omega)$ solve $y' = \omega y$ on \mathbb{R} and y(0) = 1 with $\omega \in \{0, 1, 2\}$ equiprobable. Compute $P(\{y(1) \ge 1\}), \ P(\{y(1) \le 1\}), \ P(\{y(1) \le 5\}), \ E(y(x)), \ E((y(x) E(y(x)))^2.$
- 2. Let $x \in \mathbb{R} \mapsto y(x, \omega)$ solve $y' = \omega y$ on \mathbb{R} and y(0) = 1 with ω being a real random variable with probability distribution ρ given by $\rho(t) = 1$ for $t \in [0, 1]$ and $\rho = 0$ otherwise. Compute

$$P(\{y(1) \ge 1\}), P(\{y(1) \le 1\}), P(\{y(1) \ge 2\}), E(y(x)), E((y(x) - E(y(x)))^2.$$

- 3. Let X be a real random variable and $f: \mathbb{R} \to \mathbb{R}$ be smooth. Check that the variance fulfills $E((X E(X))^2) = E(X^2) E(X)^2$ and use a Taylor expansion of f at E(X) in order to check that $E(f(X)) \sim f(E(X)) + f''(E(X))E((X E(X))^2)/2$ for $E((X E(X))^2)$ small (assume all integrals to be finite).
- 4. Let X be a real random variable on the space $(\Omega, \mathcal{F}, \mu)$ with $\Omega = \{1, 2, 3, 4\}$, \mathcal{F} power set of Ω (set of all subsets of Ω), and $\mu(A) = \#A/4$, where #A is the cardinality of A. Let the σ -algebra $\mathcal{G} = \{\emptyset, \{1, 2\}, \{3, 4\}, \Omega\}$ be given. Find the conditional expectation $E(X|\mathcal{G})$.
- 5. Let the random variables X_n be independent and take the values ± 1 with equal probability (coin toss). Are the processes

$$A_n = \sum_{i=2}^{n} (X_i - X_{i-1}), \quad B_n = \sum_{i=1}^{n} \sum_{j=1}^{i} X_j, \quad C_n = \max_{j=1,\dots,n} \{X_j\}$$

markovian? Are they martingales?

- 6. Let $X_0 = 1$ and $X_n \in \mathbb{N}$ be the total result of the roll of X_{n-1} regular dice (6 faces, numbered 1 to 6, equiprobable). Is X_n markovian? Is it a martingale? Compute $E(X_n)$.
- 7. Write the variational formulation of the boundary value problem in one dimension: -u'' + u = 1 in (0,1), u(0) = 0, and u'(1) = 3. Prove that it admits a weak solution.
- 8. Find conditions on $\eta > 0$, $\gamma \geq 0$, and $\beta \in \mathbb{R}$ such that the bilinear form

$$a(u, v) = \int_0^1 \eta \, u'v' + \beta \, u'v + \gamma \, uv \, dx$$

is coercive on $H^1(0,1)$ (namely, such that there exists $\alpha > 0$ with $a(u,u) \ge \alpha \int_0^1 (u')^2 + u^2 dx$ for all $u \in H^1(0,1)$).

The list will be progressively expanded along the course.