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Summary

The work contained in this Habilitationsschrift is centered around the theory
of nonlinear generalized functions in a geometric context. It is spanning an
arc from applications in mathematical general relativity to the construction
of a global theory of (full) diffeomorphism invariant Colombeau algebras on
manifolds as well as of spaces of generalized sections (in the special version
of the theory) in vector bundles and generalized functions taking values in a
manifold.

Introduction

Algebras of generalized functions in the sense of J. F. Colombeau (Colombeau
algebras) ([Col84, Col85, Col90, Obe92]) are differential algebras containing
the vector space of Schwartz distributions as a subspace while at the same ti-
me preserving maximal consistency with respect to classical analysis—as far
as possible in the light of L. Schwartz impossibility result ([Sch54]). In parti-
cular, derivatives and product extend the classical operations on distributions
and smooth functions, respectively. The basic idea of their construction con-
sists in using regularization by nets of smooth functions and of asymptotic
estimates in terms of a regularization parameter.
Colombeau algebras were discovered in the early 1980ies in the context of
infinite dimensional calculus in locally convex spaces and soon turned out to
be an applicable tool in a number of situations involving

(i) differentiation

(ii) nonlinear operations

(iii) singular objects (e.g. non-differentiable functions, distributions).

In particular, first applications came from the field of nonlinear PDEs [Bia92a,
Bia92b, Col93, Col94a, Key95] and their numerics [Bia90, Ber95, Ber93]. In
the mid 1990ies, however, also applications in mathematical physics and, in
particular, in general relativity emerged.

The first of these applications in relativity, considering aspects of ultrarela-
tivistic black hole geometries of the Kerr-Newman family, appeared in paper
11. Such space-times arise by applying a boost with respect to a static obser-
ver to the metric and then letting the boost velocity approach the speed of

1Numbers refer to the table of contents on page 1.
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light (see [Aic71]). In the case of the Reissner-Nordstrøm metric—the unique
spherically symmetric solution of the Einstein-Maxwell equations in vacuum,
which is the focus of paper 1—a physically motivated scaling of the mass and
charge parameters is needed to obtain a distributional metric in the limit (cf.
[Lou90]). This scaling in turn forces the electromagnetic field to vanish in the
D′-limit while the energy momentum tensor converges to a surface measure
supported on a hypersurface orthogonal to the direction of the boost. Since
the energy-momentum tensor is roughly given by the square of the electro-
magnetic field tensor, this situation clearly demonstrates the failure of linear
distributional methods and the need for a more refined modeling which in
turn is provided by the use of Colombeau generalized functions.
Further applications of algebras of generalized functions in general relativi-
ty focused upon the study of conical singularities (e.g. [Cla96, Wil97]) and
impulsive pp-waves ([Bal97, Ste98, Kun99]); for an overview see [Vic99a]. In
particular, in [Ste98, Kun99] a complete distributional description of impul-
sive pp-waves—a class of singular space-times where the curvature is con-
centrated on a null-hypersurface (it contains the ultrarelativistic geometries
mentioned above)—has been accomplished. At the heart of these works lies
an existence and uniqueness theorem for the geodesic equation in nonline-
ar generalized functions. In particular, in paper 2 this result was applied to
study the relation between two commonly used forms of the line element
of pp-waves, namely the (distributional) Brinkmann form and the (conti-
nuous) Rosen form. A physically well-motivated but discontinuous (hence
ill-defined) transformation between these two forms of the metric introduced
by R. Penrose ([Pen72]) indicates the “physical equivalence” of both line ele-
ments. Using a global univalence theorem of Gale and Nikaido ([Gal65]) it
could be shown that the transformation constitutes a “generalized diffeomor-
phism” thereby clarifying the exact mathematical meaning of this physical
equivalence.

These applications in general relativity were one of the main driving forces
leading to an interconnected series of theoretical advances within the theory
of nonlinear generalized functions and further applications: Applying alge-
bras of generalized functions in a genuine geometrical context like general
relativity adds another requirement to the list introduced above, namely

(iv) diffeomorphism invariance.

Indeed, for a long time, all known variants of full—distinguished by a canoni-
cal embedding of the space of distributions—Colombeau algebras lacked the
feature of diffeomorphism invariance: some of the basic building blocks of the
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construction failed to be invariant under the natural action of a diffeomor-
phism. As long as there was no diffeomorphism invariant construction of an
algebra of generalized functions available there remained the serious objecti-
on that there was no way of constructing such algebras on a manifold based
on intrinsic terms only. Therefore the applicability of nonlinear generalized
functions in any geometric context was highly questionable. In particular,
in general relativity the diffeomorphism invariance of the results (i.e., their
independence of the coordinate system in which the regularization had been
carried out) had to be established “by hand” (cf. [Vic99b]).
The first crucial steps towards a diffeomorphism invariant Colombeau algebra
were done by Colombeau and Meril in 1994 ([Col94b]). As an unavoidable
tool they had to (re-)introduce infinite dimensional calculus into their con-
struction which they claimed to be diffeomorphism invariant. However, in
1998 J. Jeĺınek ([Jel99]) pointed out an error in their construction by giving
an explicit counter-example and presented another version of the theory. Alt-
hough avoiding most of the shortcomings of [Col94b] Jeĺınek’s algebra still
fell short of establishing diffeomorphism invariance. In particular, he failed in
showing that his construction preserves the product of smooth functions whi-
le at the same time allowing for a diffeomorphism invariant characterization
of the ideal of negligible functions.
This difficulty was finally overcome in paper 3 where the first diffeomor-
phism invariant Colombeau algebra is presented together with the complete
theoretical and technical background. To deal with the unavoidable infinite
dimensional calculus on (certain non-Banach) locally convex spaces the con-
struction is built upon calculus in convenient vector spaces ([Kri97]) rather
than Silva-differentiability employed so far. In addition to reducing the (still
considerable) technical complexity of the construction this decision provi-
des decisive advantages in applications to PDEs (see chapter 11 of paper 3).
The construction yields a fine sheaf of differential algebras on open sets of
Euclidean space possessing all the properties (i)-(iv) while at the same ti-
me providing a canonical embedding of distributions commuting with partial
derivatives.

However, applications in relativity add yet one further demand to the above
list, namely

(v) intrinsic definition.

More precisely, the construction should be geometric in the sense that all the
basic objects should be intrinsically defined on the manifold and the resulting
algebra should be a differential algebra with the Lie derivative w. r. t. smooth
vector fields commuting with the canonical embedding of distributions.
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Such a construction is presented in paper 4. The key ingredients of the local
construction of paper 3, i.e., operations like smoothing via convolution or
asymptotic vanishing of moments are rephrased to allow for a coordinate
invariant description. The notion of smoothing kernels introduced to this end
serves to isolate the diffeomorphism-invariant essence of these procedures in
the manifold setting. Thus an intrinsic theory of full Colombeau algebras on
manifolds enjoying all the distinguishing features (i)–(v), i.e., a global (full)
algebra of generalized functions is developed.

Special Colombeau algebras, although lacking a canonical embedding of the
space of distributions, allow to model singularities in a nonlinear context in
a flexible and efficient way and moreover lend themselves in a very natural
way to geometric applications. Hence in any situation where one is willing to
do without such a canonical embedding they provide a suitable setting.
Based upon earlier approaches ([De 91]) a systematic study of global analy-
sis in special algebras of generalized functions has been initiated in paper 5.
Spaces of generalized sections of vector bundles are introduced and their al-
gebraic structure is studied. In particular, it is shown that the module—over
the algebra of generalized functions—of generalized sections is finitely gene-
rated and projective. Classical notions of tensor analysis like Lie derivatives
(with respect to smooth and generalized vector fields), exterior algebra etc.
are extended to the level of generalized functions and a point value descrip-
tion of such functions is established. Finally, the foundations of Hamiltonian
mechanics in this setting are laid.
In paper 6, on the other hand, the basic notions of pseudo-Riemannian geome-
try in generalized functions are introduced: generalized metrics, connections
and curvature. In particular, a generalized “Fundamental Lemma of (semi-)
Riemannian geometry” is proved and the notion of geodesics of a generali-
zed metric is introduced (understood as generalized curves taking values in
a manifold; see below). Finally the paper returns to the field where much of
its motivation originated: a guideline to applications in general relativity is
given.
Due to the inherent nonlinearities involved, many concepts generalized in
papers 5 and 6 lack a distributional counterpart: no comparable theory is (or
could be) available. In those cases, however, where distributional analogs—
mainly due to G. De Rham ([De 84]) and J. Marsden ([Mar68])—exist, con-
sistency results with respect to the linear setting are given.
One case of particular interest where such analogs do not exist is the notion
of generalized functions taking values in a differentiable manifold. The need
for such functions arises upon considering e.g. flows of generalized vector
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fields. Generalized functions taking values in a manifold as well as generalized
vector bundle homomorphisms were introduced in [Kun02]. In paper 7 this
approach is extended to a functorial theory. Several characterization results
are established providing a global approach that in turn is exploited to derive
a point value characterization of such functions and to show that composition
can be carried out unrestrictedly.

Summarizing, the work presented here provides a nonlinear distributional
geometry, i.e., an extension and generalization of many distributional con-
cepts to genuine nonlinear situations in a geometric context. It is well-suited
to applications in mathematical physics, in particular, general relativity and
non-smooth mechanics. It also opens future lines of research in applications
(spherical impulsive gravitational waves, shell crossing singularities in dust
solutions of Einstein equations, etc.) as well as in the theory of algebras of ge-
neralized functions itself (generalized flows, generalized connections on fiber
bundles, etc.).
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