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Curvature for non-smooth spacetimes

@ Curvature is the essential quantity in GR
Einstein equations relate matter/energy to curvature of spacetime

1
Ric—ERg—i—Ag = 871G
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@ Curvature is the essential quantity in GR
Einstein equations relate matter/energy to curvature of spacetime

1
Ric—§Rg+Ag = 871G

@ non-smooth means spacetime metric below g € C?
or no spacetime at all (Lorentzian length/metric spaces, causal sets)
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Curvature for non-smooth spacetimes

@ Curvature is the essential quantity in GR
Einstein equations relate matter/energy to curvature of spacetime

1
Ric—ERg—i—Ag = 871G

@ non-smooth means spacetime metric below g € C?
or no spacetime at all (Lorentzian length/metric spaces, causal sets)

Why is this interesting?
physically relevant models (matched spacetimes, impulsive wave, etc.)
PDE point-of-view

(]
@ singularities vs curvature blow-up — CCH of Penrose
(*]

approaches to Quantum Gravity (no metric, e.g. causal sets)
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Basic geometric properties change if regularity drops

Example 1: Walking on a sphere vs. walking on a cube )

Sphere Cube v It is always shorter to
deviate to the right
face than to go along
the edges.

[Hartman-Wintner 52]
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Basic geometric properties change if regularity drops

Example 1: Walking on a sphere vs. walking on a cube )
Sphere Cube v It is always shorter to
deviate to the right
face than to go along
the edges.
Example 2: Squeezing the sphere
Convexity fails for metrics of Holder regularity g € OV (a < 1). J

Equator still geodesic
but shorter to deviate
into hemispheres.
[Hartman-Wintner 52]
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Lorentzian causality theory changes if regularity drops

Example 3: Lightcones bubble up [Chrusciel-Grant 12]J

g€ C% (a<)
Non-uniqueness of null geodesics
~» null cone has full measure.

)
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Lorentzian causality theory changes if regularity drops

Example 3: Lightcones bubble up [Chrusciel-Grant 12]J

ge 0 (a<1)
Non-uniqueness of null geodesics
~» null cone has full measure.

Example 4. The future is not open [Grant-Kunzinger-Samann-S 20]J
% t
Y o i
g€ C% (a<)
le = The blue curve is timelike
. but reaches OI" (p)

Np >
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@ Linear distributional curvature
@ Nonlinear distributional curvature

Non-smooth curvature



Outline

© Curvature for rough metrics
@ Linear distributional curvature
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Basic distributional geometry

@ recall, distributions on manifolds & distributional tensor fields
[Schwartz, de Rham, ...]

/

D'(M) = (QF(M))
D'I(M) = (T7 @emqny D)

= D'(M) @coe(ary Ty (M) = Lese (X*(M)", X(M)*; D' (M)
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Basic distributional geometry

@ recall, distributions on manifolds & distributional tensor fields
[Schwartz, de Rham, ...]

/

D'(M) = (QF(M))
D'I(M) = (T7 @emqny D)
= D'(M) @coe(ary Ty (M) = Lese (X*(M)", X(M)*; D' (M)
e distributional metrics [Marsden 68, Parker 79]
g €ED5(M) = Low (X(M), X(M);D'(M))

symmetric and nondeg. g(X,Y)=0VvY = X =0 (X,Y € X(M))
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Basic distributional geometry

@ recall, distributions on manifolds & distributional tensor fields
[Schwartz, de Rham, ...]

/

D'(M) = (QF(M))
D'I(M) = (T7 @emqny D)
= D'(M) @coe(ary Ty (M) = Lese (X*(M)", X(M)*; D' (M)
e distributional metrics [Marsden 68, Parker 79]
g €ED5(M) = Low (X(M), X(M);D'(M))

symmetric and nondeg. g(X,Y)=0VvY = X =0 (X,Y € X(M))
— g gives no musical isomorphism D’(l) 5 X X" i=g(X,.) e D"
— index, geodesics, etc. of a distributional metric?

— only way to define, inverse, curvature, etc. is via smoothing
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Distributional connections

o [Marsden 68, Parker 79]
V: X(M) x D’(M)(l) — D/(l)(M) w. usual properties

— only way to define curvature, etc. is via smoothing
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Distributional connections

@ [Marsden 68, Parker 79]
Vi X(M) x D’(]W)(l) — D/(l)(M) w. usual properties
— only way to define curvature, etc. is via smoothing

@ [LeFloch-Mardare 07]
V: X(M) x X(M) = D'§(M) w. usual properties

+ extend to entire smooth tensor algebra
+ every D'-metric has a ‘Levi Civita connection’
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Distributional connections

@ [Marsden 68, Parker 79]
Vi X(M) x D'(]\/I)(lJ — D/(l)(M) w. usual properties

— only way to define curvature, etc. is via smoothing

@ [LeFloch-Mardare 07]
V: X(M) x X(M) = D'§(M) w. usual properties

+ extend to entire smooth tensor algebra

+ every D'-metric has a ‘Levi Civita connection’

@ used from now on
+ becomes workable if V@ X(M) x X(M) — (L*)§(M)
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Curvature from a distributional connection?
o C*: Riem : X(M)* — X(M), RxyZ :=Vxy|Z —[Vx,Vy]Z ()
o D'-connection: V : X(M) x X(\) — D'} (M)
problem: Vy Z € D'§ ~ VxVyZ not defined

)
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Curvature from a distributional connection?
o C*: Riem : X(M)* — X(M), RxyZ :=Vxy|Z —[Vx,Vy]Z ()
o D'-connection: V : X(M) x X(N) — D' (M)
problem: Vy Z € D'y ~ VxVyZ not defined
@ workaround: look for special distributional connections with
YV X(M) x (M) — A(M) C D' y(M)

such that V can be extended to A( /) in second slot

V: X(M)x A(M) — Dy(M) (XeXYeAbhc)

ViY(0) = X(Y(0)-Vx0(Y) €D (M)
S—— N—— N e
€D’} €D’ €A €A

)
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Curvature from a distributional connection?
o C*: Riem : X(M)* — X(M), RxyZ :=Vxy|Z —[Vx,Vy]Z ()
o D'-connection: V : X(M) x X(N) — D' (M)
problem: Vy Z € D'y ~ VxVyZ not defined
@ workaround: look for special distributional connections with
YV X(M) x (M) — A(M) C D' y(M)

such that V can be extended to A( /) in second slot

V: X(M)x A(M) — Dy(M) (XeXYeAbhc)

VxY () = X(Y(0))-Vx0(Y ) €eD(M)
~— N ——
€D’} €D’ €A €A

e obvious choice A — (L7 )}

loc

For such an L2-connection, the curvature tensor is defined via (x). J

Roland Steinbauer, University of Vienna BIRS-IMAG, Granada, May 2025 11 / 28



Curvature from a distributional metric

@ want Levi-Civita connection to be L?: need | g in H! N L>®

loc loc

@ note: H! N L™ is an algebra

loc loc

@ notion of nondegeneracy: |det g| > C' > 0 on compact sets
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Curvature from a distributional metric

@ want Levi-Civita connection to be L?: need | g in H! N L>®

loc loc

@ note: H! N L™ is an algebra

loc loc

@ notion of nondegeneracy: |det g| > C' > 0 on compact sets

Definition (Geroch-Traschen 87, LeFloch-Mardare 07, S-Vickers 09)
A distributional metric g is called gt-regular if it is of H! N L -regularity

loc loc

and it is uniformly nondegenerate: VK cp. 3C' > 0: |detg| > C on K.
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Curvature from a distributional metric

e want Levi-Civita connection to be L?: need |g in H. N L

@ note: H! N L™ is an algebra

loc loc

@ notion of nondegeneracy: | det g| > C > 0 on compact sets

Definition (Geroch-Traschen 87, LeFloch-Mardare 07, S-Vickers 09)

A distributional metric g is called gt-regular if it is of H} N L-regularity
and it is uniformly nondegenerate: VK cp. 3C > 0: |detg| > C on K.

Geroch-Traschen class is the maximal “reasonable” distributional setting
+ allows to define curvature Riem|g], Ric[g], R[g] in distributions

+ is stable w.r.t. perturbations
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Curvature from a distributional metric

@ want Levi-Civita connection to be L?: need | g in H! N L>®

loc loc

@ note: H! N L™ is an algebra

loc loc

@ notion of nondegeneracy: | det g| > C > 0 on compact sets

Definition (Geroch-Traschen 87, LeFloch-Mardare 07, S-Vickers 09)
A distributional metric g is called gt-regular if it is of H! N L -regularity

loc loc

and it is uniformly nondegenerate: VK cp. 3C > 0: |detg| > C on K.

Geroch-Traschen class is the maximal “reasonable” distributional setting
+ allows to define curvature Riem|g], Ric[g], R[g] in distributions
+ is stable w.r.t. perturbations

Limitations

— Bianchi identities fail ~» energy conservation ?

— dim (supp (Riem[g] )) > n — 1 ~» thin shells: yes, strings: no!
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Stability for the Geroch-Traschen class
g be gt-regular & g. be a (smooth) approximation. When do we have

Riem[g.] — Rieml[g], in D5 (M) ?
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Stability for the Geroch-Traschen class
g be gt-regular & g. be a (smooth) approximation. When do we have
Riem[g.] — Rieml[g], in D5 (M) ?
Yes if
@ g- —gin Hﬁ)c, gzt — g7 tin Ly,
[LeFloch-Mardare 07]

But for smoothings via convolution g, /4 ¢~ in LS,
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Stability for the Geroch-Traschen class
g be gt-regular & g. be a (smooth) approximation. When do we have
Riem[g.] — Rieml[g], in D5 (M) ?
Yes if
@ g- —gin Hlloc, gzt — g7 tin Ly,
[LeFloch-Mardare 07]

But for smoothings via convolution g, * /4 ¢~ in LS,

0 g-—ginHL, g-t =g tin L3, & g., g-! bounded in LS, ()
e Existence of approximation with ()

- if g continuous [Geroch-Traschen 87]
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Stability for the Geroch-Traschen class

g be gt-regular & g. be a (smooth) approximation. When do we have

Riem[g.] — Rieml[g], in D5 (M) ?
Yes if
0 g-—ginHL., g-t — g linL
[LeFloch-Mardare 07]

But for smoothings via convolution g, * /4 ¢~ in LS,

0 g-—ginHL,g-' =g linLE & g, g-! bounded in L2, (%)

e Existence of approximation with ()

- if g continuous [Geroch-Traschen 87]
- if g not too far from continuous (‘stable’): [S-Vickers 09]

VK cp. there is AX continuous, such that
max essup,e lis (@) — A (@)] < C < 4,

where pp = 11312 essinf e [N ()], Ai, ..., A eigenvalues of g.
<i<n
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© Curvature for rough metrics

@ Nonlinear distributional curvature
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Nonlinear distributions

Based on algebras of generalised functions [Colombeau 84, 85]
e differential algebras containing the vector space D'(M)

o display maximal consistency w.r.t. classical analysis; preserve:

> the product of C* functions > Lie derivatives of distributions.
@ regularization of distributions by nets of C*°-functions
@ asymptotic estimates in terms of ¢ (quotient construction)
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Nonlinear distributions

Based on algebras of generalised functions [Colombeau 84, 85]
o differential algebras containing the vector space D'(M)

o display maximal consistency w.r.t. classical analysis; preserve:
> the product of C* functions > Lie derivatives of distributions.

@ regularization of distributions by nets of C*°-functions

@ asymptotic estimates in terms of ¢ (quotient construction)

Construction on manifolds ‘Q(M) =Epm(M)/N (M) ‘ [Kunzinger-S 02]

Ev (M) :={(u:)- €C>®: VK VP 31 sg}g]Pus(x)] =0
N(M) :={(u): € Eyy(M) : VK VY : jg}];;|u€(x)| =0(E)}

fine sheaf of differential algebras w.r.t. Lxu := [(Lxuc)e]
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Nonlinear distributional geometry

e tensor fields: fine sheaf of finitely generated, projective G(M )-modules

Go (M) == E(M) /N (M)
= Leso(any (Gi(M),G(M)) = G(M) ®c T (M)
& L) (Gr (M), G(M))
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Nonlinear distributional geometry

e tensor fields: fine sheaf of finitely generated, projective G(M )-modules

Go (M) == E(M) /N (M)
= Leso(any (Gi(M),G(M)) = G(M) ®c T (M)
& Lo (G2 (M), G(M))

@ embeddings: injective sheaf morphism
LT (M) = DJ(M) = GE(M)

basically given by chart-wise, component-wise convolution
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Nonlinear distributional geometry

e tensor fields: fine sheaf of finitely generated, projective G(M )-modules

Go(M) == EL(M) NS (M)
= Leso(any (G7(M), G(M)) = G(M) ®ce T (M)
= L) (97 (M), G(M))
@ embeddings: injective sheaf morphism

b2 T (M) = DY (M) < G{(M)

basically given by chart-wise, component-wise convolution

manifold convolution
72( ) T *m Pe ZXz ( '(/17,* Cz . )) *pe)(x)

(; cut-off functions, v; charts, x; partition of unity, p. mollifier
on cp. sets, € small: only finite sum
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Nonlinear distributional geometry

e tensor fields: fine sheaf of finitely generated, projective G(M )-modules

Go(M) == EL(M) NS (M)
= Leso(any (G7(M), G(M)) = G(M) ®ce T (M)
= L) (97 (M), G(M))
@ embeddings: injective sheaf morphism

b2 T (M) = DY (M) < G{(M)

basically given by chart-wise, component-wise convolution

o generalised metric: | g = [(g:):] € GY(M) symm. & det(g) inv.in G

locally represented by sequence of smooth metrics g. with
| det(gz)| > €™ for some m on any compact set.

o musical isomorphism: G§(M) > X +— X" := g(X,.) € G)(M)
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Generalised curvature

@ every G-metric has a Levi Civita connection
V' GH(M) x Gy(M) — Gy (M)

e usual formulas hold (also for representatives/sequences), e.g.

nyZ = V[X,Y]Z - [VX,VY]Z € g?(M)
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Generalised curvature

@ every G-metric has a Levi Civita connection
V' GH(M) x Gy(M) — Gy (M)

e usual formulas hold (also for representatives/sequences), e.g.

RXyZ = V[va]Z - [VX,VY]Z € g?(M)

e compatibility with gt-setting [S-Vickers 09]

Hloc N Lloc > g e ? [ga] € g

ﬁl lg

—lim

Riem/[g] ( Dotim Riem|g,]

technicalities: ¢ stable, p admissible to have | det(g.)| > ™
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Generalised curvature

@ every G-metric has a Levi Civita connection
V' GH(M) x Gy(M) — Gy (M)

e usual formulas hold (also for representatives/sequences), e.g.

RXyZ = V[va]Z - [VX,VY]Z € g?(M)

e compatibility with gt-setting [S-Vickers 09]
Hloc N Lloc > g e ? [ga] € g

ﬁl lg

—lim

Riem/[g] ( Dotim Riem|g,]

technicalities: ¢ stable, p admissible to have | det(g.)| > ™

Vj: fxo‘pg(w) de =0 foralll < |a| < jandesmall and Vnp > 0: f |pe(z)|dx < 1+ n for e small

Roland Steinbauer, University of Vienna BIRS-IMAG, Granada, May 2025 17 / 28



Outline

© Applications
@ Impulsive gravitational waves
@ Interlude: Causality
@ Singularity theorems
@ Aside: Synthetic curvature bounds & singularity thms.
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© Applications
@ Impulsive gravitational waves
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Application: Geodesics for impulsive gravitational waves

@ exact models of short but violent burst of gravitational radiation

@ non-expanding with A

o 2dndip—2du AV +2H (n,7) 6(U) du?

d
’ [T+ LG — uv) )2
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Application: Geodesics for impulsive gravitational waves

@ exact models of short but violent burst of gravitational radiation

@ non-expanding with A

o 2dndip—2du AV +2H (n,7) 6(U) du?

ds

[1+ A —UV)]?
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Application: Geodesics for impulsive gravitational waves

@ exact models of short but violent burst of gravitational radiation

@ non-expanding with A

ds2 = 2 dn dij—2 dU dV + 2H (n,7) §U) dU?
[1+ §A (7 —UV) ]2
@ geodesic equations ill-defined as distributions

@ consistent solution concept in G[I, M|
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o o . U
026~ U- (H06-U-)) 57— Gmrs.
02 G = 0. (160 g2

1.5 ~ . N\ Ve+ H6.U.
. e EHE € P " ——
e+ 5 U2G.— UL ( 6U)> A Ta

Zps — §H7PJEU€2 = 7(6+
1 /. -
‘/E—insUs—équ,p(sEZZUE :_<

where 8 = 6:(U(t)), oL=06.(U(t)), e=0,=+1,
G. = GE(Ue(t)a Zpe(t)), H=H(Zpe(t)), and Hjp=H(Z4(t))

@ consistent solution concept in G[I, M|
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Application: Geodesics for impulsive gravitational waves

@ exact models of short but violent burst of gravitational radiation

@ non-expanding with A

ds2 = 2 dn dij—2 dU dV + 2H (n,7) §U) dU?
[1+ §A (7 —UV) ]2
@ geodesic equations ill-defined as distributions

@ consistent solution concept in G[I, M|
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Application: Geodesics for impulsive gravitational waves

@ exact models of short but violent burst of gravitational radiation

@ non-expanding with A

o _ 2dy i —2 dU dV + 2H (n,7) SU) du?

d
’ [T+ LG — uv) )2

@ geodesic equations ill-defined as distributions

@ consistent solution concept in G[I, M|

Theorem [Podolsky-Schinnerl-Samann-Svarc-S 18-24]

There are unique global generalised solutions of the i.v.p. for geodesics.
They have limiting ‘distributional geodesics’ w. clear geometric meaning.
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Applicatic waves
@ exact1 diation
@ non-ex
(2
@ geodes
@ consist
Theorem [Podolsky-Schinnerl-Samann-Svarc-S 18-24]

There are unique global generalised solutions of the i.v.p. for geodesics.
They have limiting ‘distributional geodesics’ w. clear geometric meaning.
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Applicatic waves
@ exact1 diation
@ non-ex
(2
@ geodes
@ consist
Theorem [Podolsky-Schinnerl-Samann-Svarc-S 18-24]

There are unique global generalised solutions of the i.v.p. for geodesics.
They have limiting ‘distributional geodesics’ w. clear geometric meaning.

@ analytically singular solutions but geodesically complete
@ for A = 0 counterexamples to Ehlers-Kundt conjecture

@ allows to make sense of notorious ‘discontinuous transformation’

Roland Steinbauer, University of Vienna BIRS-IMAG, Granada, May 2025 20 / 28
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e Applications

@ Interlude: Causality
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Interlude: Advanced regularisation techniques & causality

@ regularisation of continuous metrics plus control on the light cones
[Chrusciel-Grant 12]
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Interlude: Advanced regularisation techniques & causality

@ regularisation of continuous metrics plus control on the light cones
[Chrusciel-Grant 12]

tweeking the manifold convolution
sz 0 (0alG 9) #pe N w 2 ) (2)

w local timelike one-form

Lemma [Chrusciel-Grant 12, Graf 20, .. .|

For g € C(M) there are C*°-Lorentzian metrics §. and . on M with
() ge <9 < e

(i)) ge, e — g, and (g)~ 1, (ge)~' — g~ as good as convolution
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Interlude: Advanced regularisation techniques & causality
@ regularisation of continuous metrics plus control on the light cones
[Chrusciel-Grant 12]

@ allows to save bulk of causality for g Lipschitz
[Chrusciel, Graf, Grant, Kunzinger, Minguzzi,
Samann, Stojkovic, S, Vickers, ...... 14-22]
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Interlude: Advanced regularisation techniques & causality

@ regularisation of continuous metrics plus control on the light cones
[Chrusciel-Grant 12]

@ allows to save bulk of causality for g Lipschitz
[Chrusciel, Graf, Grant, Kunzinger, Minguzzi,
Samann, Stojkovic, S, Vickers, ...... 14-22]

@ recall: below Lipschitz some aspects auf causality break down

» bubbling metrics [Chrusciel-Grant 12]
» [T(p) need not be open [Grant-Kunzinger-Samann-S 20]
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Interlude: Advanced regularisation techniques & causality

@ regularisation of continuous metrics plus control on the light cones
[Chrusciel-Grant 12]

@ allows to save bulk of causality for g Lipschitz
[Chrusciel, Graf, Grant, Kunzinger, Minguzzi,
Samann, Stojkovic, S, Vickers, ...... 14-22]

@ recall: below Lipschitz some aspects auf causality break down

» bubbling metrics [Chrusciel-Grant 12]
» [T(p) need not be open [Grant-Kunzinger-Samann-S 20]

e recall: convexity fails for g € C1® (o< 1) [Hartman-Wintner 52]
» causal solutions of geodesic equations do not maximise 7
» g € C°: maximisers exists (compactness)
» ¢ € Lip: maximisers are C 1 curves, have causal character,
solve the ODE in the Filippov-sense
[Graf-Ling 19, Lange-Lytchak-Sdmann 21]
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Interlude: Advanced regularisation techniques & causality

@ regularisation of continuous metrics plus control on the light cones
[Chrusciel-Grant 12]

@ allows to save bulk of causality for g Lipschitz
[Chrusciel, Graf, Grant, Kunzinger, Minguzzi,
Samann, Stojkovic, S, Vickers, ...... 14-22]

@ recall: below Lipschitz some aspects auf causality break down

» bubbling metrics [Chrusciel-Grant 12]
» [T(p) need not be open [Grant-Kunzinger-Samann-S 20]

e recall: convexity fails for g € C1® (o< 1) [Hartman-Wintner 52]
» causal solutions of geodesic equations do not maximise 7
» g € C°: maximisers exists (compactness)
» ¢ € Lip: maximisers are C 1 curves, have causal character,
solve the ODE in the Filippov-sense
[Graf-Ling 19, Lange-Lytchak-Sdmann 21]

@ some causal properties very robust: cone structures of [Minguzzi 19]
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e Applications

@ Singularity theorems
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Energy conditions and the singularity theorems

@ energy conditions/curvature bounds lie at analytical core
| Ric(X, X) > 0| for X timelike/null

0o geCh /C' /Lip. = Riclgle Ly /DY /D
@ focusing of geodesics via distributional energy conditions
(Ric[g](X, X), ) > 0 for all non-neg. test n-forms ¢
@ line of arguments:
» Raychaudhuri/Ricati arguments for CG-regularising sequence g
» Ric[g.] — Ric[g] only distributional: too weak for positivity
» but: (Ric[g](X,X)) * pe > 0 for non-neg. p.

Ioc

» ge CL: ‘(Ric[g](X,X)) * pe — Ric[gs](X,X)’ — 0 loc. uniformly
Friedrichs Lemma
plus convergence of geodesics (ODE-theory)
> g Lips | (Riclg) (X, X) ) % p. = Riclg.J(X, X)| = 0 only Lf, (p < ox)

and Ric[g.] > —|x]

plus worldvolume estimates: see talk by Melanie Graf
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Optimal regularity & singularity theorems

work in progress [Kunzinger-Reintjes-S-Vega]

RT-equations [Reintjes-Temple 20-24]

g € W and Riem[g] € LE, (n < p < 00) => g € WP
(in a W2P-compatible atlas)

recall
> Whe D Whe =Lip (p < 00))
» WP C C%* with a = 1 — n/p (Morrey's inequality)

W?2P-change of diff. structure leaves causality invariant (I*, J%)

Lemma: g € WP, Riem[g] € LP = no causal bubbles

Hawking & Penrose theorems for g € WP, Riem[g] € L?
by using the C'-results
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Singularity theorems: current state of affairs

spacetime results

@ Penrose, Gannon-Lee, Hawking-Penrose: ok
[Graf 20], [Schinnerl-S 22], [Kunzinger-Ohanyan-Schinnerl-S 23]

e Hawking: Lip. [Calisti-Graf-Hafemann-Kunzinger-S 25]
e Hawking & Penrose: g € WP, Riem[g] € LP [work in progress|
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Singularity theorems: current state of affairs

spacetime results

@ Penrose, Gannon-Lee, Hawking-Penrose: ok
[Graf 20], [Schinnerl-S 22], [Kunzinger-Ohanyan-Schinnerl-S 23]

e Hawking: Lip. [Calisti-Graf-Hafemann-Kunzinger-S 25]
e Hawking & Penrose: g € WP, Riem[g] € LP [work in progress|
causal cone structures [Minguzzi 19]

@ upper semi-cont. distribution of cones on M
@ causal core of singularity theorems may be established

Theorem (Causal Penrose) [Minguzzi 19]

Let (M, C) be a globally hyperbolic closed cone structure w. a non-compact stable
Cauchy hypersurface 3. Then there are no compact future trapped sets and if X is
non-empty and compact there is an inextendible future null geodesic entirely in E*(S).
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Singularity theorems: current state of affairs

spacetime results

@ Penrose, Gannon-Lee, Hawking-Penrose: ok
[Graf 20], [Schinnerl-S 22], [Kunzinger-Ohanyan-Schinnerl-S 23]

e Hawking: Lip. [Calisti-Graf-Hafemann-Kunzinger-S 25]
e Hawking & Penrose: g € WP, Riem[g] € LP [work in progress|
causal cone structures [Minguzzi 19]

synthetic results
@ sectional curvature bounds  [Alexander-Graf-Kunzinger-Samann 22]

@ Ricci curvature bounds [Cavaletti-Mondino 22]
[Braun-McCann 24]
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Outline

e Applications

@ Aside: Synthetic curvature bounds & singularity thms.

Non-smooth curvature



Synthetic curvature bounds & singularity thms.

@ Synthetic approaches: Lorentzian length spaces
» causal space (X, d, <, <, 7) with 7 intrinsic
» (timelike) sectional curvature bounds via triangle comparison
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Synthetic curvature bounds & singularity thms.

@ Synthetic approaches: Lorentzian length spaces
» causal space (X, d, <, <,7) with 7 intrinsic
» (timelike) sectional curvature bounds via triangle comparison

Faithful extension of
sectional curvature
bounds to “metric”
Lorentzian setting
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Synthetic curvature bounds & singularity thms.

@ Synthetic approaches: Lorentzian length spaces
» causal space (X, d, <, <,7) with 7 intrinsic
» (timelike) sectional curvature bounds via triangle comparison

Theorem (Synthetic Hawking) [Alexander-Graf-Kunzinger-Sdmann 22]

Let Y = (a,b) x5 X be a warped product (X metric length space,
f € C*°, non-const.) with positive timelike sectional curvature. Then

a > —oo or b < oo and hence Y is past/future timelike geodesically
incomplete.
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Synthetic curvature bounds & singularity thms.

@ Synthetic approaches: Lorentzian length spaces
» causal space (X, d, <, <,7) with 7 intrinsic
» (timelike) sectional curvature bounds via triangle comparison

» Ricci bds. via optimal transport (RCD-spaces, Lott-Villani, Sturm)
» smooth metric measure spacetimes [McCann 20], [Mondino-Suhr 22]
» [Cavaletti-Mondino 22-24] TCD(K,N) and TMCP(K,N) properties
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Synthetic curvature bounds & singularity thms.

@ Synthetic approaches: Lorentzian length spaces
» causal space (X, d, <, <,7) with 7 intrinsic
» (timelike) sectional curvature bounds via triangle comparison

» Ricci bds. via optimal transport (RCD-spaces, Lott-Villani, Sturm)
» smooth metric measure spacetimes [McCann 20], [Mondino-Suhr 22]
» [Cavaletti-Mondino 22-24] TCD(K,N) and TMCP(K,N) properties

Idea: Ricci bounds encoded
in convexity property of
entropy functional along
Wasserstein geodesics
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Synthetic curvature bounds & singularity thms.

@ Synthetic approaches: Lorentzian length spaces
» causal space (X, d, <, <,7) with 7 intrinsic
» (timelike) sectional curvature bounds via triangle comparison

» Ricci bds. via optimal transport (RCD-spaces, Lott-Villani, Sturm)
» smooth metric measure spacetimes [McCann 20], [Mondino-Suhr 22]
» [Cavaletti-Mondino 22-24] TCD(K,N) and TMCP(K,N) properties

Theorem(TMCP-Hawking) [Cavaletti-Mondino 22]

Let X be a timelike non-branching, globally hyperbolic LLS with TMCP. Let V'
be a Borel achronal future timelike complete subset with mean curvature bded

above. Then every future timelike geodesic starting in V' has a bounded maximal
domain of existence.
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Synthetic curvature bounds & singularity thms.

@ Synthetic approaches: Lorentzian length spaces
» causal space (X, d, <, <,7) with 7 intrinsic
» (timelike) sectional curvature bounds via triangle comparison

» Ricci bds. via optimal transport (RCD-spaces, Lott-Villani, Sturm)
» smooth metric measure spacetimes [McCann 20], [Mondino-Suhr 22]
» [Cavaletti-Mondino 22-24] TCD(K,N) and TMCP(K,N) properties

Theorem(TMCP-Hawking) [Cavaletti-Mondino 22]

Let X be a timelike non-branching, globally hyperbolic LLS with TMCP. Let V'
be a Borel achronal future timelike complete subset with mean curvature bded

above. Then every future timelike geodesic starting in V' has a bounded maximal
domain of existence.

» synthetic (NEC) [McCann 23]
[Braun-McCann 24] & synthetic Hawking Thm.
» first-order Sobolev calculus on metric measure spacetimes
(maximal weak subslope of time functions akin L-modulus of diff.)
[Beran-Braun-Calisti-Gigli-McCann-Ohanyan-Rott-Samann 24]
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