## Notions of curvature for non-smooth spacetimes

Roland Steinbauer Faculty of Mathematics



#### Geometry, Analysis, and Physics in Lorentzian Signature BIRS-IMAG Workshop Granda, May 2025

Research in part funded by the Austrian Science Fund (FWF) Grant-DOIs 10.55776/P33594 & 10.55776/EFP6



excellent = austria

Roland Steinbauer, University of Vienna

Non-smooth curvature

BIRS-IMAG, Granada, May 2025 1 / 28

### Intro & motivation

#### 2 Curvature for rough metrics

- Linear distributional curvature
- Nonlinear distributional curvature

#### 3 Applications

- Impulsive gravitational waves
- Interlude: Causality
- Singularity theorems
- Aside: Synthetic curvature bounds & singularity thms.

# Outline

## Intro & motivation

#### Curvature for rough metrics

- Linear distributional curvature
- Nonlinear distributional curvature

#### 3 Applications

- Impulsive gravitational waves
- Interlude: Causality
- Singularity theorems
- Aside: Synthetic curvature bounds & singularity thms.

## Curvature for non-smooth spacetimes

 Curvature is the essential quantity in GR Einstein equations relate matter/energy to curvature of spacetime

$$\operatorname{Ric} - \frac{1}{2}\operatorname{R} g + \Lambda g = 8 \,\pi \,\mathrm{G}$$

 non-smooth means spacetime metric below g ∈ C<sup>2</sup> or no spacetime at all (Lorentzian length/metric spaces, causal sets)

#### Why is this interesting?

- physically relevant models (matched spacetimes, impulsive wave, etc.)
- PDE point-of-view
- *singularities* vs *curvature blow-up CCH* of Penrose
- approaches to Quantum Gravity (no metric, e.g. causal sets)

## Curvature for non-smooth spacetimes

 Curvature is the essential quantity in GR Einstein equations relate matter/energy to curvature of spacetime

$$\operatorname{Ric} - \frac{1}{2}\operatorname{R} g + \Lambda g = 8 \,\pi \,\mathrm{G}$$

 non-smooth means spacetime metric below g ∈ C<sup>2</sup> or no spacetime at all (Lorentzian length/metric spaces, causal sets)

### Why is this interesting?

- physically relevant models (matched spacetimes, impulsive wave, etc.)
- *PDE* point-of-view
- *singularities* vs *curvature blow-up CCH* of Penrose
- approaches to Quantum Gravity (no metric, e.g. causal sets)

## Curvature for non-smooth spacetimes

 Curvature is the essential quantity in GR Einstein equations relate matter/energy to curvature of spacetime

$$\operatorname{Ric} - \frac{1}{2}\operatorname{R} g + \Lambda g = 8 \,\pi \,\mathrm{G}$$

 non-smooth means spacetime metric below g ∈ C<sup>2</sup> or no spacetime at all (Lorentzian length/metric spaces, causal sets)

#### Why is this interesting?

- physically relevant models (matched spacetimes, impulsive wave, etc.)
- PDE point-of-view
- *singularities* vs *curvature blow-up CCH* of Penrose
- approaches to Quantum Gravity (no metric, e.g. causal sets)

# Basic geometric properties change if regularity drops

#### Example 1: Walking on a sphere vs. walking on a cube



It is always shorter to deviate to the right face than to go along the edges.

#### Example 2: Squeezing the sphere

Convexity fails for metrics of Hölder regularity  $g \in C^{1,\alpha}$   $(\alpha < 1)$ .



Equator still geodesic but shorter to deviate into hemispheres. [Hartman-Wintner 52]

# Basic geometric properties change if regularity drops

#### Example 1: Walking on a sphere vs. walking on a cube



It is always shorter to deviate to the right face than to go along the edges.

#### Example 2: Squeezing the sphere

Convexity fails for metrics of Hölder regularity  $g \in C^{1,\alpha}$  ( $\alpha < 1$ ).



Equator still geodesic but shorter to deviate into hemispheres. [Hartman-Wintner 52]

# Lorentzian causality theory changes if regularity drops

#### Example 3: Lightcones bubble up

[Chrusciel-Grant 12]



 $g \in C^{0,\alpha}$  ( $\alpha < 1$ ) Non-uniqueness of null geodesics  $\sim$  null cone has full measure.

#### Example 4. The future is not open

[Grant-Kunzinger-Sämann-S 20]



 $g \in C^{0,\alpha} \ (\alpha < 1)$ The blue curve is timelike but reaches  $\partial I^+(p)$ 

Roland Steinbauer, University of Vienna

# Lorentzian causality theory changes if regularity drops

#### Example 3: Lightcones bubble up

[Chrusciel-Grant 12]



 $g \in C^{0,\alpha}$  ( $\alpha < 1$ ) Non-uniqueness of null geodesics  $\sim$  null cone has full measure.





[Grant-Kunzinger-Sämann-S 20]

 $g \in C^{0,\alpha}$   $(\alpha < 1)$ The blue curve is timelike but reaches  $\partial I^+(p)$ 

# Outline

### Intro & motivation



#### Curvature for rough metrics

- Linear distributional curvature
- Nonlinear distributional curvature

#### 3 Applications

- Impulsive gravitational waves
- Interlude: Causality
- Singularity theorems
- Aside: Synthetic curvature bounds & singularity thms.

# Outline

## Intro & motivation



#### Curvature for rough metrics

#### • Linear distributional curvature

• Nonlinear distributional curvature

### 3 Applications

- Impulsive gravitational waves
- Interlude: Causality
- Singularity theorems
- Aside: Synthetic curvature bounds & singularity thms.

## Basic distributional geometry

• recall, distributions on manifolds & distributional tensor fields

 $\mathcal{D}'(M) := \left(\Omega_c^n(M)\right)'$   $\mathcal{D}'_s^r(M) := \left(\mathcal{T}_r^s \otimes_{C^\infty(M)} \Omega_c^n(M)\right)'$   $\cong \mathcal{D}'(M) \otimes_{C^\infty(M)} \mathcal{T}_s^r(M) \cong L_{C^\infty}\left(\mathfrak{X}^*(M)^r, \mathfrak{X}(M)^s; \mathcal{D}'(M)\right)$ 

distributional metrics

[Marsden 68, Parker 79]

$$g \in \mathcal{D}'_{2}^{0}(M) \cong L_{C^{\infty}}(\mathfrak{X}(M), \mathfrak{X}(M); \mathcal{D}'(M))$$

symmetric and nondeg.  $g(X,Y) = 0 \ \forall Y \Rightarrow X = 0 \ (X,Y \in \mathfrak{X}(M))$ 

- -~g gives no musical isomorphism  ${\mathcal D'}_0^1 
  i X \mapsto X^{lat} := g(X,.) \in {\mathcal D'}_1^0$
- index, geodesics, etc. of a distributional metric?
- only way to define, inverse, curvature, etc. is via smoothing

## Basic distributional geometry

• recall, distributions on manifolds & distributional tensor fields

 $\mathcal{D}'(M) := \left(\Omega_c^n(M)\right)'$   $\mathcal{D}'_s^r(M) := \left(\mathcal{T}_r^s \otimes_{C^\infty(M)} \Omega_c^n(M)\right)'$   $\cong \mathcal{D}'(M) \otimes_{C^\infty(M)} \mathcal{T}_s^r(M) \cong L_{C^\infty}\left(\mathfrak{X}^*(M)^r, \mathfrak{X}(M)^s; \mathcal{D}'(M)\right)$ 

distributional metrics

[Marsden 68, Parker 79]

$$g \in \mathcal{D}'_{2}^{0}(M) \cong L_{C^{\infty}}(\mathfrak{X}(M), \mathfrak{X}(M); \mathcal{D}'(M))$$

symmetric and nondeg.  $g(X,Y) = 0 \ \forall Y \Rightarrow X = 0 \ (X,Y \in \mathfrak{X}(M))$ 

- -~g gives no musical isomorphism  ${\mathcal D'}_0^1
  i X\mapsto X^{lat}:=g(X,.)\in {\mathcal D'}_1^0$
- index, geodesics, etc. of a distributional metric?
- only way to define, inverse, curvature, etc. is via smoothing

# Basic distributional geometry

• recall, distributions on manifolds & distributional tensor fields

 $\mathcal{D}'(M) := \left(\Omega_c^n(M)\right)'$   $\mathcal{D}'_s^r(M) := \left(\mathcal{T}_r^s \otimes_{C^\infty(M)} \Omega_c^n(M)\right)'$   $\cong \mathcal{D}'(M) \otimes_{C^\infty(M)} \mathcal{T}_s^r(M) \cong L_{C^\infty}\left(\mathfrak{X}^*(M)^r, \mathfrak{X}(M)^s; \mathcal{D}'(M)\right)$ 

distributional metrics

[Marsden 68, Parker 79]

$$g \in \mathcal{D}'_{2}^{0}(M) \cong L_{C^{\infty}}(\mathfrak{X}(M), \mathfrak{X}(M); \mathcal{D}'(M))$$

symmetric and nondeg.  $g(X,Y) = 0 \ \forall Y \Rightarrow X = 0 \ (X,Y \in \mathfrak{X}(M))$ 

- -g gives no musical isomorphism  ${\mathcal D'}_0^1 \ni X \mapsto X^{\flat} := g(X,.) \in {\mathcal D'}_1^0$
- index, geodesics, etc. of a distributional metric?
- only way to define, inverse, curvature, etc. is via smoothing

## Distributional connections

• [Marsden 68, Parker 79]

 $abla : \mathfrak{X}(M) \times \mathcal{D}'(M)_0^1 \to \mathcal{D}'_0^1(M)$  w. usual properties

- only way to define curvature, etc. is via smoothing
- [LeFloch-Mardare 07]

 $abla : \mathfrak{X}(M) \times \mathfrak{X}(M) \to {\mathcal D'}_0^1(M)$  w. usual properties

- + extend to entire **smooth** tensor algebra
- $+\,$  every  $\mathcal{D}'$ -metric has a 'Levi Civita connection'
- used from now on

+ becomes workable if  $abla: \mathfrak{X}(M) imes \mathfrak{X}(M) o (L^2)_0^1(M)$ 

## Distributional connections

• [Marsden 68, Parker 79]

 $abla : \mathfrak{X}(M) \times \mathcal{D}'(M)_0^1 \to \mathcal{D}'_0^1(M)$  w. usual properties

- only way to define curvature, etc. is via smoothing
- [LeFloch-Mardare 07]

 $abla : \mathfrak{X}(M) imes \mathfrak{X}(M) o {\mathcal{D}'}_0^1(M)$  w. usual properties

- + extend to entire smooth tensor algebra
- $+ \,$  every  $\mathcal{D}'\text{-metric}$  has a 'Levi Civita connection'
- used from now on

+ becomes workable if  $abla: \mathfrak{X}(M) \times \mathfrak{X}(M) o (L^2)^1_0(M)$ 

## Distributional connections

• [Marsden 68, Parker 79]

 $abla : \mathfrak{X}(M) \times \mathcal{D}'(M)_0^1 \to \mathcal{D}'_0^1(M)$  w. usual properties

- only way to define curvature, etc. is via smoothing
- [LeFloch-Mardare 07]

 $abla : \mathfrak{X}(M) \times \mathfrak{X}(M) \to {\mathcal{D}'}_0^1(M)$  w. usual properties

- + extend to entire smooth tensor algebra
- $+\,$  every  $\mathcal{D}'\text{-metric}$  has a 'Levi Civita connection'
- used from now on

+ becomes workable if abla:  $\mathfrak{X}(M) imes \mathfrak{X}(M) o (L^2)^1_0(M)$ 

## Curvature from a distributional connection?

- $\mathcal{C}^{\infty}$ : Riem :  $\mathfrak{X}(M)^3 \to \mathfrak{X}(M)$ ,  $R_{XY}Z := \nabla_{[X,Y]}Z [\nabla_X, \nabla_Y]Z$  (\*)
- $\mathcal{D}'$ -connection:  $\nabla$  :  $\mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathcal{D}'_0^1(M)$

problem:  $\nabla_Y Z \in {\mathcal D'}_0^1 \rightsquigarrow \nabla_X \nabla_Y Z$  not defined

• workaround: look for special distributional connections with

 $\nabla : \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathcal{A}(M) \subseteq \mathcal{D}'_0^1(M)$ 

such that  $\nabla$  can be extended to  $\mathcal{A}(M)$  in second slot

$$\nabla: \mathfrak{X}(M) \times \mathcal{A}(M) \to \mathcal{D}'_{0}^{1}(M) \quad (X \in \mathfrak{X}, Y \in \mathcal{A}, \theta \in \Omega^{1})$$
$$\underbrace{\nabla_{X} Y}_{\in \mathcal{D}'_{0}^{1}} := X(\underbrace{Y(\theta)}_{\in \mathcal{D}'}) - \underbrace{\nabla_{X} \theta}_{\in \mathcal{A}}(\underbrace{Y}_{\in \mathcal{A}}) \in \mathcal{D}'(M)$$

• obvious choice  $\mathcal{A} = (L^2_{\text{loc}})^1_0$ 

For such an  $L^2$ -connection, the curvature tensor is defined via (\*).

Roland Steinbauer, University of Vienna

Non-smooth curvature

Curvature from a distributional connection?

- $\mathcal{C}^{\infty}$ : Riem :  $\mathfrak{X}(M)^3 \to \mathfrak{X}(M)$ ,  $R_{XY}Z := \nabla_{[X,Y]}Z [\nabla_X, \nabla_Y]Z$  (\*)
- $\mathcal{D}'$ -connection:  $\nabla$  :  $\mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathcal{D}'_0^1(M)$

problem:  $\nabla_Y Z \in {\mathcal D'}_0^1 \rightsquigarrow \nabla_X \nabla_Y Z$  not defined

• workaround: look for special distributional connections with

$$\nabla : \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathcal{A}(M) \subseteq \mathcal{D}'_0^1(M)$$

such that  $\nabla$  can be extended to  $\mathcal{A}(M)$  in second slot

$$\nabla: \mathfrak{X}(M) \times \mathcal{A}(M) \to \mathcal{D}'_{0}^{1}(M) \quad (X \in \mathfrak{X}, Y \in \mathcal{A}, \theta \in \Omega^{1})$$
$$\underbrace{\nabla_{X}Y}_{\in \mathcal{D}'_{0}^{1}} := X(\underbrace{Y(\theta)}_{\in \mathcal{D}'}) - \underbrace{\nabla_{X}\theta}_{\in \mathcal{A}}(\underbrace{Y}_{\in \mathcal{A}}) \in \mathcal{D}'(M)$$

• obvious choice  $\mathcal{A} = (L^2_{\text{loc}})^1_0$ 

For such an  $L^2$ -connection, the curvature tensor is defined via (\*).

Roland Steinbauer, University of Vienna

Non-smooth curvature

Curvature from a distributional connection?

- $\mathcal{C}^{\infty}$ : Riem :  $\mathfrak{X}(M)^3 \to \mathfrak{X}(M)$ ,  $R_{XY}Z := \nabla_{[X,Y]}Z [\nabla_X, \nabla_Y]Z$  (\*)
- $\mathcal{D}'$ -connection:  $\nabla$  :  $\mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathcal{D}'_0^1(M)$

problem:  $\nabla_Y Z \in {\mathcal D'}_0^1 \rightsquigarrow \nabla_X \nabla_Y Z$  not defined

• workaround: look for special distributional connections with

$$\nabla : \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathcal{A}(M) \subseteq \mathcal{D}'_0^1(M)$$

such that  $\nabla$  can be extended to  $\mathcal{A}(M)$  in second slot

$$\nabla: \mathfrak{X}(M) \times \mathcal{A}(M) \to \mathcal{D}'_{0}^{1}(M) \quad (X \in \mathfrak{X}, Y \in \mathcal{A}, \theta \in \Omega^{1})$$
$$\underbrace{\nabla_{X}Y}_{\in \mathcal{D}'_{0}^{1}} := X(\underbrace{Y(\theta)}_{\in \mathcal{D}'}) - \underbrace{\nabla_{X}\theta}_{\in \mathcal{A}}(\underbrace{Y}_{\in \mathcal{A}}) \in \mathcal{D}'(M)$$

• obvious choice  $\mathcal{A} = (L^2_{\text{loc}})^1_0$ 

For such an  $L^2$ -connection, the curvature tensor is defined via (\*).

Roland Steinbauer, University of Vienna

- want Levi-Civita connection to be  $L^2:$  need  $\left| \,g \text{ in } H^1_{\text{\tiny loc}} \cap L^\infty_{\text{\tiny loc}} \right.$
- $\bullet\,$  note:  $H^1_{\rm loc}\cap L^\infty_{\rm loc}$  is an algebra
- $\bullet\,$  notion of nondegeneracy:  $|\det g|\geq C>0$  on compact sets

## Definition (Geroch-Traschen 87, LeFloch-Mardare 07, S-Vickers 09)

A distributional metric g is called *gt-regular* if it is of  $H^1_{\text{loc}} \cap L^{\infty}_{\text{loc}}$ -regularity and it is uniformly nondegenerate:  $\forall K$  cp.  $\exists C > 0$ :  $|\det g| \ge C$  on K.

Geroch-Traschen class is the maximal "reasonable" distributional setting

- + allows to define curvature  $\operatorname{Riem}[g]$ ,  $\operatorname{Ric}[g]$ ,  $\operatorname{R}[g]$  in distributions
- + is stable w.r.t. perturbations

Limitations

- $-\,$  Bianchi identities fail  $\rightarrow$  energy conservation ?
- $-\dim\left(\operatorname{supp}\left(\operatorname{Riem}[g]\right)\right) \ge n-1 \rightsquigarrow \mathsf{thin \ shells: \ yes, \ strings: \ no!}$

- want Levi-Civita connection to be  $L^2:$  need  $\left| \,g \text{ in } H^1_{\text{\tiny loc}} \cap L^\infty_{\text{\tiny loc}} \right.$
- $\bullet\,$  note:  $H^1_{\scriptscriptstyle {\rm loc}}\cap L^\infty_{\scriptscriptstyle {\rm loc}}$  is an algebra
- $\bullet\,$  notion of nondegeneracy:  $|\det g|\geq C>0$  on compact sets

## Definition (Geroch-Traschen 87, LeFloch-Mardare 07, S-Vickers 09)

A distributional metric g is called gt-regular if it is of  $H^1_{\text{loc}} \cap L^{\infty}_{\text{loc}}$ -regularity and it is uniformly nondegenerate:  $\forall K$  cp.  $\exists C > 0$ :  $|\det g| \ge C$  on K.

Geroch-Traschen class is the maximal "reasonable" distributional setting

- + allows to define curvature  $\operatorname{Riem}[g]$ ,  $\operatorname{Ric}[g]$ ,  $\operatorname{R}[g]$  in distributions
- + is stable w.r.t. perturbations

Limitations

- $-\,$  Bianchi identities fail  $\rightarrow$  energy conservation ?
- $-\dim\left(\operatorname{supp}\left(\operatorname{Riem}[g]
  ight)
  ight)\geq n-1 \rightsquigarrow$  thin shells: yes, strings: no!

- want Levi-Civita connection to be  $L^2:$  need  $\left| \,g \text{ in } H^1_{\text{\tiny loc}} \cap L^\infty_{\text{\tiny loc}} \right.$
- $\bullet\,$  note:  $H^1_{\scriptscriptstyle {\rm loc}}\cap L^\infty_{\scriptscriptstyle {\rm loc}}$  is an algebra
- $\bullet\,$  notion of nondegeneracy:  $|\det g|\geq C>0$  on compact sets

## Definition (Geroch-Traschen 87, LeFloch-Mardare 07, S-Vickers 09)

A distributional metric g is called gt-regular if it is of  $H^1_{\text{loc}} \cap L^{\infty}_{\text{loc}}$ -regularity and it is uniformly nondegenerate:  $\forall K \text{ cp. } \exists C > 0$ :  $|\det g| \ge C$  on K.

Geroch-Traschen class is the maximal "reasonable" distributional setting

- $+\,$  allows to define curvature  $\mathrm{Riem}[g],\,\mathrm{Ric}[g],\,\mathrm{R}[g]$  in distributions
- + is stable w.r.t. perturbations

Limitations

- $-\,$  Bianchi identities fail  $\rightarrow$  energy conservation ?
- $-\dim\left(\operatorname{supp}\left(\operatorname{Riem}[g]
  ight)
  ight)\geq n-1$  ightarrow thin shells: yes, strings: no!

- want Levi-Civita connection to be  $L^2\colon$  need  $\left|\,g\,\,\mathrm{in}\,\,H^1_{\scriptscriptstyle\mathrm{loc}}\cap L^\infty_{\scriptscriptstyle\mathrm{loc}}\right.$
- $\bullet\,$  note:  $H^1_{\rm loc}\cap L^\infty_{\rm loc}$  is an algebra
- $\bullet\,$  notion of nondegeneracy:  $|\det g|\geq C>0$  on compact sets

## Definition (Geroch-Traschen 87, LeFloch-Mardare 07, S-Vickers 09)

A distributional metric g is called gt-regular if it is of  $H^1_{\text{loc}} \cap L^{\infty}_{\text{loc}}$ -regularity and it is uniformly nondegenerate:  $\forall K \text{ cp. } \exists C > 0$ :  $|\det g| \ge C$  on K.

Geroch-Traschen class is the maximal "reasonable" distributional setting

- $+\,$  allows to define curvature  $\mathrm{Riem}[g]$  ,  $\mathrm{Ric}[g]$  ,  $\mathrm{R}[g]$  in distributions
- + is stable w.r.t. perturbations

Limitations

- Bianchi identities fail  $\rightsquigarrow$  energy conservation ?

 $-\dim\left(\operatorname{supp}\left(\operatorname{Riem}[g]\right)\right) \ge n-1 \rightsquigarrow \mathsf{thin \ shells: \ yes, \ strings: \ no!}$ 

g be gt-regular &  $g_{\varepsilon}$  be a (smooth) approximation. When do we have  $\operatorname{Riem}[g_{\varepsilon}] \to \operatorname{Riem}[g], \text{ in } \mathcal{D}_3'^1(M)$ ?

• 
$$g_{\varepsilon} \to g$$
 in  $H^1_{\mathrm{loc}}, \, g_{\varepsilon}^{-1} \to g^{-1} \, \mathrm{in} \, L^{\infty}_{\mathrm{loc}}$ 

[LeFloch-Mardare 07]

But for smoothings via convolution  $g_n^{-1} 
eq g^{-1}$  in  $L^\infty_{
m loc}$ 

•  $g_{\varepsilon} \to g$  in  $H^1_{\text{loc}}, g_{\varepsilon}^{-1} \to g^{-1}$  in  $L^2_{\text{loc}} \& g_{\varepsilon}, g_{\varepsilon}^{-1}$  bounded in  $L^{\infty}_{\text{loc}}$  (\*)

- Existence of approximation with (\*)
- if g continuous
- if g not too far from continuous ('stable'): [S-Vickers 09  $\forall K$  cp. there is  $A^K$  continuous, such that  $\max_{i,j} \operatorname{essup}_{x \in K} |g_{ij}(x) - A^K_{ij}(x)| \le C < \frac{\mu_K}{2n},$ where  $\mu_K := \min \operatorname{essinf}_{x \in K} |\lambda^i(x)|, \lambda_i, \dots, \lambda_n$  eigenvalues of a.

g be gt-regular &  $g_{\varepsilon}$  be a (smooth) approximation. When do we have

$$\operatorname{Riem}[g_{\varepsilon}] \to \operatorname{Riem}[g], \text{ in } \mathcal{D}_{3}^{\prime 1}(M) ?$$

Yes if

• 
$$g_{\varepsilon} \to g$$
 in  $H^1_{\text{loc}}, \, g_{\varepsilon}^{-1} \to g^{-1} \text{ in } L^{\infty}_{\text{loc}}$ 

[LeFloch-Mardare 07]

But for smoothings via convolution  $g_n^{-1}\not\to g^{-1}$  in  $L^\infty_{\rm loc}$ 

•  $g_{\varepsilon} \to g$  in  $H^1_{\text{loc}}$ ,  $g_{\varepsilon}^{-1} \to g^{-1}$  in  $L^2_{\text{loc}}$  &  $g_{\varepsilon}$ ,  $g_{\varepsilon}^{-1}$  bounded in  $L^{\infty}_{\text{loc}}$  (\*)

• Existence of approximation with (\*)

- if g continuous
- if g not too far from continuous ('stable'): [S-Vickers 09  $\forall K$  cp. there is  $A^K$  continuous, such that  $\max_{i,j} \operatorname{essup}_{x \in K} |g_{ij}(x) - A^K_{ij}(x)| \leq C < \frac{\mu_K}{2n},$ where  $\mu_K := \min_{1 \leq i \leq n} \operatorname{essinf}_{x \in K} |\lambda^i(x)|, \lambda_i, \dots, \lambda_n$  eigenvalues of g.

g be gt-regular &  $g_{\varepsilon}$  be a (smooth) approximation. When do we have

$$\operatorname{Riem}[g_{\varepsilon}] \to \operatorname{Riem}[g], \text{ in } \mathcal{D}_{3}^{\prime 1}(M) ?$$

Yes if

• 
$$g_{\varepsilon} \to g$$
 in  $H^1_{\text{loc}}, \, g_{\varepsilon}^{-1} \to g^{-1} \text{ in } L^{\infty}_{\text{loc}}$ 

[LeFloch-Mardare 07]

But for smoothings via convolution  $g_n^{-1}\not\to g^{-1}$  in  $L^\infty_{\rm loc}$ 

- $g_{\varepsilon} \to g$  in  $H^1_{\text{loc}}, g_{\varepsilon}^{-1} \to g^{-1}$  in  $L^2_{\text{loc}} \& g_{\varepsilon}, g_{\varepsilon}^{-1}$  bounded in  $L^{\infty}_{\text{loc}}$  (\*)
- Existence of approximation with (\*)
- if g continuous

[Geroch-Traschen 87]

- if g not too far from continuous ('stable'): [S-Vickers 09  $\forall K \text{ cp. there is } A^K \text{ continuous, such that}$   $\max_{i,j} \operatorname{essup}_{x \in K} |g_{ij}(x) - A^K_{ij}(x)| \le C < \frac{\mu_K}{2n},$ where  $\mu_K := \min_{1 \le i \le n} \operatorname{essinf}_{x \in K} |\lambda^i(x)|, \lambda_i, \dots, \lambda_n \text{ eigenvalues of } g.$ 

g be gt-regular &  $g_{\varepsilon}$  be a (smooth) approximation. When do we have

$$\operatorname{Riem}[g_{\varepsilon}] \to \operatorname{Riem}[g], \text{ in } \mathcal{D}_{3}^{\prime 1}(M) ?$$

Yes if

• 
$$g_{\varepsilon} \to g$$
 in  $H^1_{\mathrm{loc}}, \, g_{\varepsilon}^{-1} \to g^{-1} \, \mathrm{in} \, L^{\infty}_{\mathrm{loc}}$ 

[LeFloch-Mardare 07]

[Geroch-Traschen 87]

But for smoothings via convolution  $g_n^{-1}\not\to g^{-1}$  in  $L^\infty_{\rm loc}$ 

• 
$$g_{\varepsilon} \to g$$
 in  $H^1_{\text{loc}}$ ,  $g_{\varepsilon}^{-1} \to g^{-1}$  in  $L^2_{\text{loc}}$  &  $g_{\varepsilon}$ ,  $g_{\varepsilon}^{-1}$  bounded in  $L^{\infty}_{\text{loc}}$  (\*)

- Existence of approximation with (\*)
- if g continuous
- if g not too far from continuous ('stable'): [S-Vickers 09]  $\forall K$  cp. there is  $A^K$  continuous, such that  $\max_{\substack{i,j\\j}} \operatorname{essup}_{x \in K} |g_{ij}(x) - A^K_{ij}(x)| \le C < \frac{\mu_K}{2n},$ where  $\mu_K := \min_{1 \le i \le n} \operatorname{essinf}_{x \in K} |\lambda^i(x)|$ ,  $\lambda_i, \dots, \lambda_n$  eigenvalues of g.

# Outline

### Intro & motivation

#### 2 Curvature for rough metrics

- Linear distributional curvature
- Nonlinear distributional curvature

#### 3 Applications

- Impulsive gravitational waves
- Interlude: Causality
- Singularity theorems
- Aside: Synthetic curvature bounds & singularity thms.

## Nonlinear distributions



## Nonlinear distributions

#### Based on *algebras of generalised functions* [Colombeau 84, 85] • differential algebras containing the vector space $\mathcal{D}'(M)$ • display maximal consistency w.r.t. classical analysis; preserve: • the product of $C^{\infty}$ functions Lie derivatives of distributions. • regularization of distributions by nets of $\mathcal{C}^{\infty}$ -functions • asymptotic estimates in terms of $\varepsilon$ (quotient construction) Construction on manifolds $|\mathcal{G}(M) := \mathcal{E}_M(M) / \mathcal{N}(M)|$ [Kunzinger-S 02] $\mathcal{E}_M(M) := \{ (u_{\varepsilon})_{\varepsilon} \in \mathcal{C}^{\infty} : \forall K \forall P \exists l : \sup |Pu_{\varepsilon}(x)| = O(\varepsilon^{-l}) \}$ $x \in K$ $\mathcal{N}(M) := \{ (u_{\varepsilon})_{\varepsilon} \in \mathcal{E}_M(M) : \forall K \forall m : \sup |u_{\varepsilon}(x)| = O(\varepsilon^m) \}$ $x \in K$

fine sheaf of differential algebras w.r.t.  $L_X u := [(L_X u_\varepsilon)_\varepsilon]$ 

• *tensor fields*: fine sheaf of finitely generated, projective  $\mathcal{G}(M)$ -modules

$$\begin{aligned} \mathcal{G}_{s}^{r}(M) &:= \mathcal{E}_{s}^{r}(M) / \mathcal{N}_{s}^{r}(M) \\ &\cong L_{\mathcal{C}^{\infty}(M)} \big( \mathcal{G}_{r}^{s}(M), \mathcal{G}(M) \big) \cong \mathcal{G}(M) \otimes_{\mathcal{C}^{\infty}} \mathcal{T}_{s}^{r}(M) \\ &\cong L_{\mathcal{G}(M)} \big( \mathcal{G}_{r}^{s}(M), \mathcal{G}(M) \big) \end{aligned}$$

• embeddings: injective sheaf morphism

 $\iota: \mathcal{T}^r_s(M) \hookrightarrow \mathcal{D}^{\prime r}_s(M) \hookrightarrow \mathcal{G}^r_s(M)$ 

basically given by chart-wise, component-wise convolution

- generalised metric:  $g = [(g_{\varepsilon})_{\varepsilon}] \in \mathcal{G}_2^0(M)$  symm. & det(g) inv. in  $\mathcal{G}$ locally represented by sequence of smooth metrics  $g_{\varepsilon}$  with  $|\det(g_{\varepsilon})| \ge \varepsilon^m$  for some m on any compact set.
- musical isomorphism:  $\mathcal{G}_0^1(M) \ni X \mapsto X^{\flat} := g(X, .) \in \mathcal{G}_1^0(M)$

• *tensor fields*: fine sheaf of finitely generated, projective  $\mathcal{G}(M)$ -modules

$$\begin{aligned} \mathcal{G}_{s}^{r}(M) &:= \mathcal{E}_{s}^{r}(M) / \mathcal{N}_{s}^{r}(M) \\ &\cong L_{\mathcal{C}^{\infty}(M)} \big( \mathcal{G}_{r}^{s}(M), \mathcal{G}(M) \big) \cong \mathcal{G}(M) \otimes_{\mathcal{C}^{\infty}} \mathcal{T}_{s}^{r}(M) \\ &\cong L_{\mathcal{G}(M)} \big( \mathcal{G}_{r}^{s}(M), \mathcal{G}(M) \big) \end{aligned}$$

• embeddings: injective sheaf morphism

$$\iota: \mathcal{T}^r_s(M) \hookrightarrow \mathcal{D}^{\prime r}_s(M) \hookrightarrow \mathcal{G}^r_s(M)$$

#### basically given by chart-wise, component-wise convolution

- generalised metric:  $g = [(g_{\varepsilon})_{\varepsilon}] \in \mathcal{G}_2^0(M)$  symm. & det(g) inv. in  $\mathcal{G}$ locally represented by sequence of smooth metrics  $g_{\varepsilon}$  with  $|\det(g_{\varepsilon})| \ge \varepsilon^m$  for some m on any compact set.
- musical isomorphism:  $\mathcal{G}_0^1(M) 
  i X \mapsto X^{lat} := g(X, \, . \,) \in \mathcal{G}_1^0(M)$

• *tensor fields*: fine sheaf of finitely generated, projective  $\mathcal{G}(M)$ -modules

$$\mathcal{G}_{s}^{r}(M) := \mathcal{E}_{s}^{r}(M) / \mathcal{N}_{s}^{r}(M)$$
  

$$\cong L_{\mathcal{C}^{\infty}(M)} (\mathcal{G}_{r}^{s}(M), \mathcal{G}(M)) \cong \mathcal{G}(M) \otimes_{\mathcal{C}^{\infty}} \mathcal{T}_{s}^{r}(M)$$
  

$$\cong L_{\mathcal{G}(M)} (\mathcal{G}_{r}^{s}(M), \mathcal{G}(M))$$

• embeddings: injective sheaf morphism

$$\iota:\mathcal{T}^r_s(M) \hookrightarrow \mathcal{D}^{\prime r}_s(M) \hookrightarrow \mathcal{G}^r_s(M)$$

basically given by chart-wise, component-wise convolution

manifold convolution

$$\mathcal{T}_{\varepsilon}(x) := \mathcal{T} \star_{M} \rho_{\varepsilon}(x) := \sum_{i} \chi_{i}(x) \psi_{i}^{*} \Big( \big( \psi_{i*}(\zeta_{i} \cdot \mathcal{T}) \big) * \rho_{\varepsilon} \Big)(x)$$

 $\zeta_i$  cut-off functions,  $\psi_i$  charts,  $\chi_i$  partition of unity,  $\rho_{\varepsilon}$  mollifier on cp. sets,  $\varepsilon$  small: only finite sum

Roland Steinbauer, University of Vienna

Non-smooth curvature

• *tensor fields*: fine sheaf of finitely generated, projective  $\mathcal{G}(M)$ -modules

$$\begin{aligned} \mathcal{G}_{s}^{r}(M) &:= \mathcal{E}_{s}^{r}(M) / \mathcal{N}_{s}^{r}(M) \\ &\cong L_{\mathcal{C}^{\infty}(M)} \big( \mathcal{G}_{r}^{s}(M), \mathcal{G}(M) \big) \cong \mathcal{G}(M) \otimes_{\mathcal{C}^{\infty}} \mathcal{T}_{s}^{r}(M) \\ &\cong L_{\mathcal{G}(M)} \big( \mathcal{G}_{r}^{s}(M), \mathcal{G}(M) \big) \end{aligned}$$

• embeddings: injective sheaf morphism

$$\iota:\mathcal{T}^r_s(M) \hookrightarrow \mathcal{D}^{\prime r}_s(M) \hookrightarrow \mathcal{G}^r_s(M)$$

basically given by chart-wise, component-wise convolution

- generalised metric:  $g = [(g_{\varepsilon})_{\varepsilon}] \in \mathcal{G}_2^0(M)$  symm. &  $\det(g)$  inv. in  $\mathcal{G}$ locally represented by sequence of smooth metrics  $g_{\varepsilon}$  with  $|\det(g_{\varepsilon})| \ge \varepsilon^m$  for some m on any compact set.
- musical isomorphism:  $\mathcal{G}_0^1(M) \ni X \mapsto X^{\flat} := g(X, \, . \,) \in \mathcal{G}_1^0(M)$

## Generalised curvature

• every *G*-metric has a *Levi Civita connection* 

$$\nabla: \ \mathcal{G}_0^1(M) \times \mathcal{G}_0^1(M) \to \mathcal{G}_0^1(M)$$

• usual formulas hold (also for representatives/sequences), e.g.

$$R_{XY}Z := \nabla_{[X,Y]}Z - [\nabla_X, \nabla_Y]Z \quad \in \mathcal{G}_1^3(M)$$

compatibility with gt-setting

[S-Vickers 09]



technicalities: g stable,  $\rho$  admissible to have  $|\det(g_{\varepsilon})| \ge \varepsilon^m$ 

 $\forall j: \int x^{\alpha} \rho_{\varepsilon}(x) \, dx = 0 \quad \text{for all } 1 \leq |\alpha| \leq j \text{ and } \varepsilon \text{ small, and } \forall \eta > 0: \int |\rho_{\varepsilon}(x)| \, dx \leq 1 + \eta \quad \text{for } \varepsilon \text{ small}$ 

Roland Steinbauer, University of Vienna

Non-smooth curvature

## Generalised curvature

• every *G*-metric has a *Levi Civita connection* 

$$\nabla: \ \mathcal{G}_0^1(M) \times \mathcal{G}_0^1(M) \to \mathcal{G}_0^1(M)$$

• usual formulas hold (also for representatives/sequences), e.g.

$$R_{XY}Z := \nabla_{[X,Y]}Z - [\nabla_X, \nabla_Y]Z \quad \in \mathcal{G}_1^3(M)$$

• compatibility with gt-setting

$$\begin{array}{cccc} H^1_{\mathrm{loc}} \cap L^{\infty}_{\mathrm{loc}} & \ni g & \xrightarrow{\star \rho_{\varepsilon}} & [g_{\varepsilon}] \in \mathcal{G} \\ & & & & \downarrow \mathcal{G} \\ & & & & \downarrow \mathcal{G} \\ & & & & & \downarrow \mathcal{G} \\ & & & & & & \mathrm{Riem}[g] & \xleftarrow{\mathcal{D}' - \mathrm{lim}} & \mathrm{Riem}[g_{\varepsilon}] \end{array}$$

technicalities: g stable,  $\rho$  admissible to have  $|\det(g_{\varepsilon})| \ge \varepsilon^m$ 

 $\forall j: \int x^{\alpha} \rho_{\varepsilon}(x) \, dx = 0 \quad \text{for all } 1 \leq |\alpha| \leq j \text{ and } \varepsilon \text{ small, and } \forall \eta > 0: \int |\rho_{\varepsilon}(x)| \, dx \leq 1 + \eta \quad \text{for } \varepsilon \text{ small, and } \forall \eta > 0: \int |\rho_{\varepsilon}(x)| \, dx \leq 1 + \eta \quad \text{for } \varepsilon \text{ small, and } \forall \eta > 0: \int |\rho_{\varepsilon}(x)| \, dx \leq 1 + \eta \quad \text{for } \varepsilon \text{ small, and } \forall \eta > 0: \int |\rho_{\varepsilon}(x)| \, dx \leq 1 + \eta \quad \text{for } \varepsilon \text{ small, and } \forall \eta > 0: \int |\rho_{\varepsilon}(x)| \, dx \leq 1 + \eta \quad \text{for } \varepsilon \text{ small, and } \forall \eta > 0: \int |\rho_{\varepsilon}(x)| \, dx \leq 1 + \eta \quad \text{for } \varepsilon \text{ small, and } \forall \eta > 0: \int |\rho_{\varepsilon}(x)| \, dx \leq 1 + \eta \quad \text{for } \varepsilon \text{ small, and } \forall \eta > 0: \int |\rho_{\varepsilon}(x)| \, dx \leq 1 + \eta \quad \text{for } \varepsilon \text{ small, and } \forall \eta > 0: \int |\rho_{\varepsilon}(x)| \, dx \leq 1 + \eta \quad \text{for } \varepsilon \text{ small, and } \forall \eta > 0: \int |\rho_{\varepsilon}(x)| \, dx \leq 1 + \eta \quad \text{for } \varepsilon \text{ small, and } \forall \eta > 0: \int |\rho_{\varepsilon}(x)| \, dx \leq 1 + \eta \quad \text{for } \varepsilon \text{ small, and } \forall \eta > 0: \int |\rho_{\varepsilon}(x)| \, dx \leq 1 + \eta \quad \text{for } \varepsilon \text{ small, and } \forall \eta > 0: \int |\rho_{\varepsilon}(x)| \, dx \leq 1 + \eta \quad \text{for } \varepsilon \text{ small, and } \forall \eta > 0: \int |\rho_{\varepsilon}(x)| \, dx \leq 1 + \eta \quad \text{for } \varepsilon \text{ small, and } \forall \eta > 0: \int |\rho_{\varepsilon}(x)| \, dx \leq 1 + \eta \quad \text{for } \varepsilon \text{ small, and } \forall \eta > 0: \int |\rho_{\varepsilon}(x)| \, dx \leq 1 + \eta \quad \text{for } \varepsilon \text{ small, and } \forall \eta > 0: \int |\rho_{\varepsilon}(x)| \, dx \leq 1 + \eta \quad \text{for } \varepsilon \text{ small, and } \forall \eta > 0: \int |\rho_{\varepsilon}(x)| \, dx \leq 1 + \eta \quad \text{for } \varepsilon \text{ small, and } \forall \eta > 0: \int |\rho_{\varepsilon}(x)| \, dx \leq 1 + \eta \quad \text{for } \varepsilon \text{ small, and } \forall \eta > 0: \int |\rho_{\varepsilon}(x)| \, dx \leq 1 + \eta \quad \text{for } \varepsilon \text{ small, and } \forall \eta > 0: \int |\rho_{\varepsilon}(x)| \, dx \leq 1 + \eta \quad \text{for } \varepsilon \text{ small, and } \forall \eta > 0: \int |\rho_{\varepsilon}(x)| \, dx \leq 1 + \eta \quad \text{for } \varepsilon \text{ small, and } \forall \eta > 0: \int |\rho_{\varepsilon}(x)| \, dx \leq 1 + \eta \quad \text{for } \varepsilon \text{ small, and } \forall \eta > 0: \int |\rho_{\varepsilon}(x)| \, dx \leq 1 + \eta \quad \text{for } \varepsilon \text{ small, and } \forall \eta \in 0 \\ \forall \eta \in 0$ 

## Generalised curvature

• every *G*-metric has a *Levi Civita connection* 

$$\nabla: \ \mathcal{G}_0^1(M) \times \mathcal{G}_0^1(M) \to \mathcal{G}_0^1(M)$$

• usual formulas hold (also for representatives/sequences), e.g.

$$R_{XY}Z := \nabla_{[X,Y]}Z - [\nabla_X, \nabla_Y]Z \quad \in \mathcal{G}_1^3(M)$$

$$\begin{array}{ccc} H^1_{\mathrm{loc}} \cap L^{\infty}_{\mathrm{loc}} \ \ni g & \stackrel{\star \rho_{\varepsilon}}{\longrightarrow} & [g_{\varepsilon}] \in \mathcal{G} \\ & & & & \downarrow \mathcal{G} \\ & & & & \downarrow \mathcal{G} \\ & & & & & & \downarrow \mathcal{G} \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & &$$

technicalities: g stable,  $\rho$  admissible to have  $|\det(g_{\varepsilon})| \ge \varepsilon^m$ 

$$\forall j: \int x^\alpha \rho_\varepsilon(x)\,dx = 0 \quad \text{for all } 1 \leq |\alpha| \leq j \text{ and } \varepsilon \text{ small, and } \forall \eta > 0: \int |\rho_\varepsilon(x)|\,dx \leq 1+\eta \quad \text{for } \varepsilon \text{ small}$$

Roland Steinbauer, University of Vienna

# Outline

## Intro & motivation

#### 2 Curvature for rough metrics

- Linear distributional curvature
- Nonlinear distributional curvature

#### 3 Applications

- Impulsive gravitational waves
- Interlude: Causality
- Singularity theorems
- Aside: Synthetic curvature bounds & singularity thms.

# Outline

## Intro & motivation

#### 2 Curvature for rough metrics

- Linear distributional curvature
- Nonlinear distributional curvature

#### Applications

- Impulsive gravitational waves
- Interlude: Causality
- Singularity theorems
- Aside: Synthetic curvature bounds & singularity thms.

- exact models of short but violent burst of gravitational radiation
- non-expanding with  $\Lambda$

$$\mathrm{d}s^{2} = \frac{2 \,\mathrm{d}\eta \,\mathrm{d}\bar{\eta} - 2 \,\mathrm{d}\mathcal{U} \,\mathrm{d}\mathcal{V} + 2H(\eta,\bar{\eta}) \,\delta(\mathcal{U}) \,\mathrm{d}\mathcal{U}^{2}}{[1 + \frac{1}{6}\Lambda(\eta\bar{\eta} - \mathcal{U}\mathcal{V})]^{2}}$$

geodesic equations ill-defined as distributions

• consistent solution concept in  $\mathcal{G}[I,M]$ 

Theorem[Podolský-Schinnerl-Sämann-Švarc-S 18–24]There are unique global generalised solutions of the i.v.p. for geodesics.They have limiting 'distributional geodesics' w. clear geometric meaning.

- analytically singular solutions but geodesically complete
- for  $\Lambda=0$  counterexamples to Ehlers-Kundt conjecture
- allows to make sense of notorious 'discontinuous transformation'

Roland Steinbauer, University of Vienna

Non-smooth curvature

- exact models of short but violent burst of gravitational radiation
- non-expanding with  $\Lambda$

$$\mathrm{d}s^2 = \frac{2 \,\mathrm{d}\eta \,\mathrm{d}\bar{\eta} - 2 \,\mathrm{d}\mathcal{U} \,\mathrm{d}\mathcal{V} + 2H(\eta,\bar{\eta}) \,\delta(\mathcal{U}) \,\mathrm{d}\mathcal{U}^2}{[1 + \frac{1}{6}\Lambda(\eta\bar{\eta} - \mathcal{U}\mathcal{V})]^2}$$



allows to make sense of notorious 'discontinuous transformation'

Roland Steinbauer, University of Vienna

Non-smooth curvature

BIRS-IMAG, Granada, May 2025 20 / 28

- exact models of short but violent burst of gravitational radiation
- non-expanding with  $\Lambda$

$$\mathrm{d}s^{2} = \frac{2 \,\mathrm{d}\eta \,\mathrm{d}\bar{\eta} - 2 \,\mathrm{d}\mathcal{U} \,\mathrm{d}\mathcal{V} + 2H(\eta,\bar{\eta}) \,\delta(\mathcal{U}) \,\mathrm{d}\mathcal{U}^{2}}{[1 + \frac{1}{6}\Lambda(\eta\bar{\eta} - \mathcal{U}\mathcal{V})]^{2}}$$

- geodesic equations ill-defined as distributions
- $\bullet$  consistent solution concept in  $\mathcal{G}[I,M]$

# Theorem[Podolský-Schinnerl-Sämann-Švarc-S 18–24]There are unique global generalised solutions of the i.v.p. for geodesics.They have limiting 'distributional geodesics' w. clear geometric meaning.

- analytically singular solutions but geodesically complete
- for  $\Lambda=0$  counterexamples to Ehlers-Kundt conjecture
- allows to make sense of notorious 'discontinuous transformation'

$$\begin{split} \ddot{U}_{\varepsilon} &= -\left(e + \frac{1}{2} \, \dot{U}_{\varepsilon}^2 \, \tilde{G}_{\varepsilon} - \dot{U}_{\varepsilon} \left(H \, \delta_{\varepsilon} \, U_{\varepsilon}\right)\right) \, \frac{U_{\varepsilon}}{3/\Lambda - U_{\varepsilon}^2 H \delta_{\varepsilon}} \\ & \ddot{Z}_{p\varepsilon} - \frac{1}{2} H_{,p} \, \delta_{\varepsilon} \, \dot{U}_{\varepsilon}^2 = -\left(e + \frac{1}{2} \, \dot{U}_{\varepsilon}^2 \, \tilde{G}_{\varepsilon} - \dot{U}_{\varepsilon} \left(H \, \delta_{\varepsilon} \, U_{\varepsilon}\right)\right) \, \frac{Z_{p\varepsilon}}{3/\Lambda - U_{\varepsilon}^2 H \delta_{\varepsilon}} \\ & \ddot{V}_{\varepsilon} - \frac{1}{2} \, H \, \delta_{\varepsilon}' \, \dot{U}_{\varepsilon}^2 - \delta^{pq} H_{,p} \, \delta_{\varepsilon} \, \dot{Z}_{q}^{\varepsilon} \, \dot{U}_{\varepsilon} = -\left(e + \frac{1}{2} \, \dot{U}_{\varepsilon}^2 \, \tilde{G}_{\varepsilon} - \dot{U}_{\varepsilon} \left(H \, \delta_{\varepsilon} \, U_{\varepsilon}\right)\right) \, \frac{V_{\varepsilon} + H \, \delta_{\varepsilon} U_{\varepsilon}}{3/\Lambda - U_{\varepsilon}^2 H \delta_{\varepsilon}} \\ & \text{where} \qquad \delta_{\varepsilon} = \delta_{\varepsilon} (U_{\varepsilon}(t)) \,, \quad \delta_{\varepsilon}' = \delta_{\varepsilon}' (U_{\varepsilon}(t)) \,, \quad e = 0, \pm 1 \,, \\ & \tilde{G}_{\varepsilon} = \tilde{G}_{\varepsilon} (U_{\varepsilon}(t), Z_{p\varepsilon}(t)) \,, \quad H = H(Z_{p\varepsilon}(t)) \,, \quad \text{and} \quad H_{,p} = H_{,p}(Z_{q\varepsilon}(t)) \end{split}$$

#### • consistent solution concept in $\mathcal{G}[I,M]$

#### Theorem

#### [Podolský-Schinnerl-Sämann-Švarc-S 18–24]

There are unique global generalised solutions of the i.v.p. for geodesics. They have limiting 'distributional geodesics' w. clear geometric meaning.

- analytically singular solutions but geodesically complete
- ullet for  $\Lambda=0$  counterexamples to Ehlers-Kundt conjecture
- allows to make sense of notorious 'discontinuous transformation'

Roland Steinbauer, University of Vienna

Non-smooth curvature

- exact models of short but violent burst of gravitational radiation
- non-expanding with  $\Lambda$

$$\mathrm{d}s^{2} = \frac{2 \,\mathrm{d}\eta \,\mathrm{d}\bar{\eta} - 2 \,\mathrm{d}\mathcal{U} \,\mathrm{d}\mathcal{V} + 2H(\eta,\bar{\eta}) \,\delta(\mathcal{U}) \,\mathrm{d}\mathcal{U}^{2}}{[1 + \frac{1}{6}\Lambda(\eta\bar{\eta} - \mathcal{U}\mathcal{V})]^{2}}$$

- geodesic equations ill-defined as distributions
- $\bullet$  consistent solution concept in  $\mathcal{G}[I,M]$

# Theorem[Podolský-Schinnerl-Sämann-Švarc-S 18–24]There are unique global generalised solutions of the i.v.p. for geodesics.They have limiting 'distributional geodesics' w. clear geometric meaning.

- analytically singular solutions but geodesically complete
- for  $\Lambda=0$  counterexamples to Ehlers-Kundt conjecture
- allows to make sense of notorious 'discontinuous transformation'

- exact models of short but violent burst of gravitational radiation
- non-expanding with  $\Lambda$

$$\mathrm{d}s^{2} = \frac{2 \,\mathrm{d}\eta \,\mathrm{d}\bar{\eta} - 2 \,\mathrm{d}\mathcal{U} \,\mathrm{d}\mathcal{V} + 2H(\eta,\bar{\eta}) \,\delta(\mathcal{U}) \,\mathrm{d}\mathcal{U}^{2}}{[1 + \frac{1}{6}\Lambda(\eta\bar{\eta} - \mathcal{U}\mathcal{V})]^{2}}$$

- geodesic equations ill-defined as distributions
- $\bullet$  consistent solution concept in  $\mathcal{G}[I,M]$

Theorem[Podolský-Schinnerl-Sämann-Švarc-S 18–24]There are unique global generalised solutions of the i.v.p. for geodesics.They have limiting 'distributional geodesics' w. clear geometric meaning.

- analytically singular solutions but geodesically complete
- ullet for  $\Lambda=0$  counterexamples to Ehlers-Kundt conjecture
- allows to make sense of notorious 'discontinuous transformation'

Roland Steinbauer, University of Vienna

Non-smooth curvature



#### Theorem

[Podolský-Schinnerl-Sämann-Švarc-S 18–24]

There are unique global generalised solutions of the i.v.p. for geodesics. They have limiting 'distributional geodesics' w. clear geometric meaning.

- analytically singular solutions but geodesically complete
- ullet for  $\Lambda=0$  counterexamples to Ehlers-Kundt conjecture
- allows to make sense of notorious 'discontinuous transformation'

Roland Steinbauer, University of Vienna

Non-smooth curvature



#### Theorem

[Podolský-Schinnerl-Sämann-Švarc-S 18–24]

There are unique global generalised solutions of the i.v.p. for geodesics. They have limiting 'distributional geodesics' w. clear geometric meaning.

- analytically singular solutions but geodesically complete
- for  $\Lambda=0$  counterexamples to Ehlers-Kundt conjecture
- allows to make sense of notorious 'discontinuous transformation'

Roland Steinbauer, University of Vienna

Non-smooth curvatur

# Outline

## Intro & motivation

#### 2 Curvature for rough metrics

- Linear distributional curvature
- Nonlinear distributional curvature

#### Applications

- Impulsive gravitational waves
- Interlude: Causality
- Singularity theorems
- Aside: Synthetic curvature bounds & singularity thms.

- regularisation of continuous metrics plus control on the light cones [Chrusciel-Grant 12]
- allows to save bulk of causality for g Lipschitz
   [Chrusciel, Graf, Grant, Kunzinger, Minguzzi, Sämann, Stojkovic, S, Vickers, ..... 14–22]

• recall: below Lipschitz some aspects auf causality break down

- ► bubbling metrics [Chrusciel-Grant 12]
- $I^+(p)$  need not be open

• recall: convexity fails for  $g \in C^{1,lpha}$  (lpha < 1) [Hartman-Wintner 52]

- $\blacktriangleright$  causal solutions of geodesic equations do not maximise  $\tau$
- $g \in C^0$ : maximisers exists (compactness)
- ▶ g ∈ Lip: maximisers are C<sup>1,1</sup>-curves, have causal character, solve the ODE in the Filippov-sense

[Graf-Ling 19, Lange-Lytchak-Sämann 21]

some causal properties very robust: cone structures of [Minguzzi 19]

 regularisation of continuous metrics plus control on the light cones [Chrusciel-Grant 12]

tweeking the manifold convolution

$$\check{g}_{\varepsilon}(x) := \sum_{i} \chi_{i}(x) \, \psi_{i}^{*} \Big( \big( \psi_{i*}(\zeta_{i} \cdot g) \big) * \rho_{\varepsilon} - \lambda(\varepsilon) \, \omega \otimes \omega \Big)(x)$$

 $\omega$  local timelike one-form

#### Lemma

#### [Chrusciel-Grant 12, Graf 20, ...]

For  $g\in C(M)$  there are  $C^\infty\text{-Lorentzian}$  metrics  $\hat{g}_\varepsilon$  and  $\check{g}_\varepsilon$  on M with

(i) 
$$\check{g}_{\varepsilon} \prec g \prec \hat{g}_{\varepsilon}$$
.

(ii)  $\check{g}_{\varepsilon},\,\hat{g}_{\varepsilon}\to g$ , and  $(\check{g}_{\varepsilon})^{-1},\,(\hat{g}_{\varepsilon})^{-1}\to g^{-1}$  as good as convolution

solve the ODE in the Filippov-sense

[Graf-Ling 19, Lange-Lytchak-Sämann 21]

some causal properties very robust: cone structures of [Minguzzi 19]

- regularisation of continuous metrics plus control on the light cones [Chrusciel-Grant 12]
- allows to save bulk of causality for g Lipschitz
   [Chrusciel, Graf, Grant, Kunzinger, Minguzzi, Sämann, Stojkovic, S, Vickers, ..... 14–22]

• recall: below Lipschitz some aspects auf causality break down

- ▶ bubbling metrics [Chrusciel-Grant 12]
  - $I^+(p)$  need not be open

[Grant-Kunzinger-Sämann-S 20]

- recall: convexity fails for  $g \in C^{1, \alpha}$   $(\alpha < 1)$  [Hartman-Wintner 52]
  - $\blacktriangleright$  causal solutions of geodesic equations do not maximise  $\tau$
  - $g \in C^0$ : maximisers exists (compactness)
  - ▶ g ∈ Lip: maximisers are C<sup>1,1</sup>-curves, have causal character, solve the ODE in the Filippov-sense

[Graf-Ling 19, Lange-Lytchak-Sämann 21]

some causal properties very robust: cone structures of [Minguzzi 19]

- regularisation of continuous metrics plus control on the light cones [Chrusciel-Grant 12]
- allows to save bulk of causality for g Lipschitz
   [Chrusciel, Graf, Grant, Kunzinger, Minguzzi, Sämann, Stojkovic, S, Vickers, ..... 14–22]
- recall: below Lipschitz some aspects auf causality break down
  - ► bubbling metrics [Chrusciel-Grant 12]
  - $I^+(p)$  need not be open

• recall: convexity fails for  $g \in C^{1,lpha}$  (lpha < 1) [Hartman-Wintner 52]

- $\blacktriangleright$  causal solutions of geodesic equations do not maximise  $\tau$
- $g \in C^0$ : maximisers exists (compactness)
- ▶ g ∈ Lip: maximisers are C<sup>1,1</sup>-curves, have causal character, solve the ODE in the Filippov-sense

[Graf-Ling 19, Lange-Lytchak-Sämann 21]

[Grant-Kunzinger-Sämann-S 20]

some causal properties very robust: cone structures of [Minguzzi 19]

Roland Steinbauer, University of Vienna

- regularisation of continuous metrics plus control on the light cones [Chrusciel-Grant 12]
- allows to save bulk of causality for g Lipschitz
   [Chrusciel, Graf, Grant, Kunzinger, Minguzzi, Sämann, Stojkovic, S, Vickers, ..... 14–22]
- recall: below Lipschitz some aspects auf causality break down
  - bubbling metrics
     [Chrusciel-Grant 12]
  - $I^+(p)$  need not be open
- recall: convexity fails for  $g \in C^{1,\alpha}$   $(\alpha < 1)$  [Hartman-Wintner 52]
  - $\blacktriangleright$  causal solutions of geodesic equations do not maximise  $\tau$
  - $g \in C^0$ : maximisers exists (compactness)
  - ▶ g ∈ Lip: maximisers are C<sup>1,1</sup>-curves, have causal character, solve the ODE in the Filippov-sense

[Graf-Ling 19, Lange-Lytchak-Sämann 21]

some causal properties very robust: cone structures of [Minguzzi 19]

[Chrusciel-Grant 12] [Grant-Kunzinger-Sämann-S 20]

- regularisation of continuous metrics plus control on the light cones [Chrusciel-Grant 12]
- allows to save bulk of causality for g Lipschitz
   [Chrusciel, Graf, Grant, Kunzinger, Minguzzi, Sämann, Stojkovic, S, Vickers, ..... 14–22]
- recall: below Lipschitz some aspects auf causality break down
  - bubbling metrics
     [Chrusciel-Grant 12]
  - $I^+(p)$  need not be open
- recall: convexity fails for  $g \in C^{1,\alpha}$   $(\alpha < 1)$  [Hartman-Wintner 52]
  - $\blacktriangleright$  causal solutions of geodesic equations do not maximise  $\tau$
  - $g \in C^0$ : maximisers exists (compactness)
  - ▶ g ∈ Lip: maximisers are C<sup>1,1</sup>-curves, have causal character, solve the ODE in the Filippov-sense

[Graf-Ling 19, Lange-Lytchak-Sämann 21]

• some causal properties very robust: cone structures of [Minguzzi 19]

[Chrusciel-Grant 12] [Grant-Kunzinger-Sämann-S 20]

# Outline

## Intro & motivation

#### 2 Curvature for rough metrics

- Linear distributional curvature
- Nonlinear distributional curvature

#### Applications

- Impulsive gravitational waves
- Interlude: Causality
- Singularity theorems
- Aside: Synthetic curvature bounds & singularity thms.

## Energy conditions and the singularity theorems

• energy conditions/curvature bounds lie at analytical core

 $\operatorname{Ric}(X,X) \ge 0$  for X timelike/null

• 
$$g \in C^{1,1} / C^1 / \text{Lip.} \implies \text{Ric}[g] \in L^{\infty}_{\text{loc}} / {\mathcal{D}'}^{(1)} / {\mathcal{D}'}$$

- focusing of geodesics via distributional energy conditions  $\langle \operatorname{Ric}[g](X,X), \varphi \rangle \geq 0$  for all non-neg. test *n*-forms  $\varphi$
- Ine of arguments:
  - ▶ Raychaudhuri/Ricati arguments for CG-regularising sequence  $\check{g}_{\varepsilon}$
  - $\operatorname{Ric}[\check{g}_{\varepsilon}] \to \operatorname{Ric}[g]$  only distributional: too weak for positivity
  - ▶ but:  $\left(\operatorname{Ric}[g](X,X)\right) \star \rho_{\varepsilon} \geq 0$  for non-neg.  $\rho_{\varepsilon}$ ▶  $g \in C^1$ :  $\left|\left(\operatorname{Ric}[g](X,X)\right) \star \rho_{\varepsilon} - \operatorname{Ric}[\check{g}_{\varepsilon}](X,X)\right| \to 0$  loc. uniformly Friedrichs Lemma

plus convergence of geodesics (ODE-theory)

► 
$$g \in \text{Lip:} \left| \left( \text{Ric}[g](X, X) \right) \star \rho_{\varepsilon} - \text{Ric}[\check{g}_{\varepsilon}](X, X) \right| \to 0 \text{ only } L^{p}_{\text{loc}} \left( p < \infty \right)$$
  
and  $\text{Ric}[\check{g}_{\varepsilon}] \geq -|\kappa|$ 

plus worldvolume estimates: see talk by Melanie Graf

## Optimal regularity & singularity theorems

work in progress [Kunzinger-Reintjes-S-Vega]

**RT-equations** 

[Reintjes-Temple 20-24]

 $g \in W^{1,p}_{loc} \text{ and } \operatorname{Riem}[g] \in L^p_{loc} \ (n$  $(in a <math>W^{2,p}$ -compatible atlas)

recall

• 
$$W^{1,p} \supseteq W^{1,\infty} = \operatorname{Lip}(p < \infty))$$

- $W^{1,p} \subseteq C^{0,\alpha}$  with  $\alpha = 1 n/p$  (Morrey's inequality)
- $W^{2,p}$ -change of diff. structure leaves causality invariant  $(I^{\pm}, J^{\pm})$
- Lemma:  $g \in W^{1,p}$ ,  $\operatorname{Riem}[g] \in L^p \Longrightarrow$  no causal bubbles
- Hawking & Penrose theorems for  $g \in W^{1,p}$ ,  $\operatorname{Riem}[g] \in L^p$  by using the  $C^1$ -results

spacetime results

Penrose, Gannon-Lee, Hawking-Penrose: C<sup>1</sup>
 [Graf 20], [Schinnerl-S 22], [Kunzinger-Ohanyan-Schinnerl-S 23]

- Hawking: Lip.
   [Calisti-Graf-Hafemann-Kunzinger-S 25]
- Hawking & Penrose:  $g \in W^{1,p}$ ,  $\operatorname{Riem}[g] \in L^p$  [work in progress]

[Minguzzi 19]

causal cone structures

synthetic results

- sectional curvature bounds
- Ricci curvature bounds

[Alexander-Graf-Kunzinger-Sämann 22] [Cavaletti-Mondino 22] [Braun-McCann 24]

spacetime results

Penrose, Gannon-Lee, Hawking-Penrose: C<sup>1</sup>
 [Graf 20], [Schinnerl-S 22], [Kunzinger-Ohanyan-Schinnerl-S 23]

- Hawking: Lip.
   [Calisti-Graf-Hafemann-Kunzinger-S 25]
- Hawking & Penrose:  $g \in W^{1,p}$ ,  $\operatorname{Riem}[g] \in L^p$  [work in progress]

#### causal cone structures

## [Minguzzi 19]

synthetic results

- sectional curvature bounds
- Ricci curvature bounds

[Alexander-Graf-Kunzinger-Sämann 22] [Cavaletti-Mondino 22] [Braun-McCann 24]

spacetime results

Penrose, Gannon-Lee, Hawking-Penrose: C<sup>1</sup>
 [Graf 20], [Schinnerl-S 22], [Kunzinger-Ohanyan-Schinnerl-S 23]

- Hawking: Lip.
   [Calisti-Graf-Hafemann-Kunzinger-S 25]
- Hawking & Penrose:  $g \in W^{1,p}$ ,  $\operatorname{Riem}[g] \in L^p$  [work in progress]

#### causal cone structures

## [Minguzzi 19]

- $\bullet\,$  upper semi-cont. distribution of cones on M
- causal core of singularity theorems may be established

## Theorem (Causal Penrose)

[Minguzzi 19]

Let (M, C) be a globally hyperbolic closed cone structure w. a non-compact stable Cauchy hypersurface  $\Sigma$ . Then there are no compact future trapped sets and if  $\Sigma$  is non-empty and compact there is an inextendible future null geodesic entirely in  $E^+(S)$ .

spacetime results

Penrose, Gannon-Lee, Hawking-Penrose: C<sup>1</sup>
 [Graf 20], [Schinnerl-S 22], [Kunzinger-Ohanyan-Schinnerl-S 23]

- Hawking: Lip.
   [Calisti-Graf-Hafemann-Kunzinger-S 25]
- Hawking & Penrose:  $g \in W^{1,p}$ ,  $\operatorname{Riem}[g] \in L^p$  [work in progress]

causal cone structures

[Minguzzi 19]

synthetic results

- sectional curvature bounds
- Ricci curvature bounds

[Alexander-Graf-Kunzinger-Sämann 22] [Cavaletti-Mondino 22] [Braun-McCann 24]

# Outline

## Intro & motivation

#### 2 Curvature for rough metrics

- Linear distributional curvature
- Nonlinear distributional curvature

#### 3 Applications

- Impulsive gravitational waves
- Interlude: Causality
- Singularity theorems
- Aside: Synthetic curvature bounds & singularity thms.

- Synthetic approaches: Lorentzian length spaces
  - $\blacktriangleright$  causal space  $(X,d,\ll,\leq,\tau)$  with  $\tau$  intrinsic
  - (timelike) sectional curvature bounds via triangle comparison
  - Ricci bds. via optimal transport (RCD-spaces, Lott-Villani, Sturm)
  - ▶ smooth metric measure spacetimes [McCann 20], [Mondino-Suhr 22]
  - ► [Cavaletti-Mondino 22–24] TCD(K,N) and TMCP(K,N) properties

## Theorem(TMCP-Hawking)

## [Cavaletti-Mondino 22]

Let X be a timelike non-branching, globally hyperbolic LLS with TMCP. Let V be a Borel achronal future timelike complete subset with mean curvature bded above. Then every future timelike geodesic starting in V has a bounded maximal domain of existence.

- synthetic (NEC) [McCann 23]
   [Braun-McCann 24] & synthetic Hawking T
- first-order Sobolev calculus on metric measure spacetimes (maximal weak subslope of time functions akin L-modulus of diff.)
   [Beran-Braun-Calisti-Gigli-McCann-Ohanyan-Rott-Sämann 2

- Synthetic approaches: Lorentzian length spaces
  - ▶ causal space  $(X, d, \ll, \leq, \tau)$  with  $\tau$  intrinsic
  - (timelike) sectional curvature bounds via triangle comparison



 first-order Sobolev calculus on metric measure spacetimes (maximal weak subslope of time functions akin L-modulus of diff.)
 [Beran-Braun-Calisti-Gigli-McCann-Ohanyan-Rott-Sämann 24]

Roland Steinbauer, University of Vienna

- Synthetic approaches: Lorentzian length spaces
  - ▶ causal space  $(X, d, \ll, \leq, \tau)$  with  $\tau$  intrinsic
  - (timelike) sectional curvature bounds via triangle comparison

Theorem (Synthetic Hawking) [Alexander-Graf-Kunzinger-Sämann 22]

Let  $Y = (a, b) \times_f X$  be a warped product (X metric length space,  $f \in C^{\infty}$ , non-const.) with positive timelike sectional curvature. Then  $a > -\infty$  or  $b < \infty$  and hence Y is past/future timelike geodesically incomplete.

- Ricci bds. via optimal transport (RCD-spaces, Lott-Villani, Sturm)
- [Cavaletti-Mondino 22–24] TCD(K,N) and TMCP(K,N) properties

## Theorem(TMCP-Hawking)

## Cavaletti-Mondino 22]

Let X be a timelike non-branching, globally hyperbolic LLS with TMCP. Let V be a Borel achronal future timelike complete subset with mean curvature bded above. Then every future timelike geodesic starting in V has a bounded maxima domain of existence.

Roland Steinbauer, University of Vienna

Non-smooth curvature

- Synthetic approaches: Lorentzian length spaces
  - $\blacktriangleright$  causal space  $(X,d,\ll,\leq,\tau)$  with  $\tau$  intrinsic
  - (timelike) sectional curvature bounds via triangle comparison
  - Ricci bds. via optimal transport (RCD-spaces, Lott-Villani, Sturm)
  - smooth metric measure spacetimes [McCann 20], [Mondino-Suhr 22]
  - ► [Cavaletti-Mondino 22–24] TCD(K,N) and TMCP(K,N) properties

## Theorem(TMCP-Hawking)

## [Cavaletti-Mondino 22]

Let X be a timelike non-branching, globally hyperbolic LLS with TMCP. Let V be a Borel achronal future timelike complete subset with mean curvature bded above. Then every future timelike geodesic starting in V has a bounded maximal domain of existence.

- synthetic (NEC) [McCann 23]
   [Braun-McCann 24] & synthetic Hawking Thm.
- first-order Sobolev calculus on metric measure spacetimes (maximal weak subslope of time functions akin L-modulus of diff.) [Beran-Braun-Calisti-Gigli-McCann-Ohanyan-Rott-Sämann

- Synthetic approaches: Lorentzian length spaces
  - ▶ causal space  $(X, d, \ll, \leq, \tau)$  with  $\tau$  intrinsic
  - (timelike) sectional curvature bounds via triangle comparison
  - Ricci bds. via optimal transport (RCD-spaces, Lott-Villani, Sturm)
  - smooth metric measure spacetimes [McCann 20], [Mondino-Suhr 22]
  - ► [Cavaletti-Mondino 22–24] TCD(K,N) and TMCP(K,N) properties



- synthetic (NEC) [McCann 23]
   [Braun-McCann 24] & synthetic Hawking Thm.
- first-order Sobolev calculus on metric measure spacetimes (maximal weak subslope of time functions akin L-modulus of diff.)
   [Beran-Braun-Calisti-Gigli-McCann-Ohanyan-Rott-Sämann

- Synthetic approaches: Lorentzian length spaces
  - $\blacktriangleright$  causal space  $(X,d,\ll,\leq,\tau)$  with  $\tau$  intrinsic
  - (timelike) sectional curvature bounds via triangle comparison
  - Ricci bds. via optimal transport (RCD-spaces, Lott-Villani, Sturm)
  - smooth metric measure spacetimes [McCann 20], [Mondino-Suhr 22]
  - ► [Cavaletti-Mondino 22–24] TCD(K,N) and TMCP(K,N) properties

## Theorem(TMCP-Hawking)

## [Cavaletti-Mondino 22]

Let X be a timelike non-branching, globally hyperbolic LLS with TMCP. Let V be a Borel achronal future timelike complete subset with mean curvature bded above. Then every future timelike geodesic starting in V has a bounded maximal domain of existence.

- synthetic (NEC) [McCann 23]
   [Braun-McCann 24] & synthetic Hawking Thm.
- first-order Sobolev calculus on metric measure spacetimes (maximal weak subslope of time functions akin L-modulus of diff.)
   [Beran-Braun-Calisti-Gigli-McCann-Ohanyan-Rott-Sämann

- Synthetic approaches: Lorentzian length spaces
  - $\blacktriangleright$  causal space  $(X,d,\ll,\leq,\tau)$  with  $\tau$  intrinsic
  - (timelike) sectional curvature bounds via triangle comparison
  - Ricci bds. via optimal transport (RCD-spaces, Lott-Villani, Sturm)
  - smooth metric measure spacetimes [McCann 20], [Mondino-Suhr 22]
  - ► [Cavaletti-Mondino 22–24] TCD(K,N) and TMCP(K,N) properties

## Theorem(TMCP-Hawking)

[Cavaletti-Mondino 22]

Let X be a timelike non-branching, globally hyperbolic LLS with TMCP. Let V be a Borel achronal future timelike complete subset with mean curvature bded above. Then every future timelike geodesic starting in V has a bounded maximal domain of existence.

- synthetic (NEC) [McCann 23]
   [Braun-McCann 24] & synthetic Hawking Thm.
- first-order Sobolev calculus on metric measure spacetimes (maximal weak subslope of time functions akin L-modulus of diff.)
   [Beran-Braun-Calisti-Gigli-McCann-Ohanyan-Rott-Sämann 24]