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Motivation

Semi-Riemannian geometry with metrics of low regularity

GR: field eqs. are hyperbolic PDE; regularity issues are vital
Recent interest in low regularity

• [Le Floch and coworkers, 2007-...]
• [Chrusciel, Grant 2012] causality theory

Folklore: ”Everything” should work for g ∈ C1,1
since geodesic equation still uniquely solvable

The exponential map of a smooth Semi-Riemannian metric is a
diffeomorphism locally around each point.

• proof rests on the inverse function theorem for exp, needs g ∈ C2
• however, exp ∈ Lip only, inverse function theorem? Literatur?
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The result
We prove

The exponential map of a C1,1 semi-Riemannian metric
retains maximal regularity.

Every point possesses a totally normal neighbourhood.

More precisely

Theorem (KSS 2013)

Let (M, g) be a smooth manifold with a C 1,1-semi-Riemannian
metric. Then locally around each point the exponential map is a
bi-Lipschitz homeomorphism.

Strategy of proof

regularization techniques & comparison geometry
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Sketch of Proof

step 1 (regularization): Componentwise convolution with a
standard mollifier

gε := g ∗ ρε
(gε)ε is a family of smooth Semi-Riemannian metrics

with locally uniformly bounded Riemann curvature tensor.
We have:

• gε → g locally uniformly up to 1st derivative

• ‖Riem [gε]‖E ≤ K1 , ‖Γgε‖E ≤ K2 locally

Now consider the family of exponential maps
(

expgε
p

)
ε

step 2 (common domain): By standard ODE-theory
expgε

p , expg
p are defined on a common domain BE (0, µ) ⊆ TpM
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The Riemannian case
step 3 (Jacobi field estimates): Using the Rauch comparison
Theorem we turn bounds on the sectional curvature into
(v ∈ BE (0, µ), w ∈ TpM)

e−c‖w‖E ≤ ‖Tvexpgε
p (w)‖E ≤ ec‖w‖E (1)

This gives • expgε
p is a local diffeo on BE (0, µ)

• bi-Lipchitz estimates (via mean value argument)

step 4 (Injectivity): A Theorem by Cheeger, Gromov, Taylor
turns the estimates

‖Riem[gε]‖L∞(B(p,r)) ≤ C1, Volgε(B(p, r)) ≥ C2

into an injectivity radius estimate from below ,i.e.,

Injgε(M, p) ≥ i(C1,C2).
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The Semi-Riemannian case
step 3’ (Jacobi field estimates): Done by hand (sectional
curvature unbounded) following ideas by [Chen, Le Floch 08]:
Using the estimates on Γgε , Riem[gε] one may bootstrap ‖Jε(s)‖E
to again obtain

e−c‖w‖E ≤ ‖Tvexpgε
p (w)‖E ≤ ec‖w‖E (2)

which gives • expgε
p is a local diffeo

• bi-Lipchitz estimates (via mean value argument)

step 4’: (Injectivity): Again done by hand
• using a homoptopy lifting argument on some ball BE (0, r5)
• needs a tricky nesting of domains

expgε
p (BE (0, r5)) ⊆ BE (p, r4) ⊆ expgε

p (BE (0, r̃)) ⊆ expgε
p (BE (0, r3))
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Totally normal neighbourhoods

U ⊆ M is a normal neighbourhood around p ∈ U if there exists
Ũ ⊆ TpM open and starshaped such that

expp : Ũ → U is a bi-Lipschitz homeomorphism

U is called totally normal, if it is normall for all p ∈ U.

Theorem (KSS 2013)

Let (M, g) be a smooth manifold with a C 1,1-semi-Riemannian
metric. Then each point possesses a basis of totally normal
neighbourhoods.

Adaptation of a classical proof by [Whitehead 1932].
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Context & Prospects

• From [Whitehead 1932] (geometry of paths) it already follows:

The exponential map of a C1,1-semi-Riemannian metric is a
homeomorphism locally around each point.

different methods, no Lipschitz property

• Very recently [Minguzzi, arXiv:1308.6675v1 (math.DG)] proofs the
bi-Lipschitz property entirely by ODE-methods.

• Prospect of our work: A C1,1-causality theory with easy to access
methods.
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