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Many of the ideas can be traced back to my Ph.D.,
a time when I received great support by M.O.

This talk is dedicated to you! Happy Birthday!
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Impulsive gravitational waves—the general model

Impulsive gravitational waves
theoretical model of a short but strong pulse of grav. radiation

infinite curvature along a null hypersurface

here: non-expanding igw’s on a constant curvature background
(i.e., on Minkowski or (anti-)de Sitter space)

description by a Lipschitz continuous or a distributional metric

Alternative distributional metric in a 4D-formalism
even wilder singularities
see Benedict Schinnerl’s talk
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Lipschitz metric in conformally flat coords (U ,V,X ,Y ) ∈ R4

[Podolský, Griffiths, 99]

ds2 =
gij (U ,X k) dX idX j − 2dUdV(

1 + Λ
12

(δijX iX j − 2UV − 2U+G)
)2

with

gij = δij + 2U+ H,ij + U2
+ δ

klH,ikH,jl , G = H − X iH,i

H smooth fct. of (X ,Y ), and U+ the kink-fct.
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Distributional metric in a 5D-formalism: de Sitter as a 4D-hyperboloid

Z 2
2 + Z 2

3 + Z 2
4 − 2UV = 3/Λ,

in 5D-Minkowski space with an impulsive pp-wave

ds2 = dZ 2
2 + dZ 2

3 + dZ 2
4 − 2dUdV + H(Z2,Z3,Z4)δ(U)dU2

where (Z0, . . . ,Z4) ∈ R5 are Minkowski coordinates and

U = 1/
√

2 (Z0 + Z1), V = 1/
√

2 (Z0 − Z1)

are null coordinates [Podolský, Ortaggio, 01]



Impulsive gravitational waves—the general model

Impulsive gravitational waves
theoretical model of a short but strong pulse of grav. radiation

infinite curvature along a null hypersurface

here: non-expanding igw’s on a constant curvature background
(i.e., on Minkowski or (anti-)de Sitter space)

description by a Lipschitz continuous or a distributional metric

Alternative distributional metric in a 4D-formalism
even wilder singularities
see Benedict Schinnerl’s talk

5 / 20
Impulsive Gravitational Waves & their Mathematics

N



Impulsive gravitational waves—the general model

Impulsive gravitational waves
theoretical model of a short but strong pulse of grav. radiation

infinite curvature along a null hypersurface

here: non-expanding igw’s on a constant curvature background
(i.e., on Minkowski or (anti-)de Sitter space)

description by a Lipschitz continuous or a distributional metric

Alternative distributional metric in a 4D-formalism
even wilder singularities
see Benedict Schinnerl’s talk

5 / 20
Impulsive Gravitational Waves & their Mathematics

N



Impulsive gravitational waves—the general model

Goals & Objectives

Completeness results (all geodesics are globally defined)
The analytically singular geometries are geometrically
non-singular in the sense of the [Penrose, 65]-definition.

Disprove the Ehlers-Kundt conjecture in the impulsive case!
EK: Plane waves (H quadratically) are the only complete pp-waves
Proved only in (very) special cases by [Sánchez, Flores, 17].

Explicit calculation of particle motion (solve for geodesics)
Particle scattering at Planck scale & wave memory effect

Holy Grail (Make sense of the discontinuous [Penrose, 72]-trsf.)

Relate distributional to Lipschitz metric in a meaningful way.

X in Minkowski-background [KS, 99] using nonlinear distributional
geometry [GKOS, 01] based on special Colombeau algebras

! Much more complicated in (anti-)de Sitter space

Needs Colombeau-solutions of the geodesic eqs. for D′-metric
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Compleness results 1: The Lipschitz metric

Goals

(1) Geodesic completeness

(2) Explicit calculation of the geodesics

C1-matching of the geodesics
Physicists like to derive the geodesics by matching geodesics of
background across wave-surface.

This is only possible if the geodesics
cross the wave at all
are C1 across the wave-surface
are unique

Obtain (1) & (2) by making the C1-matching procedure rigorous!

 Lipschitz metric ; geodesic equations have r.h.s in L∞, not C 0

! use the [Filippov, 88]-solution concept for ODEs w. discont. r.h.s.
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Filippov solutions: the basic idea

replace ODE with discont. r.h.s. by a differential inclusion relation

ẋ(t) = F (t, x(t)) ; ẋ(t) ∈ F [F ](t, x(t))

where the Filippov set-valued map associated with F is

F [F ](t, x) :=
⋂
δ>0

⋂
µ(S)=0

co
(
F
(
Bδ(t, x)

)
\ S)

)
.

(non-empty, closed and convex set)

A Filippov solution of the ODE is an absolutely continuous curve
satisfying the inclusion relation almost everywhere.



Compleness results 1: The Lipschitz metric

Existence and regularity of geodesics

Every Lipschitz metric has C1-geodesics [S, 14]

Let (M, g) be a C∞-manifold with a C0,1-semi Riemannian
metric. Then the geodesic equation has Filippov solutions,
which are C1.

geodesic eq.: ẍ i = −Γi
jk ẋ

j ẋk (Christoffel symbols Γ ∝ g−1 ∂g)

Rademacher: g ∈ C0,1 ⇒ Γ ∈ L∞loc

Rewrite geodesic equation for in first order form:

ż = F (z(t)) where z = (x , ẋ), F (z) = (ẋ i ,−Γi
jk(x)ẋ j ẋk)

Basic existence theorem provides us with Filippov solutions which
are by definition AC-curves.
Hence the geodesics are curves with AC-speeds.
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Compleness results 1: The Lipschitz metric

Uniqueness for Filippov solutions

g ∈ C0,1 is much below classical threshold for uniqueness (g ∈ C1,1)

But g for igw’s is piecewise smooth (C∞ off hypersrf. {U = 0})

Consider ẋ(t) = f (x(t)) on D ⊆ Rn connected

split into two parts D+, D− by a C2-hypersurface N = ∂D+ = ∂D−

f ∈ C1(D±) up to bdr. N, f ± := extensions of f |D± to N

f ±N := proj. of f ± on the unit normal ~n of N (pt. from D− to D+)

Fillipov’s uniqueness results

If f ±N > 0 all F-solutions are unique and pass from D− to D+.
Analogously for f ±N < 0 and passing from D+ to D−.
(rules out repulsive trajectories and sliding motion)
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Compleness results 1: The Lipschitz metric

Uniqueness for geodesics

Theorem (g smooth off a totally geodesic hypersrf.)[SS, 18]

Let (M, g) be a C∞-manifold with a C0,1-semi Riemannian
metric. Assume that

N is a totally geodesic C2-hypersurface, and

g ∈ C2(M \ N).

Then all (Filippov) geodesics (starting not on N) are unique and
those who hit N pass through.

Locally write N = {x1 = 0}, D± = {x1 > ±0} then ~n = e1

and for the geodesic γ(t) = (x1(t), . . . )

Rewrite geodesic equation as first order system ; f ±N = ẋ1

; only have to show that ẋ1 6= 0 if x1 = 0

But this follows for all geodesics starting off N and reaching it
since N is totally geodesic.
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N is called totally geodesic, if
every (F-)geodesic starting tangentially in N stays (initially) in N.
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Compleness results 1: The Lipschitz metric

Completeness & C 1-matching for igw’s

g ∈ C0,1 ⇒ For any initial condition Filippov solutions to the
geodesic equation exist

⇒ they are curves with AC velocities, in particular C1

g ∈ C∞ off the wave surface N := {U = 0}

The wave srfc. N is totally geodesic:
⇒ All geodesics with data given off N are unique

and they cross N
⇒ The C1-matching applies

g is the background metric off N
⇒ geodesic completeness
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Compleness results 1: The Lipschitz metric

The explicit matching

For the geodesics in non-expanding impulsive gravitational waves
on any constant curvature background we obtain

U−i = 0 = U+
i , U̇−i = U̇+

i ,

V−i = V+
i − Hi , V̇−i = V̇+

i − Hi,X ẋ+
i − Hi,Y ẏ+

i

+ 1
2

(
(Hi,X )2 + (Hi,Y )2

)
U̇+
i ,

x−i = x+
i , ẋ−i = ẋ+

i − Hi,X U̇+
i ,

y−i = y+
i , ẏ−i = ẏ+

i − Hi,Y U̇+
i .

w.r.t. the conformally flat coordinates of the background

The wave memory people got this wrong!
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Compleness results 2: The distributional metric
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Compleness results 2: The distributional metric

Problems & their solution

 distributional metric ; geodesic equations do not make sense

regularise 5D-ambient space metric

; regularised geodesic equations

 classical ODE-theory solves the regularised IVP for fixed ε
but time of existence depends on ε
; unclear whether the solution lives long enough to cross the
regularised (extended) wave zone

use a fixed point argument and a bag of tricks to obtain a
“uniform result”.

Details: Benedict Schinnerl’s talk
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Distributional metric in a 5D-formalism: de Sitter as a 4D-hyperboloid

Z 2
2 + Z 2

3 + Z 2
4 − 2UV = 3/Λ,

in 5D-Minkowski space with an impulsive pp-wave

ds2 = dZ 2
2 + dZ 2

3 + dZ 2
4 − 2dUdV + H(Z2,Z3,Z4)δ(U)dU2

where (Z0, . . . ,Z4) ∈ R5 are Minkowski coordinates and

U = 1/
√

2 (Z0 + Z1), V = 1/
√

2 (Z0 − Z1)

are null coordinates [Podolský, Ortaggio, 01]
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Regularised equations

Üε = −
(
e +

1

2
U̇2
ε G̃ε − U̇ε

(
H δε Uε

)̇) Uε
3/Λ− U2

εHδε

Z̈pε −
1

2
H,p δεU̇

2
ε = −

(
e +

1
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U̇2
ε G̃ε − U̇ε

(
H δε Uε

)̇) Zpε

3/Λ− U2
εHδε

V̈ε −
1

2
H δ
′
ε U̇

2
ε − δpqH,p δε Ż εq U̇ε = −

(
e +

1

2
U̇2
ε G̃ε − U̇ε

(
H δε Uε

)̇) Vε + H δεUε
3/Λ− U2

εHδε

where

δε = δε(Uε(t)) , δ′ε = δ′ε(Uε(t)) ,

G̃ε = G̃ε(Uε(t),Zpε(t)) , H = H(Zpε(t)) , and H,p = H,p(Zqε(t))
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Compleness results 2: The distributional metric

Simple results [SSLP, 16]

Theorem (Semi-global existence and uniqueness)

The initial value problem for the geodesic equation has a unique
smooth solution

γε = (Uε,Vε,Zε) on [αε, αε + η], where η 6= η(ε)

for small ε enough. Hence the geodesics extend to the back-
ground de Sitter spacetime ‘behind’ the wave.

Corollary (Causal completeness)

Every (causal) geodesic is complete, provided the regularisation
parameter ε is chosen small enough.

 The smallness condition on ε involves the initial data of the
geodesic ; no global completeness result!
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Compleness results 2: The distributional metric

Spacetime completeness result [SS, 17]

Use non-linear distributional geometry (special Colombeau)

Turn above ‘local solution candidate’ into a global one

prove moderateness and uniqueness

Theorem (Generalized spacetime completeness)

The generalized impulsive wave spacetime (M, g) given by

−2UV + Z 2
2 + Z 2

3 + Z 2
4 = 3/Λ

in the 5D-impulsive pp-wave

ds2 = dZ 2
2 + dZ 2

3 + dZ 2
4 − 2dUdV + H(Z2,Z3,Z4)D(U)dU2

is geodesically complete.

D, generalized δ-function with model δ-net representative
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Globalization Lemma
Let u : (0, 1] × M → Rn be a smooth map and let (P) be a property
attributable to values u(ε, p), satisfying:

∀K ⊂⊂ M there is εK > 0 : (P) holds for all p ∈ K and ε < εK .

Then there is a smooth map ũ : (0, 1] × M → Rn such that (P) holds
globally.
Moreover for each K ⊂⊂ M there exists some εK ∈ (0, 1] such that
ũ(ε, p) = u(ε, p) for all (ε, p) ∈ (0, εK ]× K .
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Conclusions and outlook

Conclusions & Outlook

Reaching the Holy Grail

Revealing that the transformation between the 4D-distributional and
the Lipschitz metric

U = U , V = V + ΘH + U+ H,ZH,Z̄ , η = Z + U+ H,Z̄ .

is the limit (shadow) of a generalized diffeomorphism.

Needs estimates on the dependence of Colombeau-geos on data!

Until recently available only in the 5-D formalism
informal calculations (# %#!) show that things work out...

Now direct 4-D results available; see Benedict Schinerl’s talk!

Gravitational wave memory effect for igw’s

diplomatic mission???

generalize known results from plane to pp-waves & nonvanishing Λ
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