Impulsive Gravitational Waves and their Mathematics

Roland Steinbauer Faculty of Mathematics, University of Vienna

Novi Sad, August 2018

The topic

Study of an interesting class of **exact solutions** of Einstein's equations in General Relativity that are analytically **singular**

belongs in the recently very active field of

Nonregular spacetime geometry

that is, Lorentzian geometry & GR with metrics of low regularity.

- joint long-term project with
 - Jiří Podolský, Robert Švarc (Prague)
 - Clemens Sämann, Benedict Schinnerl (Vienna)

The topic

Study of an interesting class of **exact solutions** of Einstein's equations in General Relativity that are analytically **singular**

belongs in the recently very active field of

Nonregular spacetime geometry

that is, Lorentzian geometry & GR with metrics of low regularity.

- joint long-term project with
 - Jiří Podolský, Robert Švarc (Prague)
 - Clemens Sämann, Benedict Schinnerl (Vienna)

Many of the ideas can be traced back to my Ph.D., a time when I received great support by M.O.

This talk is dedicated to you! Happy Birthday!

Table of Contents

1 Impulsive gravitational waves—the general model

2 Compleness results 1: The Lipschitz metric

3 Compleness results 2: The distributional metric

Table of Contents

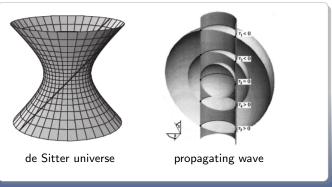
1 Impulsive gravitational waves—the general model

- Compleness results 1: The Lipschitz metric
- **3** Compleness results 2: The distributional metric
- 4 Conclusions and outlook

- theoretical model of a short but strong pulse of grav. radiation
- infinite curvature along a null hypersurface
- here: non-expanding igw's on a constant curvature background (i.e., on Minkowski or (anti-)de Sitter space)

Impulsive gravitational waves-the general model

- theoretical model of a short but strong pulse of grav. radiation
- infinite curvature along a null hypersurface
- here: non-expanding igw's on a constant curvature background (i.e., on Minkowski or (anti-)de Sitter space)



- theoretical model of a short but strong pulse of grav. radiation
- infinite curvature along a null hypersurface
- here: non-expanding igw's on a constant curvature background (i.e., on Minkowski or (anti-)de Sitter space)

- theoretical model of a short but strong pulse of grav. radiation
- infinite curvature along a null hypersurface
- here: **non-expanding** igw's on a constant curvature background (i.e., on Minkowski or (anti-)**de Sitter space**)
- description by a Lipschitz continuous or a distributional metric

- theoretical model of a short but strong pulse of grav. radiation
- infinite curvature along a null hypersurface
- here: non-expanding igw's on a constant curvature background (i.e., on Minkowski or (anti-)de Sitter space)
- description by a Lipschitz continuous or a distributional metric

Lipschitz metric in conformally flat coords $(\mathcal{U}, \mathcal{V}, X, Y) \in \mathbb{R}^4$ [Podolský, Griffiths, 99]

$$ds^{2} = \frac{\mathbf{g}_{ij}\left(\mathcal{U}, X^{k}\right) \mathrm{d}X^{i} \mathrm{d}X^{j} - 2 \, \mathrm{d}\mathcal{U} \mathrm{d}\mathcal{V}}{\left(1 + \frac{\Lambda}{12} \left(\delta_{ij} X^{i} X^{j} - 2 \, \mathcal{U}\mathcal{V} - 2 \mathcal{U}_{+} \, G\right)\right)^{2}}$$

with

•
$$g_{ij} = \delta_{ij} + 2\mathcal{U}_+ H_{,ij} + \mathcal{U}_+^2 \delta^{kl} H_{,ik} H_{,jl}, \ G = H - X^i H_{,i}$$

• *H* smooth fct. of (X, Y), and \mathcal{U}_+ the kink-fct.

- theoretical model of a short but strong pulse of grav. radiation
- infinite curvature along a null hypersurface
- here: **non-expanding** igw's on a constant curvature background (i.e., on Minkowski or (anti-)**de Sitter space**)
- description by a Lipschitz continuous or a distributional metric

- theoretical model of a short but strong pulse of grav. radiation
- infinite curvature along a null hypersurface
- here: non-expanding igw's on a constant curvature background (i.e., on Minkowski or (anti-)de Sitter space)
- description by a Lipschitz continuous or a distributional metric

Distributional metric in a 5D-formalism: de Sitter as a 4D-hyperboloid

$$Z_2^2 + Z_3^2 + Z_4^2 - 2UV = 3/\Lambda,$$

in 5D-Minkowski space with an impulsive pp-wave

$$\mathrm{d}s^2 = \mathrm{d}Z_2^2 + \mathrm{d}Z_3^2 + \mathrm{d}Z_4^2 - 2\mathrm{d}U\mathrm{d}V + H(Z_2, Z_3, Z_4)\delta(\mathbf{U})\mathrm{d}U^2$$

where $(Z_0,\ldots,Z_4)\in \mathbb{R}^5$ are Minkowski coordinates and

$$U = 1/\sqrt{2} (Z_0 + Z_1), \quad V = 1/\sqrt{2} (Z_0 - Z_1)$$

are null coordinates

[Podolský, Ortaggio, 01]

- theoretical model of a short but strong pulse of grav. radiation
- infinite curvature along a null hypersurface
- here: **non-expanding** igw's on a constant curvature background (i.e., on Minkowski or (anti-)**de Sitter space**)
- description by a Lipschitz continuous or a distributional metric

- theoretical model of a short but strong pulse of grav. radiation
- infinite curvature along a null hypersurface
- here: non-expanding igw's on a constant curvature background (i.e., on Minkowski or (anti-)de Sitter space)
- description by a Lipschitz continuous or a distributional metric
- Alternative distributional metric in a 4D-formalism
 - even wilder singularities
 - see Benedict Schinnerl's talk

Goals & Objectives

Completeness results (all geodesics are globally defined)

- The analytically singular geometries are **geometrically non-singular** in the sense of the [Penrose, 65]-definition.
- Disprove the **Ehlers-Kundt conjecture** in the impulsive case! EK: Plane waves (*H* quadratically) are the only complete *pp*-waves Proved only in (very) special cases by [Sánchez, Flores, 17].

Goals & Objectives

Completeness results (all geodesics are globally defined)

- The analytically singular geometries are **geometrically non-singular** in the sense of the [Penrose, 65]-definition.
- Disprove the **Ehlers-Kundt conjecture** in the impulsive case! EK: Plane waves (*H* quadratically) are the only complete *pp*-waves Proved only in (very) special cases by [Sánchez, Flores, 17].

Explicit calculation of particle motion (solve for geodesics)

• Particle scattering at Planck scale & wave memory effect

Goals & Objectives

Completeness results (all geodesics are globally defined)

- The analytically singular geometries are **geometrically non-singular** in the sense of the [Penrose, 65]-definition.
- Disprove the **Ehlers-Kundt conjecture** in the impulsive case! EK: Plane waves (*H* quadratically) are the only complete *pp*-waves Proved only in (very) special cases by [Sánchez, Flores, 17].

Explicit calculation of particle motion (solve for geodesics)

• Particle scattering at Planck scale & wave memory effect

Holy Grail (Make sense of the discontinuous [Penrose, 72]-trsf.)

- Relate distributional to Lipschitz metric in a meaningful way.
- ✓ in Minkowski-background [KS, 99] using nonlinear distributional geometry [GKOS, 01] based on special Colombeau algebras
 - ! Much more complicated in (anti-)de Sitter space
- $\,\circ\,$ Needs Colombeau-solutions of the geodesic eqs. for $\mathcal{D}'\text{-metric}$

Compleness results 1: The Lipschitz metric

Table of Contents

Impulsive gravitational waves—the general model

2 Compleness results 1: The Lipschitz metric

3 Compleness results 2: The distributional metric

4 Conclusions and outlook

- (1) Geodesic completeness
- (2) Explicit calculation of the geodesics

- (1) Geodesic completeness
- (2) Explicit calculation of the geodesics

$\mathcal{C}^1\text{-matching of the geodesics}$

- Physicists like to derive the geodesics by matching geodesics of background across wave-surface.
- This is only possible if the geodesics
 - cross the wave at all
 - $\bullet~$ are \mathcal{C}^1 across the wave-surface
 - are unique

- (1) Geodesic completeness
- (2) Explicit calculation of the geodesics

\mathcal{C}^1 -matching of the geodesics

- Physicists like to derive the geodesics by matching geodesics of background across wave-surface.
- This is **only** possible if the geodesics
 - cross the wave at all
 - are \mathcal{C}^1 across the wave-surface
 - are unique
- Obtain (1) & (2) by making the C^1 -matching procedure rigorous!
- $_{\ell}^{\prime}$ Lipschitz metric ightarrow geodesic equations have r.h.s in L^{∞} , not C^{0}
- ! use the [Filippov, 88]-solution concept for ODEs w. discont. r.h.s.

Filippov solutions: the basic idea

• replace ODE with discont. r.h.s. by a differential inclusion relation

$$\dot{x}(t) = F(t, x(t)) \quad \rightsquigarrow \quad \dot{x}(t) \in \mathcal{F}[F](t, x(t))$$

where the Filippov set-valued map associated with F is

$$\mathcal{F}[F](t,x) := igcap_{\delta > 0} igcap_{\mu(S) = 0} {
m co} \left(F igl(B_{\delta}(t,x) igr) \setminus S igr)
ight).$$

(non-empty, closed and convex set)

- A **Filippov solution** of the ODE is an absolutely continuous curve satisfying the inclusion relation almost everywhere.
- Obtain (1) & (2) by making the C^1 -matching procedure rigorous!
- $\not \perp$ Lipschitz metric \rightsquigarrow geodesic equations have r.h.s in L^∞ , not C^0
- ! use the [Filippov, 88]-solution concept for ODEs w. discont. r.h.s.

Existence and regularity of geodesics

Every Lipschitz metric has C^1 -geodesics [S, 14] Let (M, \mathbf{g}) be a C^{∞} -manifold with a $C^{0,1}$ -semi Riemannian metric. Then the geodesic equation has Filippov solutions, which are C^1 .

Existence and regularity of geodesics

Every Lipschitz metric has C^1 -geodesics [S, 14] Let (M, \mathbf{g}) be a C^∞ -manifold with a $C^{0,1}$ -semi Riemannian metric. Then the geodesic equation has Filippov solutions, which are C^1 .

geodesic eq.: $\ddot{x}^i = -\Gamma^i_{jk} \dot{x}^j \dot{x}^k$ (Christoffel symbols $\Gamma \propto \mathbf{g}^{-1} \partial \mathbf{g}$) Rademacher: $\mathbf{g} \in \mathcal{C}^{0,1} \Rightarrow \Gamma \in L^{\infty}_{loc}$ Rewrite geodesic equation for in first order form:

 $\dot{z} = F(z(t))$ where $z = (x, \dot{x}), \quad F(z) = (\dot{x}^i, -\Gamma^i_{jk}(x)\dot{x}^j\dot{x}^k)$

Basic existence theorem provides us with Filippov solutions which are by definition AC-curves. Hence the geodesics are curves with AC-speeds.

Impulsive Gravitational Waves & their Mathematics

Uniqueness for Filippov solutions

- $g \in \mathcal{C}^{0,1}$ is much below classical threshold for uniqueness $(g \in \mathcal{C}^{1,1})$
- **But g** for igw's is piecewise smooth (C^{∞} off hypersrf. {U = 0})

Uniqueness for Filippov solutions

• $g \in \mathcal{C}^{0,1}$ is much below classical threshold for uniqueness $(g \in \mathcal{C}^{1,1})$

• But g for igw's is piecewise smooth (C^{∞} off hypersrf. $\{U = 0\}$)

Consider $\dot{x}(t) = f(x(t))$ on $D \subseteq \mathbb{R}^n$ connected

- split into two parts D^+ , D^- by a \mathcal{C}^2 -hypersurface $N=\partial D^+=\partial D^-$
- $f \in \mathcal{C}^1(D^\pm)$ up to bdr. N, $f^\pm :=$ extensions of $f|_{D^\pm}$ to N
- $f_N^{\pm} :=$ proj. of f^{\pm} on the unit normal \vec{n} of N (pt. from D^- to D^+)

Uniqueness for Filippov solutions

• $g \in \mathcal{C}^{0,1}$ is much below classical threshold for uniqueness $(g \in \mathcal{C}^{1,1})$

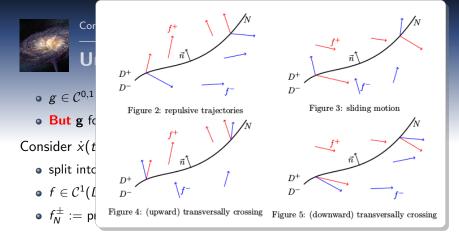
• **But g** for igw's is piecewise smooth (C^{∞} off hypersrf. {U = 0})

Consider $\dot{x}(t) = f(x(t))$ on $D \subseteq \mathbb{R}^n$ connected

- split into two parts D^+ , D^- by a \mathcal{C}^2 -hypersurface $N=\partial D^+=\partial D^-$
- $f \in \mathcal{C}^1(D^{\pm})$ up to bdr. N, $f^{\pm} :=$ extensions of $f|_{D^{\pm}}$ to N
- $f_N^{\pm} :=$ proj. of f^{\pm} on the unit normal \vec{n} of N (pt. from D^- to D^+)

Fillipov's uniqueness results

If $f_N^{\pm} > 0$ all F-solutions are unique and pass from D^- to D^+ . Analogously for $f_N^{\pm} < 0$ and passing from D^+ to D^- . (rules out repulsive trajectories and sliding motion)



Fillipov's uniqueness results

If $f_N^{\pm} > 0$ all F-solutions are unique and pass from D^- to D^+ . Analogously for $f_N^{\pm} < 0$ and passing from D^+ to D^- . (rules out repulsive trajectories and sliding motion)

Theorem (g smooth off a totally geodesic hypersrf.)[SS, 18]

Let (M, \mathbf{g}) be a \mathcal{C}^∞ -manifold with a $\mathcal{C}^{0,1}$ -semi Riemannian metric. Assume that

• N is a totally geodesic \mathcal{C}^2 -hypersurface, and

•
$$\mathbf{g} \in \mathcal{C}^2(M \setminus N)$$
.

Then all (Filippov) geodesics (starting not on N) are unique and those who hit N pass through.

Theorem (g smooth off a totally geodesic hypersrf.)[SS, 18]

Let (M, \mathbf{g}) be a \mathcal{C}^{∞} -manifold with a $\mathcal{C}^{0,1}$ -semi Riemannian metric. Assume that

• N is a totally geodesic \mathcal{C}^2 -hypersurface, and

•
$$\mathbf{g} \in \mathcal{C}^2(M \setminus N).$$

Then all (Filippov) geodesics (starting not on N) are unique and those who hit N pass through.

N is called totally geodesic, if every (F-)geodesic starting tangentially in N stays (initially) in N.

Theorem (g smooth off a totally geodesic hypersrf.)[SS, 18]

Let (M, \mathbf{g}) be a \mathcal{C}^∞ -manifold with a $\mathcal{C}^{0,1}$ -semi Riemannian metric. Assume that

• N is a totally geodesic \mathcal{C}^2 -hypersurface, and

•
$$\mathbf{g} \in \mathcal{C}^2(M \setminus N)$$
.

Then all (Filippov) geodesics (starting not on N) are unique and those who hit N pass through.

Theorem (g smooth off a totally geodesic hypersrf.)[SS, 18]

Let (M, \mathbf{g}) be a \mathcal{C}^{∞} -manifold with a $\mathcal{C}^{0,1}$ -semi Riemannian metric. Assume that

• N is a totally geodesic \mathcal{C}^2 -hypersurface, and

•
$$\mathbf{g} \in \mathcal{C}^2(M \setminus N).$$

Then all (Filippov) geodesics (starting not on N) are unique and those who hit N pass through.

- Locally write $N = \{x^1 = 0\}$, $D^{\pm} = \{x^1 > \pm 0\}$ then $\vec{n} = e_1$ and for the geodesic $\gamma(t) = (x^1(t), ...)$
- Rewrite geodesic equation as first order system $\rightsquigarrow f_N^{\pm} = \dot{x}^1$ \rightsquigarrow only have to show that $\dot{x}^1 \neq 0$ if $x^1 = 0$
- But this follows for all geodesics starting off *N* and reaching it since *N* is totally geodesic.

Impulsive Gravitational Waves & their Mathematics

Completeness & C¹-matching for igw's

- $g\in \mathcal{C}^{0,1}\ \Rightarrow$ For any initial condition Filippov solutions to the geodesic equation exist
 - \Rightarrow they are curves with AC velocities, in particular \mathcal{C}^1

•
$$\mathbf{g} \in \mathcal{C}^{\infty}$$
 off the wave surface $N := \{U = 0\}$

• The wave srfc. N is totally geodesic: \Rightarrow All geodesics with data given off N are unique and they cross N \Rightarrow The C^1 -matching applies

g is the background metric off N
 ⇒ geodesic completeness

The explicit matching

For the geodesics in non-expanding impulsive gravitational waves on any constant curvature background we obtain

$$\begin{split} \mathcal{U}_i^- &= 0 = \mathcal{U}_i^+ \,, & \dot{\mathcal{U}}_i^- = \dot{\mathcal{U}}_i^+ \,, \\ \mathcal{V}_i^- &= \mathcal{V}_i^+ - \mathcal{H}_i \,, & \dot{\mathcal{V}}_i^- = \dot{\mathcal{V}}_i^+ - \mathcal{H}_{i,X} \, \dot{x}_i^+ - \mathcal{H}_{i,Y} \, \dot{y}_i^+ \\ &\quad + \frac{1}{2} \big((\mathcal{H}_{i,X})^2 + (\mathcal{H}_{i,Y})^2 \big) \, \dot{\mathcal{U}}_i^+ \,, \\ x_i^- &= x_i^+ \,, & \dot{x}_i^- = \dot{x}_i^+ - \mathcal{H}_{i,X} \, \dot{\mathcal{U}}_i^+ \,, \\ y_i^- &= y_i^+ \,, & \dot{y}_i^- = \dot{y}_i^+ - \mathcal{H}_{i,Y} \, \dot{\mathcal{U}}_i^+ \,. \end{split}$$

w.r.t. the conformally flat coordinates of the background The wave memory people got this wrong!

Table of Contents

Impulsive gravitational waves—the general model

Compleness results 1: The Lipschitz metric

3 Compleness results 2: The distributional metric

Conclusions and outlook

Impulsive Gravitational Waves & their Mathematics

Problems & their solution

- ${\rm \not\! t}$ distributional metric ${\sim}{\rm \! s}$ geodesic equations do not make sense
- regularise 5D-ambient space metric

- regularise 5D-ambient space metric

Distributional metric in a 5D-formalism: de Sitter as a 4D-hyperboloid

$$Z_2^2 + Z_3^2 + Z_4^2 - 2UV = 3/\Lambda,$$

in 5D-Minkowski space with an impulsive pp-wave

$$\mathrm{d} s^2 = \mathrm{d} Z_2^2 + \mathrm{d} Z_3^2 + \mathrm{d} Z_4^2 - 2 \mathrm{d} U \mathrm{d} V + H(Z_2, Z_3, Z_4) \delta(\textbf{U}) \mathrm{d} U^2$$

where $(Z_0, \ldots, Z_4) \in \mathbb{R}^5$ are Minkowski coordinates and

$$U = 1/\sqrt{2} (Z_0 + Z_1), \quad V = 1/\sqrt{2} (Z_0 - Z_1)$$

are null coordinates

[Podolský, Ortaggio, 01]

- ${\rm \not\! t}$ distributional metric ${\sim}{\rm \! s}$ geodesic equations do not make sense
- regularise 5D-ambient space metric

- regularise 5D-ambient space metric

Distributional metric in a 5D-formalism: de Sitter as a 4D-hyperboloid

$$Z_2^2 + Z_3^2 + Z_4^2 - 2UV = 3/\Lambda,$$

in 5D-Minkowski space with an impulsive pp-wave

$$\mathrm{d}s^2 = \mathrm{d}Z_2^2 + \mathrm{d}Z_3^2 + \mathrm{d}Z_4^2 - 2\mathrm{d}U\mathrm{d}V + H(Z_2, Z_3, Z_4)\delta_{\varepsilon}(\mathbf{U})\mathrm{d}U^2$$

where $(Z_0, \ldots, Z_4) \in \mathbb{R}^5$ are Minkowski coordinates and

$$U = 1/\sqrt{2} (Z_0 + Z_1), \quad V = 1/\sqrt{2} (Z_0 - Z_1)$$

are null coordinates

[Podolský, Ortaggio, 01]

- ${\rm \not\! t}$ distributional metric ${\sim}{\rm \! s}$ geodesic equations do not make sense
- regularise 5D-ambient space metric

- ${\rm \not \! \! j}\,$ distributional metric ${\rm \rightsquigarrow}$ geodesic equations do not make sense
- regularise 5D-ambient space metric
- $\rightsquigarrow\,$ regularised geodesic equations

- ${\rm \not \! \! j}\,$ distributional metric ${\rm \leadsto}$ geodesic equations do not make sense
- regularise 5D-ambient space metric
- $\rightsquigarrow\,$ regularised geodesic equations

Regularised equations

$$\begin{split} \ddot{U}_{\varepsilon} &= -\left(e + \frac{1}{2} \dot{U}_{\varepsilon}^{2} \tilde{G}_{\varepsilon} - \dot{U}_{\varepsilon} \left(H \,\delta_{\varepsilon} \, U_{\varepsilon}\right)\right) \frac{U_{\varepsilon}}{3/\Lambda - U_{\varepsilon}^{2} H \delta_{\varepsilon}} \\ \ddot{Z}_{p\varepsilon} - \frac{1}{2} H_{,p} \,\delta_{\varepsilon} \,\dot{U}_{\varepsilon}^{2} &= -\left(e + \frac{1}{2} \,\dot{U}_{\varepsilon}^{2} \,\tilde{G}_{\varepsilon} - \dot{U}_{\varepsilon} \left(H \,\delta_{\varepsilon} \, U_{\varepsilon}\right)\right) \frac{Z_{p\varepsilon}}{3/\Lambda - U_{\varepsilon}^{2} H \delta_{\varepsilon}} \\ \ddot{V}_{\varepsilon} - \frac{1}{2} \,H \,\delta_{\varepsilon}^{'} \,\dot{U}_{\varepsilon}^{2} - \delta^{pq} H_{,p} \,\delta_{\varepsilon} \,\dot{Z}_{q}^{\varepsilon} \,\dot{U}_{\varepsilon} &= -\left(e + \frac{1}{2} \,\dot{U}_{\varepsilon}^{2} \,\tilde{G}_{\varepsilon} - \dot{U}_{\varepsilon} \left(H \,\delta_{\varepsilon} \, U_{\varepsilon}\right)\right) \frac{V_{\varepsilon} + H \,\delta_{\varepsilon} U_{\varepsilon}}{3/\Lambda - U_{\varepsilon}^{2} H \delta_{\varepsilon}} \end{split}$$

where

$$egin{aligned} \delta_arepsilon &= \delta_arepsilon(U_arepsilon(t))\,, & \delta_arepsilon' &= \delta_arepsilon(U_arepsilon(t), Z_{parepsilon}(t))\,, & H = H(Z_{parepsilon}(t))\,, & ext{and} & H_{,p} = H_{,p}(Z_{qarepsilon}(t))\,. \end{aligned}$$

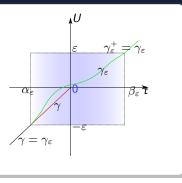
- ${\rm \not \! \! j}\,$ distributional metric ${\rm \rightsquigarrow}$ geodesic equations do not make sense
- regularise 5D-ambient space metric
- $\rightsquigarrow\,$ regularised geodesic equations

- \oint distributional metric \rightsquigarrow geodesic equations do not make sense
- regularise 5D-ambient space metric
- $\rightsquigarrow\,$ regularised geodesic equations
 - \not{z} classical ODE-theory solves the regularised IVP for fixed ε **but** time of existence depends on ε \rightarrow unclear whether the solution lives long enough to cross the regularised (extended) wave zone

Compleness results 2: The distribut

Problems & their s

- regularise 5D-ambient space metric
- \rightsquigarrow regularised geodesic equations



 \rightsquigarrow unclear whether the solution lives long enough to cross the regularised (extended) wave zone

- \oint distributional metric \rightsquigarrow geodesic equations do not make sense
- regularise 5D-ambient space metric
- $\rightsquigarrow\,$ regularised geodesic equations
 - \not{z} classical ODE-theory solves the regularised IVP for fixed ε **but** time of existence depends on ε \rightarrow unclear whether the solution lives long enough to cross the regularised (extended) wave zone

- ${\rm \not\!\!\!\!/}\,$ distributional metric \rightsquigarrow geodesic equations do not make sense
- regularise 5D-ambient space metric
- \rightsquigarrow regularised geodesic equations

 - use a **fixed point argument** and a bag of tricks to obtain a "uniform result".

Details: Benedict Schinnerl's talk

Simple results

[SSLP, 16]

Theorem (Semi-global existence and uniqueness)

The initial value problem for the geodesic equation has a unique smooth solution

 $\gamma_{\varepsilon} = (U_{\varepsilon}, V_{\varepsilon}, Z_{\varepsilon})$ on $[\alpha_{\varepsilon}, \alpha_{\varepsilon} + \eta]$, where $\eta \neq \eta(\varepsilon)$

for small ε enough. Hence the geodesics extend to the background de Sitter spacetime 'behind' the wave.

Simple results

[SSLP, 16]

Theorem (Semi-global existence and uniqueness)

The initial value problem for the geodesic equation has a unique smooth solution

 $\gamma_{\varepsilon} = (U_{\varepsilon}, V_{\varepsilon}, Z_{\varepsilon})$ on $[\alpha_{\varepsilon}, \alpha_{\varepsilon} + \eta]$, where $\eta \neq \eta(\varepsilon)$

for small ε enough. Hence the geodesics extend to the background de Sitter spacetime 'behind' the wave.

Corollary (Causal completeness)

Every (causal) geodesic is complete, provided the regularisation parameter ε is chosen small enough.

Simple results

[SSLP, 16]

Theorem (Semi-global existence and uniqueness)

The initial value problem for the geodesic equation has a unique smooth solution

 $\gamma_{\varepsilon} = (U_{\varepsilon}, V_{\varepsilon}, Z_{\varepsilon})$ on $[\alpha_{\varepsilon}, \alpha_{\varepsilon} + \eta]$, where $\eta \neq \eta(\varepsilon)$

for small ε enough. Hence the geodesics extend to the background de Sitter spacetime 'behind' the wave.

Corollary (Causal completeness)

Every (causal) geodesic is complete, provided the regularisation parameter ε is chosen small enough.

 \oint The smallness condition on ε involves the initial data of the geodesic \rightsquigarrow no **global** completeness result!

Impulsive Gravitational Waves & their Mathematics

Use non-linear distributional geometry (special Colombeau)

• Turn above 'local solution candidate' into a global one

Use non-linear distributional geometry (special Colombeau)

• Turn above 'local solution candidate' into a global one

Globalization Lemma

Let $u : (0,1] \times M \to \mathbb{R}^n$ be a smooth map and let (P) be a property attributable to values $u(\varepsilon, p)$, satisfying:

 $\forall K \subset \subset M$ there is $\varepsilon_K > 0$: (P) holds for all $p \in K$ and $\varepsilon < \varepsilon_K$.

Then there is a smooth map \tilde{u} : $(0,1] \times M \to \mathbb{R}^n$ such that (P) holds globally.

Moreover for each $K \subset M$ there exists some $\varepsilon_{\kappa} \in (0, 1]$ such that $\tilde{u}(\varepsilon, p) = u(\varepsilon, p)$ for all $(\varepsilon, p) \in (0, \varepsilon_{\kappa}] \times K$.

Use non-linear distributional geometry (special Colombeau)

• Turn above 'local solution candidate' into a global one

Use non-linear distributional geometry (special Colombeau)

- Turn above 'local solution candidate' into a global one
- prove moderateness and uniqueness

Use non-linear distributional geometry (special Colombeau)

- Turn above 'local solution candidate' into a global one
- prove moderateness and uniqueness

Theorem (Generalized spacetime completeness) The generalized impulsive wave spacetime (M, g) given by $-2UV + Z_2^2 + Z_3^2 + Z_4^2 = 3/\Lambda$

in the 5D-impulsive pp-wave $ds^2 = dZ_2^2 + dZ_3^2 + dZ_4^2 - 2dUdV + H(Z_2, Z_3, Z_4) \mathbf{D}(\mathbf{U}) dU^2$

is geodesically complete.

D, generalized δ -function with model δ -net representative

Impulsive Gravitational Waves & their Mathematics

Conclusions and outlook

Table of Contents

Impulsive gravitational waves—the general model

2 Compleness results 1: The Lipschitz metric

3 Compleness results 2: The distributional metric

Conclusions and outlook

Conclusions & Outlook

Reaching the Holy Grail

• Revealing that the transformation between the 4D-distributional and the Lipschitz metric

 $\mathcal{U} = U, \quad \mathcal{V} = V + \Theta H + \mathcal{U}_+ H_{,Z} H_{,\bar{Z}}, \quad \eta = Z + \mathcal{U}_+ H_{,\bar{Z}}.$

is the limit (shadow) of a generalized diffeomorphism.

- Needs estimates on the dependence of Colombeau-geos on data!
- Until recently available only in the 5-D formalism informal calculations (#½%#!) show that things work out...
- Now direct 4-D results available; see Benedict Schinerl's talk!

Conclusions and outlook

Conclusions & Outlook

Reaching the Holy Grail

• Revealing that the transformation between the 4D-distributional and the Lipschitz metric

 $\mathcal{U} = U\,,\quad \mathcal{V} = V + \Theta\,H + \mathcal{U}_+\,H_{,Z}H_{,\bar{Z}}\,,\quad \eta = Z + \mathcal{U}_+\,H_{,\bar{Z}}\,.$

is the limit (shadow) of a generalized diffeomorphism.

- Needs estimates on the dependence of Colombeau-geos on data!
- Until recently available only in the 5-D formalism informal calculations (#½%#!) show that things work out...
- Now direct 4-D results available; see Benedict Schinerl's talk!

Gravitational wave memory effect for igw's

- diplomatic mission???
- generalize known results from plane to pp-waves & nonvanishing Λ

Some related Literature

- [SS,12] C. Sämann, R. Steinbauer, On the completeness of impulsive gravitational wave spacetimes. CQG 29 (2012)
- [LSŠ,14] A. Lecke, R. Steinbauer, R. Švarc, The regularity of geodesics in impulsive pp-waves. GRG 46 (2014)
- [PSS,14] J. Podolský, R. Šteinbauer, R. Švarc, Gyratonic pp-waves and their impulsive limit. PRD 90 (2014)
- [S,14] R. Steinbauer, Every Lipschitz metric has C¹-geodesics. CQG 31, 057001 (2014)
- [PSSŠ,15] J. Podolský, C. Sämann, R. Steinbauer, R. Švarc, The global existence, uniqueness and C¹-regularity of geodesics in nonexpanding impulsive gravitational waves. CQG 32 (2015)
- [SS,15] C. Sämann, R. Steinbauer, Geodesic completeness of generalized space-times, in Pseudo-differenti operators and generalized functions. Pilipovic, S., Toft, J. (eds) Birkhäuser/Springer, 2013
- [PSSŠ,16] J. Podolský, C. Sämann, R. Steinbauer, R. Švarc, The global uniqueness and C¹-regularity o geodesics in expanding impulsive gravitational waves. CQG 33 (2016)
- [SSLP,16] C. Sämann, R. Steinbauer, A. Lecke, J. Podolsky, Geodesics in nonexpanding impulsive gravitational waves with Λ, part I, CQG 33 (2016)
- [SSŠ,16] C. Sämann, R. Steinbauer, R. Švarc, Completeness of general pp-wave spacetimes and their impulsive limit., CQG 33 (2016)
- [PŠSS,17] J. Podolský, R. Švarc, C. Sämann, R. Steinbauer, Penrose junction conditions extended: impulsive waves with gyratons, PRD 96 (2017)
- [SS,17] C. Sämann, R. Steinbauer, Geodesics in nonexpanding impulsive gravitational waves with Λ, part II, JMP 58 (2017)
- [SS,18] C. Sämann, R. Steinbauer, On geodesics in low regularity, in IOP: Conference Series 968, (2018)

Hvala na pažnji