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Overview

General topic: exact sols. with a twist towards low regular metrics

based on a series of joint papers with
with Jǐŕı Podolský, Clemens Sämann & Robert Švarc

part of a broader line of research on

Impulsive gravitational waves

which are models of short but violent burst of gravitational radiation

Why impulsive waves?

exact solutions: interesting radiative solutions
mathematics: relevant key-models in low reguarity
particle physics: quantum scattering, wave memory effect

History: [Penrose, late 60s, early 70s] sicssors and paste approach
[Aichelburg&Sexl, 72] ultrarel. boost of Schwarzschild
[Hotta&Tanaka, 93] AS-boost with Λ 6= 0
[Griffiths&Podolský, late 90s] systematic study for Λ 6= 0
[PSŠS, 2014–] new geometric & mathematical insights
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[Griffiths&Podolský, late 90s] systematic study for Λ 6= 0
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Cut & paste: explicit construction

(U ,V, η)M− = (U,V−h(η, η̄), η)M+

Start with background

ds2
0 = 2dη dη̄−2dU dV (B)

Transform, h(Z , Z̄ ) arbitrary

U = u

η = Z + u+ h,Z̄ (T)

V = v + Θ(u) h + u+ h,Zh,Z̄

Apply (T) to (B) for U > 0, < 0 separately ; continuous form

ds2 = 2 |dZ + u+(h,ZZ̄dZ + h,Z̄ Z̄dZ̄ )|2 − 2dudv (C)

Apply (T )−1 to (C) formally for all U ; distributional form

ds2 = 2dη dη̄ − 2dU dV + 2h(η, η̄) δ(U)dU2 (D)
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Cut & paste: explicit construction with Λ
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Cut & paste: explicit construction with Λ
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Cut & paste: explicit construction with Λ

imp. wave in dS propagating wave
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Cut & paste: explicit construction with Λ

Questions

Q1) What happens to the
cut & paste picture?

Q2) What is the meaning of the
’discontinuous

transformation’ (T)?
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The ‘discontinuous transformation’ for Λ = 0

Cut & paste in M revisited

Key observation:
(T) is closely related to the
null geodesics in (D)

γ(U) = (V, η) (U) with data
γ(−∞) = (v ,Z ), γ̇(−∞) = 0

(T): (C)→ (D) is given by

(u, v ,Z ) 7→ (U ,V(U), η(U))

Actual treatment of (D):
regularisation!

regularise (D): δ ; δε

geodesics γε of (Dε)
naturally give geometric
regularisation (Tε) of (T)

C∞-spacetime with sing.
limits in different coords.
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Schematic picture

(D) lim←→ reg. (Dε)

(T )
xy xy (Tε)

(C ) lim←→ reg. (Cε)
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Cut & paste in M revisited
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regularisation!

regularise (D): δ ; δε

geodesics γε of (Dε)
naturally give geometric
regularisation (Tε) of (T)

C∞-spacetime with sing.
limits in different coords.

Advanced math. treatment
needs fully nonlinear analysis of γε

global existence & uniqueness
γε cross wave impulse

limits are broken backgr. geos

(T) is limit of ‘generalised diffeo’
in nonlinear distr. geometry
(Colombeau) [Kunzinger&S, 99]
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The ‘discontinuous transformation’ for Λ 6= 0

(null) geodesics in (D) are the key!
i.e. interaction of the null particles with the wave impulse

complicated nonlinear system with very(!) singular coefficients

trick: use 5-dim. representation of (A)dS to tackle geodesic eq.
(following [Podolský&Ortaggio, 01])

Global existence and uniqueness result for regularised situation
(using a fixed point argument)
limits are again broken background geodesics [SSLP, 16]

nonlinear distributional analysis
enables advanced mathematical treatment [SS, 17]

Answer to Q2)

(T) is the limit of a ‘generalised diffeomorphism’ in nonlinear distribu-
tional geometry (Colombeau). [SŠS, forthcoming]

But where is the cut & paste picture?
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Explicit jump formulas:

γ5D(λ) =

 λ

V 0 + V̇ 0λ+ Θ(λ)B + Cλ+

Z0
p + Ż0

pλ+ Apλ+

 ,

Ap =
1

2

(
hi,p +

Z0
p
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hi − hi,qZ

0
q
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2
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Cut & paste with Λ: the geometric picture

Answer to Q1)

Interaction of null geodesic generators with the impulse reveals
geometry of the cut & paste method: The generators

1 jump in V (due to Penrose junction conds.)

2 are refracted precisely to be null generators again
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El Fin — Muchas Gracias
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