Scissors-and-paste with \wedge : The geometric picture

Roland Steinbauer
Department of Mathematics, University of Vienna

GR22, Valencia, Spain, July 2019

Overview

- General topic: exact sols. with a twist towards low regular metrics
- based on a series of joint papers with
with Jiří Podolský, Clemens Sämann \& Robert Švarc
- part of a broader line of research on

Impulsive gravitational waves

which are models of short but violent burst of gravitational radiation

- Why impulsive waves?

Overview

- General topic: exact sols. with a twist towards low regular metrics
- based on a series of joint papers with
with Jiří Podolský, Clemens Sämann \& Robert Švarc
- part of a broader line of research on

Impulsive gravitational waves

which are models of short but violent burst of gravitational radiation

- Why impulsive waves?
- exact solutions: interesting radiative solutions
- mathematics: relevant key-models in low reguarity
- particle physics: quantum scattering, wave memory effect

Overview

- General topic: exact sols. with a twist towards low regular metrics
- based on a series of joint papers with
with Jiří Podolský, Clemens Sämann \& Robert Švarc
- part of a broader line of research on

Impulsive gravitational waves

which are models of short but violent burst of gravitational radiation

- Why impulsive waves?
- exact solutions: interesting radiative solutions
- mathematics: relevant key-models in low reguarity
- particle physics: quantum scattering, wave memory effect
- History: [Penrose, late 60s, early 70s] sicssors and paste approach [Aichelburg\&Sexl, 72] ultrarel. boost of Schwarzschild [Hotta\&Tanaka, 93] AS-boost with $\Lambda \neq 0$ [Griffiths\&Podolský, late 90s] systematic study for $\Lambda \neq 0$ [PSŠS, 2014-] new geometric \& mathematical insights

Cut \& paste: explicit construction

$(\mathcal{U}, \mathcal{V}, \eta)_{\mathcal{M}^{-}}=(U, \mathcal{V}-h(\eta, \bar{\eta}), \eta)_{\mathcal{M}^{+}}$

Cut \& paste: explicit construction

$(\mathcal{U}, \mathcal{V}, \eta)_{\mathcal{M}^{-}}=(U, \mathcal{V}-h(\eta, \bar{\eta}), \eta)_{\mathcal{M}^{+}}$

- Start with background

$$
\begin{equation*}
\mathrm{d} s_{0}^{2}=2 \mathrm{~d} \eta \mathrm{~d} \bar{\eta}-2 \mathrm{~d} \mathcal{U} \mathrm{~d} \mathcal{V} \tag{B}
\end{equation*}
$$

Cut \& paste: explicit construction

$(\mathcal{U}, \mathcal{V}, \eta)_{\mathcal{M}^{-}}=(U, \mathcal{V}-h(\eta, \bar{\eta}), \eta)_{\mathcal{M}^{+}}$

- Start with background

$$
\begin{equation*}
\mathrm{d} s_{0}^{2}=2 \mathrm{~d} \eta \mathrm{~d} \bar{\eta}-2 \mathrm{~d} \mathcal{U} \mathrm{~d} \mathcal{V} \tag{B}
\end{equation*}
$$

- Transform, $h(Z, \bar{Z})$ arbitrary

$$
\mathcal{U}=u
$$

$$
\begin{equation*}
\eta=Z+u_{+} h_{, \bar{z}} \tag{T}
\end{equation*}
$$

$\mathcal{V}=v+\Theta(u) h+u_{+} h_{, z} h_{, \bar{z}}$

Cut \& paste: explicit construction

$(\mathcal{U}, \mathcal{V}, \eta)_{\mathcal{M}^{-}}=(U, \mathcal{V}-h(\eta, \bar{\eta}), \eta)_{\mathcal{M}^{+}}$

- Start with background

$$
\begin{equation*}
\mathrm{d} s_{0}^{2}=2 \mathrm{~d} \eta \mathrm{~d} \bar{\eta}-2 \mathrm{~d} \mathcal{U} \mathrm{~d} \mathcal{V} \tag{B}
\end{equation*}
$$

- Transform, $h(Z, \bar{Z})$ arbitrary

$$
\begin{align*}
\mathcal{U} & =u \\
\eta & =Z+u_{+} h_{, \bar{Z}} \tag{T}
\end{align*}
$$

$\mathcal{V}=v+\Theta(u) h+u_{+} h_{, z} h_{, \bar{z}}$

- Apply (T) to (B) for $\mathcal{U}>0,<0$ separately \leadsto continuous form

$$
\begin{equation*}
\mathrm{d} s^{2}=2\left|\mathrm{~d} Z+u_{+}\left(h_{, z \bar{z}} \mathrm{~d} Z+h_{, \bar{Z} \bar{Z}} \mathrm{~d} \bar{Z}\right)\right|^{2}-2 \mathrm{~d} u \mathrm{~d} v \tag{C}
\end{equation*}
$$

Cut \& paste: explicit construction

$(\mathcal{U}, \mathcal{V}, \eta)_{\mathcal{M}^{-}}=(U, \mathcal{V}-h(\eta, \bar{\eta}), \eta)_{\mathcal{M}^{+}}$

- Start with background

$$
\begin{equation*}
\mathrm{d} s_{0}^{2}=2 \mathrm{~d} \eta \mathrm{~d} \bar{\eta}-2 \mathrm{~d} \mathcal{U} \mathrm{~d} \mathcal{V} \tag{B}
\end{equation*}
$$

- Transform, $h(Z, \bar{Z})$ arbitrary

$$
\begin{align*}
\mathcal{U} & =u \\
\eta & =Z+u_{+} h_{, \bar{z}} \tag{T}
\end{align*}
$$

$\mathcal{V}=v+\Theta(u) h+u_{+} h_{, z} h_{, \bar{Z}}$

- Apply (T) to (B) for $\mathcal{U}>0,<0$ separately \leadsto continuous form

$$
\begin{equation*}
\mathrm{d} s^{2}=2\left|\mathrm{~d} Z+u_{+}\left(h_{, z \bar{Z}} \mathrm{~d} Z+h_{, \bar{Z} \bar{Z}} \mathrm{~d} \bar{Z}\right)\right|^{2}-2 \mathrm{~d} u \mathrm{~d} v \tag{C}
\end{equation*}
$$

- Apply $(T)^{-1}$ to (C) formally for all $\mathcal{U} \leadsto$ distributional form

$$
\begin{equation*}
\mathrm{d} s^{2}=2 \mathrm{~d} \eta \mathrm{~d} \bar{\eta}-2 \mathrm{~d} \mathcal{U} \mathrm{~d} \mathcal{V}+2 h(\eta, \bar{\eta}) \delta(\mathcal{U}) \mathrm{d} \mathcal{U}^{2} \tag{D}
\end{equation*}
$$

Cut \& paste: explicit construction with \wedge

$(\mathcal{U}, \mathcal{V}, \eta)_{\mathcal{M}^{-}}=(U, \mathcal{V}-h(\eta, \bar{\eta}), \eta)_{\mathcal{M}^{+}}$

- Start with background

$$
\begin{equation*}
\mathrm{d} s_{0}^{2}=2 \mathrm{~d} \eta \mathrm{~d} \bar{\eta}-2 \mathrm{~d} \mathcal{U} \mathrm{~d} \mathcal{V} \tag{B}
\end{equation*}
$$

- Transform, $h(Z, \bar{Z})$ arbitrary

$$
\begin{align*}
\mathcal{U} & =u \\
\eta & =Z+u_{+} h_{, \bar{z}} \tag{T}
\end{align*}
$$

$$
\mathcal{V}=v+\Theta(u) h+u_{+} h_{, z} h_{, \bar{z}}
$$

- Apply (T) to (B) for $\mathcal{U}>0,<0$ separately \leadsto continuous form

$$
\begin{equation*}
\mathrm{d} s^{2}=2\left|\mathrm{~d} Z+u_{+}\left(h_{, z \bar{z}} \mathrm{~d} Z+h_{, \bar{z} \bar{Z}} \mathrm{~d} \bar{Z}\right)\right|^{2}-2 \mathrm{~d} u \mathrm{~d} v \tag{C}
\end{equation*}
$$

- Apply $(T)^{-1}$ to (C) formally for all $\mathcal{U} \leadsto$ distributional form

$$
\begin{equation*}
\mathrm{d} s^{2}=2 \mathrm{~d} \eta \mathrm{~d} \bar{\eta}-2 \mathrm{~d} \mathcal{U} \mathrm{~d} \mathcal{V}+2 h(\eta, \bar{\eta}) \delta(\mathcal{U}) \mathrm{d} \mathcal{U}^{2} \tag{D}
\end{equation*}
$$

Cut \& paste: explicit construction with \wedge

$$
(\mathcal{U}, \mathcal{V}, \eta)_{\mathcal{M}^{-}}=(U, \mathcal{V}-h(\eta, \bar{\eta}), \eta)_{\mathcal{M}^{+}}
$$

- Start with background

$$
\mathrm{d} s_{0}^{2}=\frac{2 \mathrm{~d} \eta \mathrm{~d} \bar{\eta}-2 \mathrm{~d} \mathcal{U} \mathrm{~d} \mathcal{V}}{\left[1+\frac{\Lambda}{6}(\eta \bar{\eta}-\mathcal{U} \mathcal{V})\right]^{2}}=: \Omega^{2}
$$

- Transform, $h(Z, \bar{Z})$ arbitrary

$$
\begin{align*}
\mathcal{U} & =u \\
\eta & =Z+u_{+} h_{, \bar{z}} \tag{T}\\
\mathcal{V} & =v+\Theta(u) h+u_{+} h_{, z} h_{, \bar{z}}
\end{align*}
$$

- Apply (T) to (B) for $\mathcal{U}>0,<0$ separately \leadsto continuous form

$$
\begin{equation*}
\mathrm{d} s^{2}=2\left|\mathrm{~d} Z+u_{+}\left(h_{, Z \bar{Z}} \mathrm{~d} Z+h_{, \bar{Z} \bar{Z}} \mathrm{~d} \bar{Z}\right)\right|^{2}-2 \mathrm{~d} u \mathrm{~d} v \tag{C}
\end{equation*}
$$

- Apply $(T)^{-1}$ to (C) formally for all $\mathcal{U} \leadsto$ distributional form

$$
\begin{equation*}
\mathrm{d} s^{2}=2 \mathrm{~d} \eta \mathrm{~d} \bar{\eta}-2 \mathrm{~d} \mathcal{U} \mathrm{~d} \mathcal{V}+2 h(\eta, \bar{\eta}) \delta(\mathcal{U}) \mathrm{d} \mathcal{U}^{2} \tag{D}
\end{equation*}
$$

Cut \& paste: explicit construction with \wedge

- Start with background

$$
\mathrm{d} s_{0}^{2}=\frac{2 \mathrm{~d} \eta \mathrm{~d} \bar{\eta}-2 \mathrm{~d} \mathcal{U} \mathrm{~d} \mathcal{V}}{\left[1+\frac{\Lambda}{6}(\eta \bar{\eta}-\mathcal{U})\right]^{2}}=: \Omega^{2}
$$

- Transform, $h(Z, \bar{Z})$ arbitrary

$$
\begin{align*}
\mathcal{U} & =u \\
\eta & =Z+u_{+} h_{, \bar{z}} \tag{T}\\
\mathcal{V} & =v+\Theta(u) h+u_{+} h_{, z} h_{, \bar{z}}
\end{align*}
$$

- Apply (T) to (B) for $\mathcal{U}>0,<0$ separately \leadsto continuous form

$$
\begin{equation*}
\mathrm{d} s^{2}=\frac{2}{\Omega^{2}}\left(\left|\mathrm{~d} Z+u_{+}\left(h_{, z \bar{Z}} \mathrm{~d} Z+h_{, \bar{z} \bar{z}} \mathrm{~d} \bar{Z}\right)\right|^{2}-\mathrm{d} u \mathrm{~d} v\right) \tag{C}
\end{equation*}
$$

- Apply $(T)^{-1}$ to (C) formally for all $\mathcal{U} \leadsto$ distributional form

$$
\begin{equation*}
\mathrm{d} s^{2}=2 \mathrm{~d} \eta \mathrm{~d} \bar{\eta}-2 \mathrm{~d} \mathcal{U} \mathrm{~d} \mathcal{V}+2 h(\eta, \bar{\eta}) \delta(\mathcal{U}) \mathrm{d} \mathcal{U}^{2} \tag{D}
\end{equation*}
$$

Cut \& paste: explicit construction with \wedge

- Start with background

$$
\mathrm{d} s_{0}^{2}=\frac{2 \mathrm{~d} \eta \mathrm{~d} \bar{\eta}-2 \mathrm{~d} \mathcal{U} \mathrm{~d} \mathcal{V}}{\left[1+\frac{\Lambda}{6}(\eta \bar{\eta}-\mathcal{U V})\right]^{2}}=: \Omega^{2}
$$

- Transform, $h(Z, \bar{Z})$ arbitrary

$$
\begin{align*}
\mathcal{U} & =u \\
\eta & =Z+u_{+} h_{, \bar{z}} \tag{T}\\
\mathcal{V} & =v+\Theta(u) h+u_{+} h_{, z} h_{, \bar{z}}
\end{align*}
$$

- Apply (T) to (B) for $\mathcal{U}>0,<0$ separately \leadsto continuous form

$$
\begin{equation*}
\mathrm{d} s^{2}=\frac{2}{\Omega^{2}}\left(\left|\mathrm{~d} Z+u_{+}\left(h_{, z \bar{Z}} \mathrm{~d} Z+h_{, \bar{z} \bar{z}} \mathrm{~d} \bar{Z}\right)\right|^{2}-\mathrm{d} u \mathrm{~d} v\right) \tag{C}
\end{equation*}
$$

- Apply $(T)^{-1}$ to (C) formally for all $\mathcal{U} \leadsto$ distributional form

$$
\begin{equation*}
\mathrm{d} s^{2}=\frac{2}{\Omega^{2}}\left(\mathrm{~d} \eta \mathrm{~d} \bar{\eta}-2 \mathrm{~d} \mathcal{U} \mathrm{~d} \mathcal{V}+h(\eta, \bar{\eta}) \delta(\mathcal{U}) \mathrm{d} \mathcal{U}^{2}\right) \tag{D}
\end{equation*}
$$

Cut \& paste: explicit construction with \wedge

- Start with background

$$
\mathrm{d} s_{0}^{2}=\frac{2 \mathrm{~d} \eta \mathrm{~d} \bar{\eta}-2 \mathrm{~d} \mathcal{U} \mathrm{~d} \mathcal{V}}{\left[1+\frac{\Lambda}{6}(\eta \bar{\eta}-\mathcal{U} \mathcal{V})\right]^{2}}=: \Omega^{2}
$$

- Transform, $h(Z, \bar{Z})$ arbitrary

$$
\begin{align*}
\mathcal{U} & =u \\
\eta & =Z+u_{+} h_{, \bar{z}} \tag{T}\\
\mathcal{V} & =v+\Theta(u) h+u_{+} h_{, z} h_{, \bar{z}}
\end{align*}
$$

- Apply (T) to (B) for $\mathcal{U}>0,<0$ separately \leadsto continuous form

$$
\begin{equation*}
\mathrm{d} s^{2}=\frac{2}{\Omega^{2}}\left(\left|\mathrm{~d} Z+u_{+}\left(h_{, z \bar{Z}} \mathrm{~d} Z+h_{, \bar{z} \bar{z}} \mathrm{~d} \bar{Z}\right)\right|^{2}-\mathrm{d} u \mathrm{~d} v\right) \tag{C}
\end{equation*}
$$

- Apply $(T)^{-1}$ to (C) formally for all $\mathcal{U} \leadsto$ distributional form

$$
\begin{equation*}
\mathrm{d} s^{2}=\frac{2}{\Omega^{2}}\left(\mathrm{~d} \eta \mathrm{~d} \bar{\eta}-2 \mathrm{~d} \mathcal{U} \mathrm{~d} \mathcal{V}+h(\eta, \bar{\eta}) \delta(\mathcal{U}) \mathrm{d} \mathcal{U}^{2}\right) \tag{D}
\end{equation*}
$$

Cut \& paste: explicit construction with \wedge

Questions

Q1) What happens to the cut \& paste picture?
Q2) What is the meaning of the 'discontinuous transformation' (T)?

- Start with background

$$
\mathrm{d} s_{0}^{2}=\frac{2 \mathrm{~d} \eta \mathrm{~d} \bar{\eta}-2 \mathrm{~d} \mathcal{U} \mathrm{~d} \mathcal{V}}{\left[1+\frac{\Lambda}{6}(\eta \bar{\eta}-\mathcal{U} \mathcal{V})\right]^{2}}=: \Omega^{2}
$$

- Transform, $h(Z, \bar{Z})$ arbitrary

$$
\begin{aligned}
\mathcal{U} & =u \\
\eta & =Z+u_{+} h_{, \bar{z}} \\
\mathcal{V} & =v+\Theta(u) h+u_{+} h_{, z} h_{, \bar{z}}
\end{aligned}
$$

- Apply (T) to (B) for $\mathcal{U}>0,<0$ separately \sim continuous form

$$
\begin{equation*}
\mathrm{d} s^{2}=\frac{2}{\Omega^{2}}\left(\left|\mathrm{~d} Z+u_{+}\left(h_{, z \bar{Z}} \mathrm{~d} Z+h_{, \bar{Z} \bar{z}} \mathrm{~d} \bar{Z}\right)\right|^{2}-\mathrm{d} u \mathrm{~d} v\right) \tag{C}
\end{equation*}
$$

- Apply $(T)^{-1}$ to (C) formally for all $\mathcal{U} \leadsto$ distributional form

$$
\begin{equation*}
\mathrm{ds} s^{2}=\frac{2}{\Omega^{2}}\left(\mathrm{~d} \eta \mathrm{~d} \bar{\eta}-2 \mathrm{~d} \mathcal{U} \mathrm{~d} \mathcal{V}+h(\eta, \bar{\eta}) \delta(\mathcal{U}) \mathrm{d} \mathcal{U}^{2}\right) \tag{D}
\end{equation*}
$$

The 'discontinuous transformation' for $\Lambda=0$

Cut \& paste in \mathcal{M} revisited

- Key observation:
(T) is closely related to the null geodesics in (D)
- $\gamma(\mathcal{U})=(\mathcal{V}, \eta)(\mathcal{U})$ with data $\gamma(-\infty)=(v, Z), \dot{\gamma}(-\infty)=0$
- (T): $(C) \rightarrow(D)$ is given by

$$
(u, v, Z) \mapsto(\mathcal{U}, \mathcal{V}(U), \eta(\mathcal{U}))
$$

The 'discontinuous transformation' for $\Lambda=0$

Cut \& paste in \mathcal{M} revisited

- Key observation:
(T) is closely related to the null geodesics in (D)
- $\gamma(\mathcal{U})=(\mathcal{V}, \eta)(\mathcal{U})$ with data $\gamma(-\infty)=(v, Z), \dot{\gamma}(-\infty)=0$
- (T): $(C) \rightarrow(D)$ is given by

$$
(u, v, Z) \mapsto(\mathcal{U}, \mathcal{V}(U), \eta(\mathcal{U}))
$$

Actual treatment of (D): regularisation!

- regularise (D): $\delta \leadsto \delta_{\varepsilon}$
- geodesics γ_{ε} of $\left(D_{\varepsilon}\right)$ naturally give geometric regularisation (T_{ε}) of (T)
- C^{∞}-spacetime with sing. limits in different coords.

The 'discontinuous transformation' for $\Lambda=0$

Cut \& paste in \mathcal{M} revisited

- Key observation:
(T) is closely related to the null geodesics in (D)
- $\gamma(\mathcal{U})=(\mathcal{V}, \eta)(\mathcal{U})$ with data $\gamma(-\infty)=(v, Z), \dot{\gamma}(-\infty)=0$
- (T): $(C) \rightarrow(D)$ is given by

$$
(u, v, Z) \mapsto(\mathcal{U}, \mathcal{V}(U), \eta(\mathcal{U}))
$$

Actual treatment of (D): regularisation!

- regularise $(\mathrm{D}): \delta \leadsto \delta_{\varepsilon}$
- geodesics γ_{ε} of $\left(D_{\varepsilon}\right)$ naturally give geometric regularisation $\left(T_{\varepsilon}\right)$ of (T)
- C^{∞}-spacetime with sing. limits in different coords.

Schematic picture

The 'discontinuous transformation' for $\Lambda=0$

Cut \& paste in \mathcal{M} revisited

- Key observation:
(T) is closely related to the null geodesics in (D)
- $\gamma(\mathcal{U})=(\mathcal{V}, \eta)(\mathcal{U})$ with data $\gamma(-\infty)=(v, Z), \dot{\gamma}(-\infty)=0$
- $(T):(C) \rightarrow(D)$ is given by

$$
(u, v, Z) \mapsto(\mathcal{U}, \mathcal{V}(U), \eta(\mathcal{U}))
$$

Actual treatment of (D): regularisation!

- regularise (D): $\delta \leadsto \delta_{\varepsilon}$
- geodesics γ_{ε} of $\left(D_{\varepsilon}\right)$ naturally give geometric regularisation $\left(T_{\varepsilon}\right)$ of (T)
- C^{∞}-spacetime with sing. limits in different coords.

Advanced math. treatment needs fully nonlinear analysis of γ_{ε}

- global existence \& uniqueness γ_{ε} cross wave impulse
- limits are broken backgr. geos
- (T) is limit of 'generalised diffeo' in nonlinear distr. geometry (Colombeau) [Kunzinger\&S, 99]

The 'discontinuous transformation' for $\Lambda \neq 0$

- (null) geodesics in (D) are the key!
i.e. interaction of the null particles with the wave impulse
- complicated nonlinear system with very(!) singular coefficients
- trick: use 5-dim. representation of $(A) d S$ to tackle geodesic eq. (following [Podolský\&Ortaggio, 01])
- Global existence and uniqueness result for regularised situation (using a fixed point argument) limits are again broken background geodesics

The
Explicit jump formulas:

- (r
i.

$$
\gamma_{5 D}(\lambda)=\left(\begin{array}{c}
\lambda \\
V^{0}+\dot{V}^{0} \lambda+\Theta(\lambda) \mathbf{B}+\mathbf{C} \lambda_{+} \\
Z_{p}^{0}+\dot{Z}_{p}^{0} \lambda+\mathbf{A}_{\mathbf{p}} \lambda_{+}
\end{array}\right)
$$

- CC

$$
\mathbf{A}_{\mathbf{p}}=\frac{1}{2}\left(h_{, p}^{\mathrm{i}}+\frac{Z_{p}^{0}}{\sigma a^{2}}\left(h^{\mathrm{i}}-h_{, q}^{\mathrm{i}} Z_{q}^{0}\right)\right), \quad \mathbf{B}=\frac{1}{2} h^{\mathrm{i}}
$$

$$
\left.\mathbf{C}=\frac{1}{8}\left(\left(h_{, 2}^{\mathrm{i}}\right)^{2}+\left(h_{, 3}^{\mathrm{i}}\right)^{2}+\sigma\left(h_{, 4}^{\mathrm{i}}\right)^{2}+\frac{1}{\sigma a^{2}}\left(h^{\mathrm{i}^{2}}-\left(h_{, p}^{\mathrm{i}} Z_{p}^{0}\right)^{2}\right)\right) \quad \text { io, 01] }\right)
$$

$$
+\frac{1}{2 \sigma a^{2}}\left(h^{\mathrm{i}}-h_{, p}^{\mathrm{i}} Z_{p}^{0}\right) V^{0}+\frac{1}{2} h_{, p}^{\mathrm{i}} \dot{Z}_{p}^{0} .
$$

limits are again broken background geodesics
[SSLP, 16]

The 'discontinuous transformation' for $\Lambda \neq 0$

- (null) geodesics in (D) are the key!
i.e. interaction of the null particles with the wave impulse
- complicated nonlinear system with very(!) singular coefficients
- trick: use 5-dim. representation of $(A) d S$ to tackle geodesic eq. (following [Podolský\&Ortaggio, 01])
- Global existence and uniqueness result for regularised situation (using a fixed point argument) limits are again broken background geodesics

The 'discontinuous transformation' for $\Lambda \neq 0$

- (null) geodesics in (D) are the key!
i.e. interaction of the null particles with the wave impulse
- complicated nonlinear system with very(!) singular coefficients
- trick: use 5-dim. representation of $(A) d S$ to tackle geodesic eq. (following [Podolský\&Ortaggio, 01])
- Global existence and uniqueness result for regularised situation (using a fixed point argument)
limits are again broken background geodesics
- nonlinear distributional analysis enables advanced mathematical treatment

Answer to Q2)

(T) is the limit of a 'generalised diffeomorphism' in nonlinear distributional geometry (Colombeau).
[SŠS, forthcoming]

- But where is the cut \& paste picture?

Cut \& paste with \wedge : the geometric picture

Answer to Q1)

Interaction of null geodesic generators with the impulse reveals geometry of the cut \& paste method: The generators
(1) jump in \mathcal{V} (due to Penrose junction conds.)
(2) are refracted precisely to be null generators again

Some related literature

- R. Penrose. The geometry of impulsive gravitational waves. In General relativity. Clarendon Press, Oxford, 1972.
- M. Hotta M. Tanaka. Shock wave geometry with nonvanishing cosmological constant. CQG 10:307-314, 1993.
- J. Podolský, J. Griffiths. Nonexpanding impulsive gravitational waves with an arbitrary cosmological constant. PLA 261(1-2):1-4, 1999.
- M. Kunzinger, R. Steinbauer. A note on the Penrose junction conditions. CQG 16:1255-1264, 1999.
- J. Podolský, M. Ortaggio. Symmetries and geodesics in (anti-) de Sitter spacetimes with non-expanding impulsive waves. CQG 18(14):2689-2706, 2001.
- C. Sämann, R. Steinbauer, A. Lecke, J. Podolsky. Geodesics in nonexpanding impulsive gravitational waves with Λ, part I. CQG 33(11):115002, 2016.
- C. Sämann, R. Steinbauer. Geodesics in nonexpanding impulsive gravitational waves with ^. II. JMP 58(11):112503, 2017.
- J. Podolský, C. Sämann, R. Steinbauer, R. Švarc. Cut and paste for impulsive gravitational waves with \wedge : The geometric picture. PRD, to appear, 2019.
- C. Sämann, R. Steinbauer, R. Švarc. Cut and paste for impulsive gravitational waves with Λ : The mathematical analysis. in preparation, 2019.

El Fin — Muchas Gracias

