The future is not always open

Roland Steinbauer

Department of Mathematics, University of Vienna

GR22, Valencia, Spain, July 2019

The future is not always open

• General topic: Causality theory with metrics of low regularity

- General topic: Causality theory with metrics of low regularity
- based on joint work arXiv:1901.07996 [math.DG], to appear in LMP with James Grant, Michael Kunzinger & Clemens Sämann

- General topic: Causality theory with metrics of low regularity
- based on joint work arXiv:1901.07996 [math.DG], to appear in LMP with James Grant, Michael Kunzinger & Clemens Sämann
- part of a broader line of research on

- General topic: Causality theory with metrics of low regularity
- based on joint work arXiv:1901.07996 [math.DG], to appear in LMP with James Grant, Michael Kunzinger & Clemens Sämann
- part of a broader line of research on

Low Regularity in General Relativity

• Why low regularity?

- General topic: Causality theory with metrics of low regularity
- based on joint work arXiv:1901.07996 [math.DG], to appear in LMP with James Grant, Michael Kunzinger & Clemens Sämann
- part of a broader line of research on

- Why low regularity?
 - PDE point of view

- General topic: Causality theory with metrics of low regularity
- based on joint work arXiv:1901.07996 [math.DG], to appear in LMP with James Grant, Michael Kunzinger & Clemens Sämann
- part of a broader line of research on

- Why low regularity?
 - PDE point of view
 - interesting solution, e.g. impulsive waves

- General topic: Causality theory with metrics of low regularity
- based on joint work arXiv:1901.07996 [math.DG], to appear in LMP with James Grant, Michael Kunzinger & Clemens Sämann
- part of a broader line of research on

- Why low regularity?
 - PDE point of view
 - interesting solution, e.g. impulsive waves
 - synthetic approach

- General topic: Causality theory with metrics of low regularity
- based on joint work arXiv:1901.07996 [math.DG], to appear in LMP with James Grant, Michael Kunzinger & Clemens Sämann
- part of a broader line of research on

- Why low regularity?
 - PDE point of view
 - interesting solution, e.g. impulsive waves
 - synthetic approach
- History: systematic studies of causality below C^2 only recently

- General topic: Causality theory with metrics of low regularity
- based on joint work arXiv:1901.07996 [math.DG], to appear in LMP with James Grant, Michael Kunzinger & Clemens Sämann
- part of a broader line of research on

- Why low regularity?
 - PDE point of view
 - interesting solution, e.g. impulsive waves
 - synthetic approach
- History: systematic studies of causality below C^2 only recently
 - [Fathi&Siconolfi, 12] existence of time functions

- General topic: Causality theory with metrics of low regularity
- based on joint work arXiv:1901.07996 [math.DG], to appear in LMP with James Grant, Michael Kunzinger & Clemens Sämann
- part of a broader line of research on

- Why low regularity?
 - PDE point of view
 - interesting solution, e.g. impulsive waves
 - synthetic approach
- History: systematic studies of causality below C^2 only recently
 - [Fathi&Siconolfi, 12] existence of time functions
 - [Chrusćiel&Grant, 12] causality for continuous metrics

- General topic: Causality theory with metrics of low regularity
- based on joint work arXiv:1901.07996 [math.DG], to appear in LMP with James Grant, Michael Kunzinger & Clemens Sämann
- part of a broader line of research on

- Why low regularity?
 - PDE point of view
 - interesting solution, e.g. impulsive waves
 - synthetic approach
- History: systematic studies of causality below C^2 only recently
 - [Fathi&Siconolfi, 12] existence of time functions
 - [Chrusćiel&Grant, 12] causality for continuous metrics
- Outcome (so far): new & sometimes surprising facts

• classical (C²)

- classical (C²)
- $C^{1,1} = C^{2-}$: bulk of causality incl. singularity theorems works

- classical (C²)
- $C^{1,1} = C^{2-}$: bulk of causality incl. singularity theorems works \checkmark

- classical (C²)
- $C^{1,1} = C^{2-}$: bulk of causality incl. singularity theorems works \checkmark
- ${\cal C}^{0,1}={\cal L}:$ Things not involving geodesics/exponential map work

- classical (C²)
- $C^{1,1} = C^{2-}$: bulk of causality incl. singularity theorems works \checkmark
- $C^{0,1} = \mathcal{L}$: Things not involving geodesics/exponential map work \checkmark

- classical (C²)
- $C^{1,1} = C^{2-}$: bulk of causality incl. singularity theorems works \checkmark
- $C^{0,1} = \mathcal{L}$: Things not involving geodesics/exponential map work \checkmark
- below Lipschitz: some fundamentals break down [CG, 12]

- classical (C²)
- $C^{1,1} = C^{2-}$: bulk of causality incl. singularity theorems works \checkmark
- $C^{0,1} = \mathcal{L}$: Things not involving geodesics/exponential map work \checkmark
- below Lipschitz: some fundamentals break down [CG, 12] !X!

- classical (C²)
- $C^{1,1} = C^{2-}$: bulk of causality incl. singularity theorems works
- $C^{0,1} = \mathcal{L}$: Things not involving geodesics/exponential map work \checkmark
- below Lipschitz: some fundamentals break down [CG, 12] !X!

further investigate these phenomena

- classical (C²)
- $C^{1,1} = C^{2-}$: bulk of causality incl. singularity theorems works
- $C^{0,1} = \mathcal{L}$: Things not involving geodesics/exponential map work \checkmark
- below Lipschitz: some fundamentals break down [CG, 12] !X!

further investigate these phenomena

many more things to say...

failure of convexity in $C^{1,\alpha}$, cone structures

The choice of curves • classical tex

• classical textbook choice:
$$\mathcal{C}^1_{\mathrm{pw}}$$
 (piecew. \mathcal{C}^1)

• technically superior locally Lipschitz = \mathcal{L} (\Rightarrow diff. a.e.)

The choice of curves • classical textbook choice: C_{pw}^1 (piecew. C^1)

• technically superior locally Lipschitz = \mathcal{L} (\Rightarrow diff. a.e.)

Definitions

• $\gamma \in \mathcal{L}$ timelike (causal) if $\langle \dot{\gamma}, \dot{\gamma} \rangle < 0$ (≤ 0) a.e.

The choice of curves \bullet classical textbook choice: C_{pw}^1 (piecew. C^1)

• technically superior locally Lipschitz = \mathcal{L} (\Rightarrow diff. a.e.)

- $\gamma \in \mathcal{L}$ timelike (causal) if $\langle \dot{\gamma}, \dot{\gamma}
 angle < 0$ (\leq 0) a.e.
- $I^+(p, U) := I^+_{\mathcal{L}}(p, U), \ J^+(p, U) := J^+_{\mathcal{L}}(p, U)$

The choice of curves

- classical textbook choice: $\mathcal{C}^1_{\text{pw}}$ (piecew. \mathcal{C}^1)
- technically superior locally Lipschitz = \mathcal{L} (\Rightarrow diff. a.e.)

- $\gamma \in \mathcal{L}$ timelike (causal) if $\langle \dot{\gamma}, \dot{\gamma}
 angle < 0$ (\leq 0) a.e.
- $I^+(p, U) := I^+_{\mathcal{L}}(p, U), \ J^+(p, U) := J^+_{\mathcal{L}}(p, U)$
- Cylindrical charts (substitute for normal charts) $(\varphi = (t, x^1, \dots x^n), U)$ with $\varphi(U) = L \times V$ such that $g(0) = \eta, \quad \eta_{C^{-1}} \prec g \prec \eta_C := -Cdt^2 + d\vec{x}^2$

The choice of curves

- classical textbook choice: C^1_{pw} (piecew. C^1)
- technically superior locally Lipschitz = \mathcal{L} (\Rightarrow diff. a.e.)

- $\gamma \in \mathcal{L}$ timelike (causal) if $\langle \dot{\gamma}, \dot{\gamma}
 angle < 0$ (\leq 0) a.e.
- $I^+(p, U) := I^+_{\mathcal{L}}(p, U), \ J^+(p, U) := J^+_{\mathcal{L}}(p, U)$
- Cylindrical charts (substitute for normal charts) $(\varphi = (t, x^1, \dots x^n), U)$ with $\varphi(U) = L \times V$ such that $g(0) = \eta, \quad \eta_{C^{-1}} \prec g \prec \eta_C := -Cdt^2 + d\vec{x}^2$
- $\check{I}^+(p, U) = \bigcup \{ I^+_{\check{g}}(p, U) : \check{g} \in \mathcal{C}^{\infty}, \ \check{g} \prec g \}$

The choice of curves

- classical textbook choice: C^1_{pw} (piecew. C^1)
- technically superior locally Lipschitz = \mathcal{L} (\Rightarrow diff. a.e.)

- $\gamma \in \mathcal{L}$ timelike (causal) if $\langle \dot{\gamma}, \dot{\gamma}
 angle < 0$ (\leq 0) a.e.
- $I^+(p, U) := I^+_{\mathcal{L}}(p, U), \ J^+(p, U) := J^+_{\mathcal{L}}(p, U)$
- Cylindrical charts (substitute for normal charts) $(\varphi = (t, x^1, \dots x^n), U)$ with $\varphi(U) = L \times V$ such that $g(0) = \eta, \quad \eta_{C^{-1}} \prec g \prec \eta_C := -Cdt^2 + d\vec{x}^2$
- $\check{I}^+(p, U) = \bigcup \{ I^+_{\check{g}}(p, U) : \check{g} \in \mathcal{C}^{\infty}, \ \check{g} \prec g \}$

The choice of curves

- classical textbook choice: $\mathcal{C}^1_{_{\mathrm{DW}}}$ (piecew. \mathcal{C}^1)
- technically superior locally Lipschitz = \mathcal{L} (\Rightarrow diff. a.e.)

Definitions

- $\gamma \in \mathcal{L}$ timelike (causal) if $\langle \dot{\gamma}, \dot{\gamma}
 angle < 0$ (\leq 0) a.e.
- $I^+(p, U) := I^+_{\mathcal{L}}(p, U), \ J^+(p, U) := J^+_{\mathcal{L}}(p, U)$
- Cylindrical charts (substitute for normal charts) $(\varphi = (t, x^1, \dots x^n), U)$ with $\varphi(U) = L \times V$ such that $g(0) = \eta, \quad \eta_{C^{-1}} \prec g \prec \eta_C := -Cdt^2 + d\vec{x}^2$

•
$$\check{I}^+(p,U) = \bigcup \{I^+_{\check{g}}(p,U) : \check{g} \in \mathcal{C}^\infty, \ \check{g} \prec g\}$$

Lemma. For continuous g we have $\check{l}^+(p) = l^+_{\mathcal{C}^1_{\mathrm{pw}}}(p)$ which is clearly open.

(Q1) Is
$$I^+(p, U) := I^+_{\mathcal{L}}(p, U)$$
 always open?
(Q2) $\check{I}^+(p, U) := I^+_{\mathcal{C}^1_{pw}}(p, U) \stackrel{?}{=} I^+_{\mathcal{L}}(p, U) =: I^+(p, U)$

(Q1) Is
$$I^{+}(p, U) := I_{\mathcal{L}}^{+}(p, U)$$
 always open?
(Q2) $\check{I}^{+}(p, U) := I_{\mathcal{C}_{pw}^{1}}^{+}(p, U) \stackrel{?}{=} I_{\mathcal{L}}^{+}(p, U) =: I^{+}(p, U)$

\boldsymbol{U} a cylindrical chart

• Lip. graphing functions: f_{-} for $\partial J^{+}(p, U)$ f_{+} for $\partial \check{I}^{+}(p, U)$

(Q1) Is
$$I^{+}(p, U) := I_{\mathcal{L}}^{+}(p, U)$$
 always open?
(Q2) $\check{I}^{+}(p, U) := I_{\mathcal{C}_{pw}^{1}}^{+}(p, U) \stackrel{?}{=} I_{\mathcal{L}}^{+}(p, U) =: I^{+}(p, U)$

\boldsymbol{U} a cylindrical chart

• Lip. graphing functions: f_{-} for $\partial J^{+}(p, U)$ f_{+} for $\partial \check{I}^{+}(p, U)$

• bubble
$$\mathcal{B}^+(p, U)$$

= { $f_-(x) < t < f_+(x)$ }

(Q1) Is
$$I^{+}(p, U) := I_{\mathcal{L}}^{+}(p, U)$$
 always open?
(Q2) $\check{I}^{+}(p, U) := I_{\mathcal{C}_{pw}^{1}}^{+}(p, U) \stackrel{?}{=} I_{\mathcal{L}}^{+}(p, U) =: I^{+}(p, U)$

\boldsymbol{U} a cylindrical chart

- Lip. graphing functions:
 *f*_− for ∂*J*⁺(*p*, *U*)
 f₊ for ∂*Ĭ*⁺(*p*, *U*)
- bubble $\mathcal{B}^+(p, U)$ = { $f_-(x) < t < f_+(x)$ }
- interior & exterior bubble

(Q1) Is
$$I^{+}(p, U) := I_{\mathcal{L}}^{+}(p, U)$$
 always open?
(Q2) $\check{I}^{+}(p, U) := I_{\mathcal{C}_{pw}^{1}}^{+}(p, U) \stackrel{?}{=} I_{\mathcal{L}}^{+}(p, U) =: I^{+}(p, U)$

U a cylindrical chart

- Lip. graphing functions:
 *f*_− for ∂*J*⁺(*p*, *U*)
 f₊ for ∂*Ĭ*⁺(*p*, *U*)
- bubble $\mathcal{B}^+(p, U)$ = { $f_-(x) < t < f_+(x)$ }

• interior & exterior bubble $\mathcal{B}^+_{int}(p, U) := I^+(p, U) \setminus \check{I}^+(p, U), \ \mathcal{B}^+_{ext}(p, U) := J^+(p, U) \setminus \overline{I^+(p, U)}$

(Q1) Is
$$I^{+}(p, U) := I_{\mathcal{L}}^{+}(p, U)$$
 always open?
(Q2) $\check{I}^{+}(p, U) := I_{\mathcal{C}_{pw}^{1}}^{+}(p, U) \stackrel{?}{=} I_{\mathcal{L}}^{+}(p, U) =: I^{+}(p, U)$

U a cylindrical chart

- Lip. graphing functions:
 *f*_− for ∂*J*⁺(*p*, *U*)
 f₊ for ∂*Ĭ*⁺(*p*, *U*)
- bubble $\mathcal{B}^+(p, U)$ = { $f_-(x) < t < f_+(x)$ }

• interior & exterior bubble $\mathcal{B}^+_{int}(p, U) := I^+(p, U) \setminus \check{I}^+(p, U), \ \mathcal{B}^+_{ext}(p, U) := J^+(p, U) \setminus \overline{I^+(p, U)}$

(Q1) Is
$$I^{+}(p, U) := I_{\mathcal{L}}^{+}(p, U)$$
 always open?
(Q2) $\check{I}^{+}(p, U) := I_{\mathcal{C}_{pw}^{1}}^{+}(p, U) \stackrel{?}{=} I_{\mathcal{L}}^{+}(p, U) =: I^{+}(p, U)$

U a cylindrical chart

- Lip. graphing functions:
 *f*_− for ∂*J*⁺(*p*, *U*)
 f₊ for ∂*Ĭ*⁺(*p*, *U*)
- bubble $\mathcal{B}^+(p, U)$ = { $f_-(x) < t < f_+(x)$ }

• interior & exterior bubble
$$\mathcal{B}^+_{int}(p, U) := I^+(p, U) \setminus \check{I}^+(p, U), \ \mathcal{B}^+_{ext}(p, U) := J^+(p, U) \setminus \overline{I^+(p, U)}$$

$$\begin{array}{ll} \mathsf{Facts:} & \mathcal{B}^+_{\mathrm{int}}(p,U) = \emptyset \ \Leftrightarrow \ \check{I}^+(p,U) = I^+(p,U) \\ & \mathcal{B}^+_{\mathrm{ext}}(p,U) = \emptyset \ \Leftrightarrow \ \text{push up holds} \end{array}$$

The future is not always open

$$ds^{2} = 2\left[-\sin 2\theta(x) dt^{2} - 2\cos 2\theta(x) dx dt + \sin 2\theta(x) dx^{2}\right]$$

 $\theta(x)$ turns light cones in a Hölder but not Lipschitz way

$$ds^{2} = 2\left[-\sin 2\theta(x) dt^{2} - 2\cos 2\theta(x) dx dt + \sin 2\theta(x) dx^{2}\right]$$

 $\theta(x)$ turns light cones in a Hölder but not Lipschitz way

• c is a Lip. timlike curve reaching $\partial J^+(p)$ (C¹ & null at single pt.)

$$ds^{2} = 2\left[-\sin 2\theta(x) dt^{2} - 2\cos 2\theta(x) dx dt + \sin 2\theta(x) dx^{2}\right]$$

 $\theta(x)$ turns light cones in a Hölder but not Lipschitz way

• *c* is a Lip. timlike curve reaching $\partial J^+(p)$ (*C*¹ & null at single pt.) $\Rightarrow I^+(p)$ contains segment of *t*-axis $\Rightarrow I^+(p)$ not open NO to (Q1)

$$ds^{2} = 2\left[-\sin 2\theta(x) dt^{2} - 2\cos 2\theta(x) dx dt + \sin 2\theta(x) dx^{2}\right]$$

 $\theta(x)$ turns light cones in a Hölder but not Lipschitz way

• c is a Lip. timlike curve reaching $\partial J^+(p)$ (C¹ & null at single pt.)

 \Rightarrow $I^+(p)$ contains segment of *t*-axis \Rightarrow $I^+(p)$ not open

• $\check{I}^+(p)$ does not contain segment \Rightarrow $\check{I}^+(p) \neq I^+(p)$

$$ds^{2} = 2\left[-\sin 2\theta(x) dt^{2} - 2\cos 2\theta(x) dx dt + \sin 2\theta(x) dx^{2}\right]$$

 $\theta(x)$ turns light cones in a Hölder but not Lipschitz way

• c is a Lip. timlike curve reaching $\partial J^+(p)$ (C¹ & null at single pt.)

- \Rightarrow $I^+(p)$ contains segment of t-axis \Rightarrow $I^+(p)$ not open | NO to (Q1)
 - $\check{I}^+(p)$ does not contain segment $\Rightarrow \check{I}^+(p) \neq I^+(p)$

•
$$\mathcal{B}^+(p) = \emptyset$$
 but $\mathcal{B}^-(0) \neq \emptyset$

The future is not always open

NO to (Q2)

Main message:

- $g \text{ Lip.} \Rightarrow \text{all is fine}$
- below Lip.

basics of causality fail

Main message:

- $g \text{ Lip.} \Rightarrow \text{all is fine}$
- below Lip.

basics of causality fail

Suggestion:

metric setting

$$egin{aligned} J^{\pm} &:= J_{\mathcal{L}}^{\pm} \ (\operatorname{lim.\,crv.\,thms.}) \ I^{\pm} &:= I_{\mathcal{C}_{\mathrm{pw}}^{1}}^{\pm} \ (\operatorname{openness}) \end{aligned}$$

Main message:

- $g \text{ Lip.} \Rightarrow \text{all is fine}$
- below Lip.

basics of causality fail

Suggestion:

- metric setting
 - $J^{\pm} := J^{\pm}_{\mathcal{L}}$ (lim. crv. thms.) $I^{\pm} := I^{\pm}_{\mathcal{C}^{1}_{\mathrm{pw}}}$ (openness)
- synthetic setting C^1 -curves not available; have to by in the full range of these phenomena

Main message:

- $g \text{ Lip.} \Rightarrow \text{all is fine}$
- below Lip.

basics of causality fail

Suggestion:

- metric setting
 - $J^{\pm} := J^{\pm}_{\mathcal{L}}$ (lim. crv. thms.) $I^{\pm} := I^{\pm}_{\mathcal{C}^{1}_{\mathrm{pw}}}$ (openness)
- synthetic setting C^1 -curves not available; have to by in the full range of these phenomena

Main message:

- $g \text{ Lip.} \Rightarrow \text{all is fine}$
- below Lip.

basics of causality fail

Suggestion:

- metric setting
 - $J^{\pm} := J^{\pm}_{\mathcal{L}}$ (lim. crv. thms.) $I^{\pm} := I^{\pm}_{\mathcal{C}^{1}_{\mathrm{pw}}}$ (openness)
- synthetic setting C^1 -curves not available; have to by in the full range of these phenomena

El Fin — Muchas Gracias