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Intro: The use of distributions

Distributions are used to mathematically describe a wide range
of idealized configurations in physics.

Ex: replace extended source of a field by an idealized one
(point charges, thin shells or layers of matter, . . . )

This description works very well in linear field theories.

Two reasons:
1 mathematically sound formulation, rooted in functional analysis

2 physically reasonable since we have ’limit consistency‘.
(Ex: charges close to a point charge produce fields close to the
Coulomb field.)

2 / 43
Linear and nonlinear distributional Lorentzian geometry



Intro Linear distributional geometry Interlude: Products inD′ Nonlinear distributional geometry

The general theme
Distribution theory is deeply routed in linear functional analysis.

Existence of Green functions (Malgrange-Ehrenpreis)

Schwartz kernel theorem (general integral operators)

However, distribution theory is a inherently linear theory!

Non-existence of distributional solutions for PDEs
with non-constant coefficients (Lewy example)

No general product for arbitrary pairs of distributions

Quest
Mathematical description of concentrated sources in GR.

Challenges: nonlinearities and the geometric nature of GR

Need a nonlinear distributional geometry!
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Distributions: basic ideas and definitions
Key idea: a function is a map
taking points x ∈ Rn to complex numbers but also

taking ’test functions’ to numbers

f : C∞c 3 ϕ 7→
∫

f (x)ϕ(x) dx instead of f : Rn 3 x 7→ f (x) ∈ C

take all such maps ; dual space: (U ⊆ Rn open)

D′(U) := {u : C∞c (U)→ C | linear and continuous}

This is a very big space: not just (locally integrable) functions!

Scalar distributions on manifolds: here functions
take ’test n-forms’ to numbers

D′(M) := {u : Ωn
c(M)→ C | linear and continuous}

No metric structure needed!
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Basic Distributional Geometry
[Schwartz, de Rham, ...]

Scalar distributions on manifolds: D′(M) =
[
Ωn

c(M)
]′

Distributions localize over open sets but not over points!

Distributional tensor fields (dual space as well but easier):

D′ r
s(M) = D′(M)⊗ T r

s (M) = LC∞(M)(Ω1(M)r ,X(M)s;D′(M))

The usual local formulas work but components are distributions!

e.g. D′ 1
0 3 X =

X
X i∂i with X i ∈ D′(M)

Extend usual operations by continuity: LX , [ , ], ∧, ιX , { , }, . . .
but with only one D′-factor!

compare smooth case: T r
s (M) = LC∞(M)(Ω1(M)r ,X(M)s; C∞(M))

More general, distributional sections of a vector bundle E → M

D′(M,E) = D′(M)⊗ Γ(M,E) = LC∞(M)(Γ(M,E∗),D′(M))
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Distributional Lorentzian Metrics
Definition ([Marsden 69], [Parker 79])
A distributional metric is a element

g ∈ D′02(M) i.e., g : X(M)× X(M)→ D′(M), C∞-bilinear

that is symmetric, and non-degenerate.

Problems:
Non-degeneracy cannot be defined pointwise! Replacements:

1 g(X ,Y ) = 0 for all smooth vector fields Y ⇒ X = 0
; ds2 = x2 dx2 is non-degenerate!

2 g is a smooth Lorentzian metric off its singular support.

Best choice: demand 1 and 2

can’t insert D′-vector fields into D′-metric
g gives no isomorphism D′10 3 X 7→ X [ := g(X , .) ∈ D′01
index, geodesics, etc. of a distributional metric?
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Distributional Connections
Definition ([Marsden 69]?, [LeFloch, Mardare 07])
A distr. connection is a map

∇ : X(M)× X(M)→ D′10(M)

with the usual properties.

extends to entire (smooth!) tensor-algebra

standard formulas hold, e.g.
∇∂i (Y

j∂j ) =
(
∂iY k + Γk

ij Y
j
)
∂k (Γk

ij ∈ D′)
Fundamental lemma in a weak form [LeFM, 07]:
Every distributional metric has a unique ’Levi-Civita connection’

2∇[X Y (Z ) := X
(
g(Y ,Z )

)
+ Y

(
g(Z ,X )

)
− Z

(
g(X ,Y )

)
− g(X , [Y ,Z ]) + g(Y , [Z ,X ]) + g(Z , [X ,Y ])

Only if g more regular (e.g. L2
loc): ⇒ ∇[X Y = (∇X Y )[
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Curvature from a Distributional Connection?

Coordinate-free analysis [LeFM, 07]

Coordinate approach [Geroch, Traschen, 87]

R i
jkl = Γi

lj,k − Γi
kj,l + Γi

kmΓm
lj − Γi

lmΓm
kj

Look for special distributional connections for which the formula
makes sense in D′.

A good choice is Γi
jk ∈ L2

loc :

Γi
lj ∈ L2

loc ⊆ L1
loc ⊆ D′ ⇒ Γi

lj,k ∈ D′

Γi
km ∈ L2

loc ⇒ Γi
kmΓm

lj ∈ L1
loc ⊆ D′

Observe:
Γi

jk ∈ L2
loc ⇔ ∇X Y ∈ L2

loc for all smooth vector fields X ,Y
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Curvature from a Distributional Connection
Definition ([LeFM, 07], [GT, 87])

(i) A distr. connection ∇ is called L2
loc-connection if ∇X Y ∈ L2

loc.

(ii) The Riemannian curvature tensor R ∈ D′13(M) for an
L2

loc-connection is defined by the usual formula, i.e.,
RXY Z := ∇[X ,Y ]Z − [∇X ,∇Y ]Z .

(iii) Ricci, Weyl, and scalar curvature defined as usual.

Observation (L2
loc-stability)

Assume for a sequence of L2
loc-connections

∇(n)
X Y → ∇X Y in L2

loc.
Then

R(n)
XY Z → RXY Z in D′10(M).

The analogue holds true for the Ricci, Weyl, and scalar
curvature.
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Curvature from a Distributional Metric
by the above: want induced connection to be in L2

loc

in local coordinates: 2Γi
jk = g il

(
glj,k + gkl,j − gjk,l

)
Observation ([GT, 87])

The curvature is defined if the metric g belongs to H1
loc ∩ L∞loc .

Recall: H1
loc := {u ∈ D′ : u, ∂ju ∈ L2

loc}
Indeed:

gij ∈ H1
loc ⇒ gij,l ∈ L2

loc; gij ∈ L∞loc ⇒ Γi
jk ∈ L2

loc

H1
loc ∩ L∞loc is an algebra with a good notion of invertibility.

f ∈ H1
loc ∩ L∞loc invertible :⇔ loc. uniformly bounded away from 0,

∀K compact ∃C : |f (x)| ≥ C > 0 a.e. on K

then f−1 is again loc. unif. bded away from 0
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The gt-class of metrics

Definition ([GT, 87], add on by [LeFM, 07], [S,Vickers, 09])
A distributional metric g is called gt-regular if

g ∈ H1
loc ∩ L∞loc,

g is a Lorentzian metric almost everywhere, and

g is non-degenerate, i.e., det(g) is invertible in H1
loc ∩ L∞loc.

Theorem (Properties of gt-regular metrics, [G&T,87])

(i) The Levi-Civita connection of g is an L2
loc-connection.

(ii) The Riemann, Ricci, Weyl, and scalar curvature of g is defined.

(iii) We have H1
loc-stability.

(iv) The Bianchi identities cannot be formulated in D′.

(v) dim(supp(Riem[g])) ≥ 3
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Summary: Linear distributions for GR

The ’maximally reasonable’ distributional setting essentially due
to Geroch and Traschen uses Sobolev regularity

g ∈ H1
loc ∩ L∞loc.

Pros:

Allows to define curvature Riem[g], Ric[g], W [g], R[g]
in distributions.

Has ’limit consistency’ in H1
loc.

Cons:

• Energy conservation cannot be formulated.

• Allows for only mild concentration of sources:
thin shells of matter are okay but strings are out.
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Warning: It really can go wrong! [GT, 87]

Example (Regularising a string (1))

ds2
l = −dt2 + dz2 + dr2 + βl(r)2dφ2

βl(r) =

{
l
γ sin(γr

l ) (r ≤ l)
(r − l + l

γ tan γ) cos γ (r > l)
(l > 0, γ ∈ (0,

π

2
] )

Outside (r > l): standard cone via R = r − l + (l/γ) tan γ
Inside (r < l): mass density µ = 2π(1− cos γ) = ∆
Limit (l → 0):

ds2 = −dt2 + dz2 + dr2 + r2 cos2 γ dφ2, µ = ∆

It is tempting to assign to the string the mass density

ρs = µδ(2)(r) = 2π(1− cos γ) δ(2)(r) = ∆δ(2)(r).
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Warning: It really can go wrong! [GT, 87]

Example (Regularising a string (2))

d̄sl
2

= e 2λf (r/l)ds2
l , λ > 0, f ≥ 0, supp(f ) ⊂⊂ [1/2,1]

µ̄ = 2π(1− cos γ)− 2π
1∫
0

e2λf (x)

γ

(
λ2f ′2(x) sin(γx)

)
dx < µ

Limit (l → 0):

ds2 = −dt2 + dz2 + dr2 + r2 cos2 γ dφ2, µ̄ 6= ∆

So we run into an inconsistency:

ρ̄s = µ̄ δ(2)(r) 6= 2π(1− cos γ) δ(2)(r) = ρs
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Products of distributions?

A multitude of examples show that there is no reasonable
product

D′ ×D′ → D′.

Alternatives
1 Regular intrinsic products

Classical algebras L∞, Hs (s > n/2), but not for all of D′

2 Irregular intrinsic products
Products of singular distributions by ad hoc-methods (e.g.
special regularisation,. . . ). This leads to ambiguities, e.g.

δ2 = 0, cδ, cδ + c′
1

2πi
δ, cδ + c′δ′, . . .

3 Extrinsic products, algebras containing D′
Consistently assign a product to each pair of distributions,
which no longer is a distribution.
Only limited consistency with classical analysis possible.
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What can be done
Reasonable requirements for an algebra A(+, ◦) containing D′:

(i) D′ ↪→ A linear, f ≡ 1 unity in A

(ii) derivations ∂i : A → A (i = 1, . . . ,n), linear and Leibniz rule

(iii) ∂i |D′ is the usual partial derivative (i = 1, . . . ,n).

(iv) ◦|C×C is the usual product

Theorem (Impossibility Result, [Schwartz, 54])
There is no associative, commutative algebra satisfying (i)–(iv).

(What is possible, [Colombeau, 84])
Construction of associative and commutative algebras
satisfying (i)–(iii) and

(iv’) ◦|C∞×C∞ is the usual product.
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Colombeau Algebras: an overview

Algebras of generalised functions in the sense of J.F.
Colombeau [Colombeau 84, 85] are differential algebras

that contain the vector space of distributions and

display maximal consistency with classical analysis
(in the light of L. Schwartz’ impossibility result).
In particular the construction preserves

the product of C∞-functions
(Lie) derivatives of distributions.

Main ideas of the construction are

regularisation of distributions by nets of C∞-functions

asymptotic estimates in terms of a regularisation parameter
(via a quotient construction)
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Colombeau algebra on manifolds (1)
[Damsma, deRoever 91]

E(M), the basic space: all sequences of smooth functions on M

E(M) := {(uε)ε∈(0,1] : uε ∈ C∞(M)}

ε as regularisation parameter, limε→0 uε may or may not exist!

EM(M), moderate sequences: slow growth of all derivatives in ε

For all compact sets K , for any number of vector fields X1, . . . ,Xl

supx∈K |LX1 . . . LXl uε(x)| = O(ε−p) for some p, as ε→ 0

N (M), negligible sequences: fast vanishing of all derivatives in ε

For all compact sets K , for any number of vector fields X1, . . . ,Xl

supx∈K |LX1 . . . LXl uε(x)| = O(εq) for all q, as ε→ 0

Definition (The (special) Colombeau algebra)

G(M) := EM(M) /N (M)
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Colombeau algebra on manifolds (2)
Sequences of smooth functions of moderate growth in ε,
identify those that only differ by a fast vanishing sequence.

G(M) := EM(M) /N (M) 3 u = [(uε)ε]

Componentwise operations
products uv = [(uεvε)ε]
Lie derivatives LX u = [(LX uε)ε]

Localises to open sets and to points
in fact, u is determined by its (generalised) point values

Embedding of C∞-functions: as trivial sequence

σ : C∞(M) 3 u 7→ (u)ε ∈ G(M)

The product of smooth functions is preserved:

σ(uv) = σ(u)σ(v)
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Embedding of distributions
In essence, locally via convolution

in a chart ι : D′(U) 3 u 7→ [(u ∗ ρε)ε] ∈ G(U) for a mollifier ρ

ρ ∈ S(Rn),
∫
ρ = 1, ρε(x) = 1

εn ρ(x
ε ),
∫

xαρ(x)dx = 0 for all
α > 0

⇒ (ι− σ)(C∞) ⊆ N
Warning: This depends on choice of mollifier and chart!
Alternatives:

use a geometrically preferred embedding
(geometric flows [Dave and coworkers 07–])

use an embedding suitable to the application (special modelling)

use a more involved construction of the algebra, which allows for
a canonically embedding of distributions ; full algebras

In any case: LX ◦ ι = ι ◦ LX
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Association: Connecting back to D′
coarse-grain the algebra to implement distributional equality

u, v ∈ G are associated with each other, u ≈ v , if for all ω ∈ Ωn
c

lim
ε→

∫
(uε − vε)ω = 0 (for one/any pair of representatives)

u ∈ G is associated to v ∈ D′, u ≈ v , if for all ω ∈ Ωn
c

lim
ε→0

∫
uε ω = 〈v , ω〉 (for one/any representative)

Then v is called the distributional shadow of u.
If a shadow exists at all it is unique.

Example

θ2 (= ι(θ)2) ≈ θ

δ2 (= ι(δ)2) has no distributional shadow
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Colombeau tensor fields
Definition (Generalised sections)

Gr
s(M) := EM

r
s(M) /N r

s (M),

where moderateness and negligibility are defined analogously.

Theorem (Characterising sections, [Kunzinger, S, 01])
Gr

s(M) is a finitely generated, projective G(M)-module and

Gr
s(M) = G(M)⊗ T r

s (M) = LC∞(M)

(
Ω1(M)r ,X(M)s;G(M)

)
= LG(M)

(
G0

1(M)r ,G1
0(M)s;G(M)

)
.

compare to
D′ r

s(M) = D′(M)⊗ T r
s (M) = LC∞(M)(Ω1(M)r ,X(M)s;D′(M))

Similarly for sections of a vector bundle E → M: ΓG(M,E)
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Generalised metrics
Definition (Generalised metrics [KS, 02])

We define a symmetric g ∈ G0
2(M) to be a generalised metric by

one of the following equivalent non-degeneracy conditions

(i) det(g) is invertible in G(M) (generalised non-degeneracy)

(ii) for all generalised points g(x̃) is nondegenerate as map
R̃n × R̃n → R̃

(pointwise generalised non-degeneracy)

(iii) there exists a representative gε consisting of smooth metrics and
det(g) invertible in G(M)

(idea of smoothing)

technicalities on the index skipped

g induces an isomorphism G1
0 (M) 3 X 7→ X [ := g(X , . ) ∈ G0

1 (M)

g has a unique (generalised) Levi-Civita connection
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Levi-Civita connection
Definition

A gen. connection is a map ∇ : G1
0(M)× G1

0(M)→ G1
0(M)

satisfying the usual conditions.

extends to entire generalised(!) tensor-algebra

standard formulas hold, e.g.
∇∂i (Y

j∂j ) =
(
∂iY k + Γk

ij Y
j
)
∂k (Y j , Γk

ij ∈ G).

Theorem (Fundamental Lemma, [KS, 02])
For any generalised metric g there exists a unique generalised
connection ∇ that is (X ,Y ,Z ∈ G1

0(M))

(∇3) torsion-free i.e., T (X ,Y ) := ∇X Y −∇Y X − [X ,Y ] = 0

(∇4) metric, i.e., ∇X g = 0⇔ X
(
g(X ,Z )

)
= g(∇X Y ,Z ) + g(Y ,∇X Z ).

It is called Levi-Civita connection and given by Koszul’s formula.
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Curvature from a generalised connection

Definition (Generalised curvature)

(i) Let g be a generalised metric with generalised Levi-Civita
connection ∇. We define the generalised Riemannian curvature
tensor R ∈ G1

3 (M) of g by the usual formula, i.e.,

RXY Z := ∇[X ,Y ]Z − [∇X ,∇Y ]Z .

(ii) Ricci, Weyl, and scalar curvature defined as usual.

Observation (Basic compatibility)
Let g be a generalised metric with representative gε such that

gε → g̃ locally in Ck .
Then any representative Rε of the Riemann tensor R of g
converges to the Riemann tensor R̃ of g̃ locally in Ck−2.
The analogue holds true for the Ricci, Weyl, scalar curvature.
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Applications in GR: an overview

Curvature of cosmic strings
[Clarke, Vickers, Wilson, 96], [Vickers and Coworkers, 99–01]

Geometry of impulsive pp-waves
[Balasin, 96], [KS, 98–04]

(Ultrarelativistic) Kerr-Newman geometries
[Balasin, 96–03], [S, 98], [Heinzle, S, 02]

Singular Yang-Mills theory [KSV, 05]

Linear distributional geometry renewed [LeFM, 07],
applications [LeFloch and Coworkers 07–]

Compatibility of G- with the gt-setting [SV, 09]

Wave equations in singular space times
[VW, 00], [Grant, Mayerhofer, S, 09], [Hanel, 11]

; afternoon talk
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Geometry of impulsive pp-waves (1)
Penrose cut&paste approach ; distributional form of the metric

ds2 = f (xA)δ(u)du2 + dudv − δABdxAdxB

Model in G:

d̂s2 = f (xA)D(u)du2 + dudv − δABdxAdxB

with D = [(ρε)ε] and ρε a strict-δ-net:
supp(ρε)→ {0},

∫
ρε → 1 and ||ρε||L1 ≤ C

Results (Geodesics)

The geodesic equation is uniquely solvable in G(R; M).

These generalised geodesic have associated distributions which
are refracted, broken straight lines.

The geodesic deviation equation is uniquely solvable in G1
0 (M).
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Geometry of impulsive pp-waves (2)
Rosen form of the metric

ds2 = dudV − (δAB +
1
2

uθ(u)∂A∂Bf )2dX AdX B

continuous! achieved via a discontinuous transformation.

Results (Interpretation in G)
There is a generalised coordinate transform [(Tε)ε] (implicitly
defined using the generalised geodesics) such that:

distr. metric δ 7→D−−−−→ f (xA)ρε(u)du2 + dudv − δABdxAdxB

?
y yTε

cont. metric
limε→0←−−−− dudV + 2(ẋA

ε ∂BxA
ε − ∂Bvε)dudX B

+(∂B(x1
ε + x2

ε )(dX B))2

Further theoretical work by [Erlacher, Grosser 08–10]
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Compatibility with the gt-setting

g ∈ H1
loc ∩ L∞loc ; two ways to calculate the curvature

(i) gt-setting: coordinate formulas in D′ resp. W m,p
loc

; Riem[g] ∈ D′13
(ii) G-setting: embed g via convolution with a mollifier

usual formulas for fixed ε ; Riem[(gε)ε] ∈ G1
3

Do we get the same answer?

H1
loc ∩ L∞loc 3 g ∗ρε−−−−→ [(gε)ε] ∈ G

gt-setting
y yG-setting

Riem[g]
limε→0←−−−− Riem[(gε)ε]
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Regularising gt-metrics

To preserve positivity need admissible mollifiers:
special strict δ-nets, which are moderate and have

(i) asymptotically vanishing moments:
∀j ∈ N ∃ε0 :

R
xαρε(x) dx = 0 for all 1 ≤ |α| ≤ j and all ε ≤ ε0

(ii) arbitrarily small L1-norms of their negative parts:
∀η > 0 ∃ε0 :

R
|ρε(x)| dx ≤ 1 + η for all ε ≤ ε0

g ∈ H1
loc ∩ L∞loc : gεij := gij ∗ ρε, ; metric gε, ι(g) = [(gε)ε]

Basic convergence result:
f ∈W m,p

loc ⇒ fε := f ∗ ρε → f in W m,p
loc (m ≥ 0, 1 ≤ p<∞)

Lemma (Stability of the determinant)

For gt-regular g: det(gε)→ det g in H1
loc ∩ Lp

loc for all p<∞.

But non-degeneracy of g (|det(g)| ≥ C > 0 a.e. on cp. sets)
6⇒ non-degeneracy of gε (|det(gε)| ≥ C > 0 on cp. sets).
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Preserving non-degeneracy
problem: preserving non-degeneracy for gt-metrics

want: ∀K compact, ∃C : |det(gε)| ≥ CK > 0 on K (Nε)

Definition (Stability condition)
Let g be a gt-regular metric and λi , . . . , λn its eigenvalues.

(i) For any compact K we set µK := min
1≤i≤n

esinf
x∈K

|λi (x)|.

(ii) We call g stable if on K there is AK continuous, such that
max

i,j
essup

x∈K
|gij (x)− AK

ij (x)| ≤ C < µK
2n .

Lemma (Non-degeneracy of smoothed gt-regular metrics)
Let g be a stable gt-regular metric and let gε be a smoothing of
g with an admissible mollifier (ρε)ε.
Then (Nε) holds, and the embedding ιρ(g) is a gen. metric.
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Compatibility results
Theorem (Compatibility of the gt- with the G-setting)
Let g be stable, gt-regular with Riemann tensor Riem[g].
Let gε be a smoothing of g with an admissible mollifier (ρε)ε.
Then we have for the Riemann tensor Riem[(gε)ε] of [(gε)ε]

Riem[(gε)ε]→ Riem[g] in D′13 (ε→ 0).

Hence for any embedding ιρ we have Riem[ιρ(g)] ≈ Riem[g].

H1
loc ∩ L∞loc
stable

3 g
∗ιρ admissible−−−−−−−−→ [(gε)ε] ∈ G

gt-setting
y yG-setting

Riem[g]
≈←−−−−− Riem[(gε)ε]

Similar results hold for other curvature quantities.
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Děkuji

vám za pozornost
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