Lorentzian Geometry and Low Regularity

Roland Steinbauer

Faculty of Mathematics, University of Vienna

GF2014, Southampton, September 2014

Talk dedicated to James Vickers on the occasion of his 60th birthday

ro Low regularity \mathcal{D}' -approaches News on $\mathcal{C}^{1,1}$ News on $\mathcal{C}^{0,1}$

Overview

Semi-Riemannian geometry and general relativity with metrics of low regularity

Contents

- Intro: The basic setup of GR
- 2 The quest for low regularity: Physics & analysis vs. geometry
- Oistributional approaches: An overview
- **1** News on $\mathcal{C}^{1,1}$ -metrics: Exponential map & causality theory
- **1** News on $C^{0,1}$ -metrics: Impulsive gravitational waves

Table of Contents

News on $\mathcal{C}^{1,1}$

- 1 Intro: The basic setup of GR
- The quest for low regularity: Physics & analysis vs. geometry
- Distributional approaches: An overview
- News on $\mathcal{C}^{1,1}$ -metrics: Exponential map & causality
- News on $C^{0,1}$ -metrics: Impulsive gravitational waves

The basic physical setup of General Relativity

- Albert Einstein's theory of space, time and gravitation created exactly 99 years ago
- current description in physics of gravitation and the universe at large

Intro

- geometric theory due to Galileo's principle of equivalence:
 all bodies fall the same in a gravitational field
 - → gravitational field as property
 of the surrounding space
- Gravitational field influences how we measure lengths and angles hence the curvature of space and time

The basic mathematical setup of GR

Lorentzian geometry (basic geometric setup)

- smooth 4-dimensional space-time manifold M
- **smooth** space-time metric $\mathbf{g} \in \Gamma_2^0(M)$: at any T_pM symmetric, non-degenerate scalar product with signature (-,+,+,+)

Field equations (basic physical/analytical setup)

Einstein Equations

$$\mathbf{R}_{ij}[\mathbf{g}] - \frac{1}{2}\mathbf{R}[\mathbf{g}]\mathbf{g}_{ij} + \Lambda \mathbf{g}_{ij} = 8\pi \mathbf{T}_{ij}$$

• Ricci-tensor **R**_{ii}, curvature scalar **R** built from Riemann tensor $R^{m}_{ikp} = \partial_{k}\Gamma^{m}_{ip} - \partial_{p}\Gamma^{m}_{ik} + \Gamma^{a}_{ip}\Gamma^{m}_{ak} - \Gamma^{a}_{ik}\Gamma^{m}_{ap}$ and Christoffel symbols $\Gamma^{i}_{ik} = \mathbf{g}^{il}\Gamma_{ljk} = \frac{1}{2}\mathbf{g}^{il}(\partial_{k}\mathbf{g}_{lj} + \partial_{j}\mathbf{g}_{kl} - \partial_{l}\mathbf{g}_{jk})$

$$\Rightarrow \mathbf{R}_{ij}, \mathbf{R} \sim \partial^2 \mathbf{g} + (\partial \mathbf{g})^2$$

• coupled system of 10 quasi-linear PDEs of 2nd order for g

Table of Contents

- Intro: The basic setup of GR
- 2 The quest for low regularity: Physics & analysis vs. geometry
- 3 Distributional approaches: An overview
- $oldsymbol{4}$ News on $\mathcal{C}^{1,1}$ -metrics: Exponential map & causality
- **5** News on $C^{0,1}$ -metrics: Impulsive gravitational waves

Why Low Regularity?

(1) Realistic matter—Physics

- ullet want discontinuous matter configurations $\leadsto {f T}
 ot\in {\cal C}^0 \implies {f g}
 ot\in {\cal C}^2$
- ullet finite jumps in $\mathbf{T} \leadsto \mathbf{g} \in \mathcal{C}^{1,1}$
- ullet standard approach: ${f g}$ piecewise ${\cal C}^3$, globally only ${\cal C}^1$
- ullet more extreme situations (impulsive waves): ${f g}$ piecew. ${\cal C}^3$, globally ${\cal C}^0$

(2) Initial value problem—Analysis

- 3+1-split: $M = \Sigma \times \{t\}$; C. data $(\Sigma_0, \mathbf{g}_0, \mathbf{k})$ with $\Sigma_0 = \{t = 0\}$, $\mathbf{g}(.,0) = \mathbf{g}_0$, $\partial_t \mathbf{g}(.,0) = \mathbf{k}$
- Local existence and uniqueness Thms. $(\mathbf{g}_0, \mathbf{k}) \in H^s \times H^{s-1}(\Sigma_0) \implies \mathbf{g} \in H^s(\Sigma)$
 - classical [CB,HKM]: $s > 5/2 \implies \mathbf{g} \in \mathcal{C}^1(\Sigma)$
 - recent big improvements [K,R,M,S]: $\mathbf{g} \in \mathcal{C}^0(\Sigma)$

GR and low regularity

Usually in the physics literature ${\bf g}$ is defined to be C^1 . BUT

"Unfortunately, this poses enormous problems [...] because the basic [...] properties of the spacetime [...] might not hold for general C^1 -metrics. In order to avoid this annoying problem though—despite it being completely fundamental!—we will implicitly assume for most of this review that ${\bf g}$ is at least of class C^2 ."

geometry
regularity
standard results

[Garcia-Parrado, Senovilla, 05] $\mathbf{g} \in \mathcal{C}^2$

- exponential map works
- \bullet existence of totally normal nbhds. \Rightarrow geodesically convex nbhds.
- causality theory works [Chrusciel,11]
- needed for singularity thms. [Senovilla,98]
- ullet things go wrong below \mathcal{C}^2
 - convexity goes wrong for $\mathbf{g} \in \mathcal{C}^{1,\alpha}$ ($\alpha < 1$) [HW,51]
 - ullet causality goes wrong, light cones "bubble up" for ${f g} \in \mathcal{C}^0$ [CG,12]
- treshold $\mathbf{g} \in \mathcal{C}^{1,1}$: Unique solvability of geodesics eq. suffices ???

Table of Contents

- 1 Intro: The basic setup of GR
- 2 The quest for low regularity: Physics & analysis vs. geometry
- 3 Distributional approaches: An overview
- $oldsymbol{4}$ News on $\mathcal{C}^{1,1}$ -metrics: Exponential map & causality
- **5** News on $C^{0,1}$ -metrics: Impulsive gravitational waves

Distributional Approaches to GR

"Maximal" distributional setting

[Geroch, Traschen, 87]

using linear distributional geometry [Schwartz, DeRham, Marsden]

- $\mathbf{g} \in L^{\infty}_{loc} \cap H^1_{loc}$, $|\det(\mathbf{g})| \geq C > 0$ on cp. sets [LF,M,07],[S,Vickers,09]
- $V \in L^2_{loc} \to \text{Riem}[\mathbf{g}] \in \mathcal{D}'^0_2(M)$ plus H^1_{loc} -stability

BUT: $\dim(\sup(\mathsf{Riem}[\mathbf{g}])) \geq 3 \rightsquigarrow \mathsf{shells}: \mathsf{ok}, \mathsf{strings}: \mathsf{no!}$

Colombeau setting

[Vickers, Kunzinger, S,...96-]

News on $\mathcal{C}^{1,1}$

using nonlinear distr. geometry (special version)

[GKOS,01]

- $\mathbf{g} \in \mathcal{G}_2^0$, $\det(\mathbf{g})$ invertible in $\mathcal{G}(M)$
- \rightarrow **g** induces iso. $\mathcal{G}_0^1(M) \ni X \mapsto X^{\flat} := \mathbf{g}(X, .) \in \mathcal{G}_1^0(M)$

all curvature quantities defined by usual coordinate formulae

compatibility: C^2 , Geroch–Traschen-setting

[S., Vickers, 09]

Applications: An overview

- Curvature of cosmic strings [Clarke, Vickers, Wilson, 96], [Vickers & Coworkers, 99–01]
- Geometry of impulsive pp-waves, geodesics, Penrose transform [Balasin,96], [Kunzinger,S.,98–04], [Grosser,Erlacher,11-13]
- (Ultrarelativistic) Kerr-Newman geometries [Balasin & Coworkers,96–03], [S.,98], [Heinzle,S.,02]
- Singular Yang-Mills theory

[Kunzinger,S.,Vickers,05]

- Linear distributional geometry renewed [LeF,M,07] applications [LeFloch & Coworkers,07-]
- Wave equations in singular space times

```
[Vickers, Wilson, 00], [Grant, Mayerhofer, S, 09], [Hanel, 11] [Hörmann, Kunzinger, S., 12], [Hanel, Hörmann, Spreitzer, S., 13]
```

- Gen. global hyperbolicity, see talks of G. Hörmann & C. Sämann
- Geodesics in impulsive NP-waves, geodesics [S.,Sämann,12–]
- Reviews [S.,Vickers,06], [Nigsch,Sämann,13]

Table of Contents

- Intro: The basic setup of GR
- 2 The quest for low regularity: Physics & analysis vs. geometry
- 3 Distributional approaches: An overview
- 4 News on $\mathcal{C}^{1,1}$ -metrics: Exponential map & causality
- **5** News on $C^{0,1}$ -metrics: Impulsive gravitational waves

The exponential map in low regularity

The exponential map

- $exp_p: T_pM \ni v \mapsto \gamma_v(1) \in M$, where γ_{ν} is the (unique) geodesic starting at p in direction of v
- maps rays through $0 \in T_pM$ to geodesics through $p \in M$

Regularity

- $\mathbf{g} \in \mathcal{C}^2 \Rightarrow exp_n$ local diffeo
- $\mathbf{g} \in \mathcal{C}^{1,1} \Rightarrow exp_n$ loc. homeo [W32]
- $\mathbf{g} \in \mathcal{C}^{1,1} \Rightarrow exp_p$ bi-Lipschitz homeo [KSS14], [M13]

The exponential map for $C^{1,1}$ -metrics

Theorem (Max. reg. for exp [Kunzinger,S.,Stojković,14])

If $\mathbf{g} \in \mathcal{C}^{1,1}$ then $\forall p \in M$ there exist open ngbhds. \tilde{U} of $0 \in T_pM$ and U of p in M such that $\exp_p : \tilde{U} \to U$ is a bi-Lipschitz homeo.

Method of proof (details see M. Stojković's talk)

- regularisation techniques: approximate $\mathbf{g} \in \mathcal{C}^{1,1}$ by smooth \mathbf{g}_{ε} $\Rightarrow \mathbf{g}_{\varepsilon} \to \mathbf{g} \in \mathcal{C}^1$ and $\mathbf{Riem}[\mathbf{g}_{\varepsilon}]$ bded, but $\mathbf{Riem}[\mathbf{g}_{\varepsilon}] \not\to \mathbf{Riem}[\mathbf{g}]$
- comparison geometry: new Lorentzian methods [Chen,LeFloch,08]

Alternative approach by [Minguzzi,13] uses

• Picard-Lindelöf approximations, inverse funct. thm. for Lip. maps

Merrits: [Minguzzi,13] gives somewhat stronger results but techniques do not extend below $C^{1,1}$.

Consequences: Tools for $C^{1,1}$ -metrics

Recall: convexity fails for $\mathbf{g} \in \mathcal{C}^{1,\alpha}$ $(\alpha < 1)$

Theorem (Convexity [Kunzinger, S., Stojkovic, 14])

If $\mathbf{g} \in \mathcal{C}^{1,1}$ then all points $p \in M$ possess a basis of convex (totally normal) neighborhoods.

For any pair p,q of points in a convex nbhd. $\mathcal U$ there is a unique geodesic entirely contained in $\mathcal U$ connecting p with q.

Theorem (Gauss Lemma [Kunzinger, S., Stojković, Vickers, 14])

If $\mathbf{g} \in \mathcal{C}^{1,1}$ then the exponential map is a radial isometry.

More precisely all $p \in M$ possess a basis of normal nbhds. U with $exp_p : \tilde{U} \to U$ a bi-Lipschitz homeo. and for almost all $x \in \tilde{U}$, if v_x , $w_x \in T_x(T_pM)$ and v_x is radial, then

$$\langle T_x \exp_p(v_x), T_x \exp_p(w_x) \rangle = \langle v_x, w_x \rangle.$$

Causality theory for $C^{1,1}$ -metrics

What is causality theory?

- essentially the theory of future & past
- tells how signals/fields propagate

 → PDE, see talks of G.H. and C.S.

Theorem (Loc. causality [Kunzinger, S., Stojković, Vickers, 14])

If $\mathbf{g} \in \mathcal{C}^{1,1}$ then the causality of M is locally Minkowskian.

More precisely, all $p \in M$ possess a basis of normal nbhds. $\exp_p: \tilde{U} \to U$ a bi-Lipschitz homeomorphism and

$$I^{+}(p, U) = \exp_{p}(I^{+}(0) \cap \tilde{U}), \qquad J^{+}(p, U) = \exp_{p}(J^{+}(0) \cap \tilde{U})$$
$$\partial I^{+}(p, U) = \partial J^{+}(p, U) = \exp_{p}(\partial I^{+}(0) \cap \tilde{U}).$$

Main technique

Regularisations of the metric adapted to the causal structure [Chrusciel, Grant, 12], [Kunz., S., Stojković, Vickers, 14]

If $g \in \mathcal{C}^0$ then for any $\varepsilon > 0$ there exist smooth metrics $\check{\mathbf{g}}_{\varepsilon}$ and $\hat{\mathbf{g}}_{\varepsilon}$ with

$$\check{\mathbf{g}}_{\varepsilon} \prec \mathbf{g} \prec \hat{\mathbf{g}}_{\varepsilon},$$

$$d_h(\check{\mathbf{g}}_{\varepsilon},\mathbf{g})+d_h(\hat{\mathbf{g}}_{\varepsilon},\mathbf{g})<\varepsilon$$

where $d_h(\mathbf{g}_1, \mathbf{g}_2) :=$

$$\sup_{0 \neq X, Y \in TM} \frac{|\mathbf{g}_1(X, Y) - \mathbf{g}_2(X, Y)|}{\|X\|_h \|Y\|_h}$$

and h is some Riem. backgrd metr.

$$\mathbf{g} \prec \mathbf{h} :\Leftrightarrow \mathbf{g}(X,X) \leq 0 \Rightarrow \mathbf{h}(X,X) < 0$$

News on $\mathcal{C}^{1,\Gamma}$

$C^{1,1}$: Further results and outlook

$C^{1,1}$ -causality theory works!

- Fundamental constructions (local causality, push up principles) of causality theory remain valid for $\mathbf{g} \in \mathcal{C}^{1,1}$.
- Accumulation curves of causal curves are causal.

[Chrusciel, Grant, 12]

• This allows to obtain all of standard causality theory for $\mathbf{g} \in \mathcal{C}^{1,1}$ following the classical proofs. [Kunzinger,S.,Stojković,Vickers,14]

Outlook

This (finally) puts us into a position (to try) to prove (Hawking's) singularity theorems for $g \in C^{1,1}$.

see M. Kunzinger's talk

Low regularity \mathcal{D}' -approaches News on $\mathcal{C}^{1,1}$ (News on \mathcal{C}

Table of Contents

- Intro: The basic setup of GR
- 2 The quest for low regularity: Physics & analysis vs. geometry
- 3 Distributional approaches: An overview
- lacktriangle News on $\mathcal{C}^{1,1}$ -metrics: Exponential map & causality
- **5** News on $C^{0,1}$ -metrics: Impulsive gravitational waves

 \mathcal{D}' -approaches News on $\mathcal{C}^{1,1}$ Low regularity News on (

Geodescis in impulsive gravitational waves

Nonexpanding impulsive gravitational waves

- model short but strong pulses of gravitational radiation propagating in Minkowski or (anti-)de Sitter universes
- relevant models of ultrarelativistic particle

anti-de Sitter universe

propagating wave

de Sitter universe

propagating wave

 $\boldsymbol{g}\in\mathcal{C}^{0,1}$

 $V, Z, \bar{Z}))$

(1)

Geodesics: regularity, matching, completeness

\mathcal{C}^1 -matching of the geodesics in impulsive grav. waves

- Physicists like to derive the geodesics by matching the geodesics of the background across the wave-surface.
- Only possible if geodesics cross the wave-surface at all, and are \mathcal{C}^1 across the wave-surface

Quest (Jiří Podolský)

Prove that the geodesics in these space-times are C^1 -curves.

Problem: Geodesic eqs. are ODEs with discontinuous r.h.s.

$$\ddot{\gamma}^{j}(t) + \Gamma^{j}_{kl}(\gamma(t)) \, \dot{\gamma}^{k}(t) \, \dot{\gamma}^{l}(t) = 0$$

$$\mathbf{g}_{ij} \in \mathcal{C}^{0,1} \Rightarrow \Gamma^{j}_{kl} \in L^{\infty}_{loc}$$

News on (

The case $\Lambda = 0$

• Metric (1) takes the simpler form

$$ds^{2} = 2 |dZ + U_{+}(H_{,Z\bar{Z}}dZ + H_{,\bar{Z}\bar{Z}}d\bar{Z})|^{2} - 2 dUdV$$
 (2)

- ightarrow geo. equations are non-autonomous with U as "time"-parameter
- → use Carathéodory's solution concept

Theorem (Geodescis for imp. pp-waves [Lecke, S., Švarc, 14])

The geodesic equations for the impulsive pp-wave metric (2) has unique global solutions in the sense of Carathéodory with absolutely continuous velocities.

Explicitly matched geodesics agree with

 \mathcal{D}' -shadows of \mathcal{G} -solutions of [Kunzinger,S.,99a].

Complete picture emerges in combination with [Kunzinger, S., 99b].

The case $\Lambda \neq 0$

ullet U **not** a parameter \sim no Carathéodory-sols. but **Filippov**-sols

Observation (Geodesics for general $\mathbf{g} \in \mathcal{C}^{0,1}$ [S.,14])

The geodesic equation for any locally Lipschitz metric has solutions in the sense of Filippov with absolutely continuous velocities.

- ullet \mathcal{C}^1 -matching needs uniqueness which does not hold in general
- ullet BUT (1) is pw. \mathcal{C}^{∞} , discont. across totally geodesic null-hypersrf.

Theorem (Nonexp. imp. w. [Podolský,Sämann,S.,Švarc,14])

The geodesic eq. for the nonexpanding imp. wave metric (1) has unique global solutions in the sense of Filippov w. a.c. velocities.

Next steps: \mathcal{D}' -picture for $\Lambda \neq 0$ (Lecke, Sämann, S., Stojković) expanding impulsive waves (Podolský, Sämann, S., Švarc)

tro Low regularity \mathcal{D}' -approaches News on $\mathcal{C}^{1,1}$ (News on $\mathcal{C}^{0,1}$

Some related Literature

- [KSS14] M. Kunzinger, R. Steinbauer, M. Stojković, *The exponential map of a* $C^{1,1}$ -metric. Differential Geom. Appl. 34, 14-24 (2014).
- [KSSV14] M. Kunzinger, R. Steinbauer, M. Stojković, J. Vickers, A regularisation approach to causality theory for C^{1,1}-Lorentzian metrics. Gen. Relativ. Gravit. 46, 1738, (2014).
 - [LSŠ14] A. Lecke, R. Steinbauer, R. Švarc, The regularity of geodesics in impulsive pp-waves. Gen. Relativ. Gravit. 46, 1648 (2014).
 - [S14] R. Steinbauer, Every Lipschitz metric has C¹-geodesics. Class. Quantum Grav. 31, 057001 (2014).
- [PSSŠ14] J. Podolský, C. Sämann, R. Steinbauer, R. Švarc, The global existence, uniqueness and \mathcal{C}^1 -regularity of geodesics in nonexpanding impulsive gravitational waves. arXiv: 1409.1782[gr-qc].
 - [CG12] P. Chrusciel, J. Grant, On Lorentzian causality with continuous metrics. Class. Quantum Grav. 29, 145001 (2012).
 - [M13] E. Minguzzi, Convex neighborhoods for Lipschitz connections and sprays. arXiv:1308.6675 [math.DG].
- [LeFC08] P. LeFloch, B. Chen, *Injectivity Radius of Lorentzian Manifolds*. Commun. Math. Phys. 278, 679 (2008).

Thank you for your attention!

Expendic G-02 Sculpture, Aluminium $283 \times 283 \times 24$ cm (c) Tomas Eller, 2009

Lorentzian Geometry and Low Regularit

