Normally hyperbolic operators of low regularity

Roland Steinbauer

Faculty of Mathematics University of Vienna

Summerschool Generalised Functions in PDE, Geometry, Stochastics and Microlocal Analysis Novi Sad, Serbia, September 2010

Non-smooth Lorentzian geometry

- Distributional geometry
- Nonlinear Distributional Geometry
- Compatibility

- PDOs with generalised coefficients
- Generalised wave operators
- Where to go from here

Distributions on manifolds

[Schwartz, de Rham, Marsden, Parker, ...]

- distributions on manifolds: $\mathcal{D}'(M) = [\Omega_c^n(M)]'$
- distributional sections of a vector bundle $E \rightarrow M$

$$\begin{aligned} \mathcal{D}'(M,E) &:= & \left[\Gamma(M,E^*) \otimes_{\mathcal{C}^{\infty}(M)} \Omega^n_c(M) \right]' \\ &\cong & L_{\mathcal{C}^{\infty}(M)} \big(\Gamma(M,E^*), \mathcal{D}'(M) \big) \cong \mathcal{D}'(M) \otimes_{\mathcal{C}^{\infty}(M)} \Gamma(M,E) \end{aligned}$$

• in particular, distributional tensor fields

$$\mathcal{D'}_{s}^{r}(M) := [\mathcal{T}_{r}^{s}(M) \otimes \Omega_{c}^{n}(M)]' \\ \cong L_{\mathcal{C}^{\infty}(M)}(\mathcal{T}_{r}^{s}, \mathcal{D}'(M)) \cong \mathcal{D}'(M) \otimes_{\mathcal{C}^{\infty}(M)} \mathcal{T}_{s}^{r}(M)$$

extend operations by continuity: L_X, [,], ∧, ι_X, {, },...
 but with only one D'-factor!

Distributional metrics

Definition (Marsden, 1969)

A distributional metric is a symmetric element

 $g \in {\mathcal D'}_2^0(M)$ i.e., $g : \mathfrak{X} \times \mathfrak{X} \to {\mathcal D'}(M), \ {\mathcal C}^\infty(M)$ – bilinear

which is non-degenerate, i.e., $g(X, Y) = 0 \forall Y \Rightarrow X = 0$

Problems:

- notion of nondegeneracy is rather weak (non-local)
- can't insert D'-vector fields into D'-metric
- g gives no isomorphism ${\mathcal D'}_0^1
 i X \mapsto X^\flat := g(X,.) \in {\mathcal D'}_1^0$
- no Levi-Civita connection
- no curvature
- geodesics ?

Geroch-Traschen metrics

Definition (essentially G&T 87)

A distributional metric g is called gt-regular if

 $g\in H^1_{\scriptscriptstyle \mathsf{loc}}\cap L^\infty_{\scriptscriptstyle \mathsf{loc}}$

and uniformly nondegenerate, i.e., $|\det g| \ge C$ on cp. sets.

Theorem (G&T 87, LeFloch&Madare 07)

Let g be gt-regular. Then

- (i) There exists a unique Levi-Civita connection in L^2_{loc} .
- (ii) The Riemann, Ricci and scalar curvature are defined as distributions by the usual formulae.
- (iii) H¹_{loc}-stability

(iv) No-go: codimension of $supp(Riem) \le 1$

Colombeau algebras on manifolds 1

Definition (Scalars, Damsma&deRoever 91)

$$\mathcal{E}_{M}(M) := \{ (u_{\varepsilon}) \in \mathcal{C}^{\infty(0,1]} : \forall K \forall P \exists I : \sup_{x \in K} |Pu_{\varepsilon}(x)| = O(\varepsilon^{-1}) \}$$
$$\mathcal{N}(M) := \{ (u_{\varepsilon}) \in \mathcal{E}_{M}(M) : \forall K \quad \forall m : \sup_{x \in K} |u_{\varepsilon}(x)| = O(\varepsilon^{m}) \}$$
$$\mathcal{G}(M) := \mathcal{E}_{M}(M) / \mathcal{N}(M)$$

• Fine sheaf of differential algebras w.r.t. the Lie derivative

$$L_X u := [(L_X u_\varepsilon)_\varepsilon].$$

• Embeddings: ∃ injective sheaf morphisms (basically convolution)

$$\iota: \mathcal{C}^{\infty}(M) \hookrightarrow \mathcal{D}'(M) \hookrightarrow \mathcal{G}(M).$$

Colombeau algebras on manifolds 2

Definition (Sections)

$$\Gamma_{\mathcal{G}}(M, E) := \Gamma_{\mathcal{M}}(M, E) / \Gamma_{\mathcal{N}}(M, E),$$

where moderateness and negligibility are defined analogously.

Proposition (Characterising sections, Kunzinger&S. 01) $\Gamma_{\mathcal{G}}(M, E)$ is a fine sheaf of

finitely generated and projective $\mathcal{G}(M)$ -modules and

$$\begin{split} \Gamma_{\mathcal{G}}(M,E) &\cong & L_{\mathcal{C}^{\infty}(M)}\big(\Gamma(M,E^*),\mathcal{G}(M)\big) \\ &\cong & \mathcal{G}(M)\otimes_{\mathcal{C}^{\infty}}\Gamma(M,E) \\ &\cong & L_{\mathcal{G}(M)}\big(\Gamma_{\mathcal{G}}(M,E),\mathcal{G}(M)\big). \end{split}$$

Generalised metrics

Definition (Kunzinger&S., 02)

We define a symmetric $g \in \mathcal{G}_2^0(M)$ to be a generalised metric by one of the following equivalent conditions

(i) det(g) invertible in $\mathcal{G}(M)$

(generalised nondegeneracy)

(ii) for all generalised points $g(\tilde{x})$ is nondegenerate as map $\tilde{\mathbb{R}}^n \times \tilde{\mathbb{R}}^n \to \tilde{\mathbb{R}}$

(pointwise generalised nondegeneracy)

(iii) locally there exists a representative g_{ε} consisting of smooth metrics and det(g) invertible in $\mathcal{G}(M)$

(idea of smoothing)

- technicalities on the index skipped
- g induces an isomorphism $\mathcal{G}_0^1(M) \ni X \mapsto X^{\flat} := g(X, .) \in \mathcal{G}_1^0(M)$

Levi-Civita connection

Definition

A gen. connection is a map ∇ : $\mathcal{G}_0^1(M) \times \mathcal{G}_0^1(M) \to \mathcal{G}_0^1(M)$ satisfying the usual conditions.

- extends to entire generalised(!) tensor-algebra
- standard formulas hold, e.g. $\nabla_{\partial_i}(Y^j\partial_j) = (\partial_i Y^k + \Gamma^k_{ii} Y^j)\partial_k \quad (Y^j, \Gamma^k_{ii} \in \mathcal{G}).$

Theorem (Fundamental Lemma)

For any generalised metric g there exists a unique generalised connection ∇ that is $(X, Y, Z \in \mathcal{G}_0^1(M))$

 (∇_3) torsion-free i.e., $T(X, Y) := \nabla_X Y - \nabla_Y X - [X, Y] = 0$

 (∇_4) metric, i.e., $\nabla_X g = 0 \Leftrightarrow X(g(X,Z)) = g(\nabla_X Y,Z) + g(Y,\nabla_X Z).$

It is called Levi-Civita connection and given by Koszul's formula.

Curvature from a generalised connection

Definition (Generalised curvature)

(i) Let g be a generalised metric with generalised Levi-Civita connection ∇. We define the generalised Riemann curvature tensor R ∈ G₃¹(M) of g by the usual formula, i.e.,

$$R_{XY}Z := \nabla_{[X,Y]}Z - [\nabla_X, \nabla_Y]Z.$$

(ii) Ricci and scalar curvature defined as usual.

Observation (Basic compatibility)

Let g be a generalised metric with representative g_{ε} such that $g_{\varepsilon} \to \tilde{g}$ locally in \mathcal{C}^k .

Then any representative R_{ε} of the Riemann tensor R of g converges to the Riemann tensor \tilde{R} of \tilde{g} locally in C^{k-2} . The analogue holds true for the Ricci and scalar curvature.

Compatibility with the GT-setting

g ∈ (H¹_{loc} ∩ L[∞]_{loc})⁰₂(M) two ways to calculate the curvature
 (i) gt-setting: coordinate formulae in D' resp. W^{m,p}_{loc} ~ Riem[g] ∈ D'¹₃
 (ii) G-setting: embed g via convolution with a mollifier usual formulae for fixed ε ~ Riem[g] ∈ G¹₂

Do we get the same answer?

$$\begin{array}{ccc} H^{1}_{\text{loc}} \cap L^{\infty}_{\text{loc}} \ni g & \stackrel{*\rho_{\varepsilon}}{\longrightarrow} & [g_{\varepsilon}] \in \mathcal{G} \\ \text{gt-setting} & & & & \downarrow \mathcal{G}\text{-setting} \\ & & & & \text{Riem}[g] & \stackrel{\lim_{\varepsilon \to 0}}{\longleftarrow} & \text{Riem}[g_{\varepsilon}] \\ & & & & \text{Yes} \ [S \& \text{Vickers} \ 09] \end{array}$$

PDOs with generalised coefficients

• Local approach, i.e. pasting local expressions of the form

$${\it Q}(x,{\it D}) = \sum {\it a}_lpha(x) {\it D}^lpha$$
 with ${\it a}_lpha \in {\cal G}$

works immediately.

• Algebraic approach using the $\mathcal{G}(M)$ -module structure of $\Gamma_{\mathcal{G}}(E)$

$$PDO_{\mathcal{G}}^{(m)}(E,F) := \{P : \Gamma_{\mathcal{G}}(E) \to \Gamma_{\mathcal{G}}(F) \mathbb{R}\text{-linear and} \\ ad(f_0) \cdots ad(f_m)P = 0 \quad \forall f_i \in \mathcal{G}(M)\}.$$

Compatible since

$$PDO_{\mathcal{G}}^{(1)}(M) \cong Der(\mathcal{G}(M)) \oplus PDO_{\mathcal{G}}^{0}(M)$$
$$\cong \Gamma_{\mathcal{G}}(TM) \oplus Hom_{\mathcal{G}}(\mathcal{G}(M))$$

plus induction.

Lowly regular normally hyperbolic operators

Definition

A PDO of second order with generalised coefficients is called normally hyperbolic if its principal symbol is given by (minus) the (inverse) of a generalised Lorentzian metric.

- Locally P = g^{ij}∂_i∂_j + A^j∂_j + B, where g ∈ G⁰₂(M) is a generalised L-metric and A_j, B are generalised coefficients
- gen. metric d'Alembertian/wave operator □_g = g^{ij}∇_i∇_j where ∇ is the Levi-Civita connection of g
- gen. connection d'Alembertian $\Box^{\nabla} = -(\operatorname{tr}_g \otimes \operatorname{Id}_E)(\nabla^{T^*M \otimes E} \circ \nabla_g)$
- Weitzenböck formula ???

The wave equation on singular space-times

Results (Existence and uniqueness)

Local existence and uniqueness theorems for the Cauchy problem for the wave operator of "weakly singular" Lorentzian metrics in the Colombeau algebra.

 conical space times plus compatibility with distributional results

[Vickers&Wilson, 00]

• generalisation to essentially locally bounded metrics

[Grant, Mayerhofer & S., 09]

generalisation to tensors, refined regularity [Hanel, 10]

Conditions on the metrics

(A)
$$\forall K \subset \subset U \ \forall k \ \forall \eta_1, \dots, \eta_k \in \mathfrak{X}(M)$$

• $\sup_K ||L\eta_1 \dots L\eta_k \ g_{\varepsilon}|| = O(\varepsilon^{-k})$
• $\sup_K ||L\eta_1 \dots L\eta_k \ g_{\varepsilon}^{-1}|| = O(\varepsilon^{-k})$
in particular $g_{\varepsilon}, \ g_{\varepsilon}^{-1}$ locally uniformly bounded
 $\Rightarrow 1/M_0 \le \sqrt{-g_{\varepsilon}(\xi_{\varepsilon}, \xi_{\varepsilon})} = V_{\varepsilon} \le M_0$
existence of unfi. spacelike initial surface with normal ξ
(B) $\forall K \subset \subset U : \ \sup_K ||\nabla_{g^{\varepsilon}}\xi_{\varepsilon}|| = O(1)$
 $\Rightarrow ||L_{\xi}g_{\varepsilon}||_{e_{\varepsilon}} = O(1), \quad ||\nabla_{g^{\varepsilon}}e_{\varepsilon}|| = O(1) = ||\nabla_{g^{\varepsilon}}e_{\varepsilon}^{-1}||_{e_{\varepsilon}}$
(C) for each $\varepsilon : \Sigma := \Sigma_0$ past cp., spacelike hypersurface s.t.
 $\partial J_{\varepsilon}^{+}(\Sigma) = \Sigma$

and
$$\exists A \neq \emptyset$$
, open $A \subseteq \bigcap_{\varepsilon} J_{\varepsilon}^{+}(\Sigma)$

 \Rightarrow existence of classical solutions on common domain

(all norms $\| ~\|$ derived from some classical Riemannian background metric)

The result

Theorem (Grant, Mayerhofer &S., 09)

Let (M, g) be a generalised space-time such that (A)-(C) holds and let $v, w \in \mathcal{G}(\Sigma)$. Then for any $p \in \Sigma$ there exists an open neighbourhood V where

$$\Box_g u = 0, \qquad u|_{\Sigma} = v, \quad L_{\hat{\xi}}|_{\Sigma} u = w$$

has a unique solution in $\mathcal{G}(V)$.

- strength: wide class of metric included, e.g. impulsive grav. waves, cosmic strings
- weakness: meaning of condition (C); hard to connect to more classical approaches
- key technology in the proof: higher order energy estimates

General strategy of proof

key ingredient: higher order energy estimates

- use of ε-dependent Sobolev norms
- use of ε-dependent energy-momentum tensors
- switch back to sup-norms

step 1: existence of classical solutions u_{ε} for fixed ε (by (C)) \sim candidate for *G*-solution

step 2: existence of \mathcal{G} -solutions: moderate data \rightsquigarrow moderate initial energies \rightsquigarrow moderate energies for all times \rightsquigarrow

 $(u_{\varepsilon})_{\varepsilon}\in\mathcal{E}_{M}(V)$

step 3: uniqueness—part 1:

independence of the choice of the representatives of v, wnegligible data \rightsquigarrow [.....] $\rightsquigarrow (u_{\varepsilon})_{\varepsilon} \in \mathcal{N}(V)$

step 2: uniqueness—part 2:

independence of the choice of the representative of g

Key energy estimate

Let u_{ε} be a solution of (\Box_{ε}) . Then $\forall k \exists C'_k, C''_k, C'''_k$ s.t. $\forall \mathbf{0} \leq \tau \leq \gamma$

(i)
$$E_{\tau,\varepsilon}^{k}(u_{\varepsilon}) \leq E_{0,\varepsilon}^{k}(u_{\varepsilon}) + C_{k}'(\nabla \| f_{\varepsilon} \|_{\Omega_{\tau},\varepsilon}^{k-1})^{2} + C_{k}''' \int_{\zeta=0}^{\tau} E_{\zeta,\varepsilon}^{k}(u_{\varepsilon}) d\zeta + C_{k}'' \sum_{j=1}^{k-1} \frac{1}{\varepsilon^{2(1+k-j)}} \int_{\zeta=0}^{\tau} E_{\zeta,\varepsilon}^{j}(u_{\varepsilon}) d\zeta$$

(ii)
$$E_{\tau,\varepsilon}^{k}(u_{\varepsilon}) \leq \left(E_{0,\varepsilon}^{k}(u_{\varepsilon}) + C_{k}'(\nabla \|f_{\varepsilon}\|_{\Omega_{\tau},\varepsilon}^{k-1})^{2} + C_{k}''\sum_{j=1}^{k-1} \frac{1}{\varepsilon^{2(1+k-j)}} \int_{\zeta=0}^{\tau} E_{\zeta,\varepsilon}^{j}(u_{\varepsilon})d\zeta\right) e^{C_{k}''\tau}$$

(iii) If the initial energy $(E_{0,\varepsilon}^k(u_{\varepsilon}))_{\varepsilon}$ is moderate [negligible] then

$$\sup_{0\leq au\leq \gamma}(\textit{\textit{E}}_{ au,\,arepsilon}^{\textit{k}}(\textit{\textit{u}}_{arepsilon}))_{arepsilon}$$

is moderate [negligible].

Outlook & Perspectives

- (semi-)global results by a more clever use of cl. existence theory dispense with condition (C)
- general normally hyperbolic operators (Weitzenböck formula ?)
- generalization of Hadamard parametrix construction

extract regularity

- connect to more classical approaches (GT space-times)
- more general metrics: log-type growth in *ε* replacing *O*(1)
 Hölder-Zygmund classes

• ...

- generalised singularity theorems (extending geodesics in generalised sense)
- go non-linear: Einstein equations
- connections to cosmic censorship hypothesis

Some references

- M. Kunzinger, R.S., *Foundations of a nonlinear distributional geometry*, Acta Appl. Math. 71 (2002).
- M. Kunzinger, R.S., *Generalized pseudo-Riemannian geometry*, Trans. Amer. Math. Soc. 354 (2002)
- R.S., J. Vickers, The use of generalised functions and distributions in general relativity, Class. Quant. Grav. 23(10) (2006)
- P. LeFloch, C. Mardare, Definition and stability of Lorentzian manifolds with distributional curvature, Port. Math. 64 (2007).
- R.S., J. Vickers, *On the Geroch-Traschen class of metrics*, Class. Quant. Grav. 26 (2009).
- J. Grant, E. Mayerhofer, R.S., *The wave equation on singular space times*, Commun. Math. Phys. 285(2) (2009).
- C. Hanel, *Wave-type equations of low regularity*, Appl. Analysis, in press (2010).

