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Impulsive gravitational waves

@ model short but strong pulses of gravitational radiation
@ put forward by Roger Penrose in the late 1960's
@ shockwave generated by ultrarelativistic particle [AS-1972]
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Impulsive gravitational waves

model short but strong pulses of gravitational radiation

put forward by Roger Penrose in the late 1960's

shockwave generated by ultrarelativistic particle [AS-1972]

singular curvature concentrated on a null hypersurface

Roland Steinbauer

in flat Minkowski

Vivid distributional metric [Pen,72]

ds? = —2dU AV + dy® + d2?
+2 H(y, z) 6(U) dus?

(B)
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Penrose cut & paste construction

@ cut Minkowski space
(R4, dsg = —2dU dV + dy? + dz2)

along null plane N' = {U/ = 0}
o shift resulting half-spaces M—, M+ ‘\
@ paste by identifying boundary
points in N according to the I
Penrose junction conditions
Identify

VEM =V —H(y,z)e MT

Leads to the C%!-Rosen metric of impuslive pp-waves

—. 12
ds? =2|dZ 4+ u(Hz,dZ + H37dZ)| —2dudv (R)

Z € C, complex coordinate to simplify matters ...
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The ‘discontinuous coordinate transformation’

e The (B) and (R) forms of the metric are physically equivalent.
@ Both possess distributional curvature concentrated on N .

@ There is a “discontinuous transformation” between them
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The ‘discontinuous coordinate transformation’

e The (B) and (R) forms of the metric are physically equivalent.
@ Both possess distributional curvature concentrated on N .

@ There is a “discontinuous transformation” between them

U = u
V = v+OH+u HzH; (T)
n = Z+uH;
Takes
ds® = —2dU dV + dy® +dZ*+2 H(y, z) 6(U) dii*>  (B)
to

ds® =2|dZ + us(Hz;dZ + Hz7dZ)|* = 2dudv (R)
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The ‘discontinuous coordinate transformation’

e The (B) and (R) forms of the metric are physically equivalent.
@ Both possess distributional curvature concentrated on N .
@ There is a "discontinuous transformation” between them

@ Made rigorous in nonlinear generalized functions [KS,99].
Needs:

(A) Geometric insight:

transformation given by special family of null geodesics
(B) Analytic insight:

fully nonlinear distributional analysis of the geodesics of (B)
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The ‘discontinuous coordinate transformation’

e The (B) and (R) forms of the metric are physically equivalent.
@ Both possess distributional curvature concentrated on N .
@ There is a "discontinuous transformation” between them

@ Made rigorous in nonlinear generalized functions [KS,99].
Needs:

(A) Geometric insight:

transformation given by special family of null geodesics
(B) Analytic insight:

fully nonlinear distributional analysis of the geodesics of (B)
Goal: Do the same for nonvansishing (positive) cosmological constant A.

Analytic core: fixed point argument to solve the
i.v.p. for the geodesic equations of (B)-analog
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(Non-expanding) Impulsive waves in de Sitter universe

de Sitter space
@ vacuum solution of Einstein egs. with a positive cosmological constant
@ simplest cosmological model with observed accelerating expansion
@ simplest visualization: 4D hyperboloid in 5D Minkowski space

Flat R® with metric
dsg = —2dUdV+dZ34+dZ5+dZ;
constraint

Z3+Z3+Z2 20UV = 3/A,
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(Non-expanding) Impulsive waves in de Sitter universe

de Sitter space
@ vacuum solution of Einstein egs. with a positive cosmological constant
@ simplest cosmological model with observed accelerating expansion
@ simplest visualization: 4D hyperboloid in 5D Minkowski space

Impulsive wave in de Sitter

5D pp-wave with metric

ds? = —2dUdV + dZ} + dZ2 + dZ?
+ H(Z, Z3, Z) 6(U) dU?

(same) constraint
73+ 75 + Z; —2UV =3/A

impulse on null hypersurface

{U=0}: 2Z°+2°+2°=3/A
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Regularisation—Generalized spacetime
o Regularised 5D impulsive pp-wave (M = R>, g.) with
ds? = —2dUdV +dZZ + dZ8 + odZZ + H(Z,) 6.(U) dU?  (2.1)

with model delta net 1

X
9= o ()
o de Sitter hyperboloid (M, g.) in (M, z.) as usual:
M:={(U,V,2,723,Z4) € M: 20UV + Z5 + 73 + Z? — a*> = 0}
o Generalized (Colombeau) 5D impulsive pp-wave (M = RS, ) with
d5? = —2dUdV + dZ3 + dZ2 + dZ2 + H(Z,) D(U) dU?  (2.2)

with D = [(0.).] generalized J-function
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Geodesic equation
v:l = Mwith V;y =0
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Geodesic equation

v:l = Mwith V;y =0
Ye o I = M with VE 4. = 0, explicitly for ve = (Uz, Vi, Zpe)
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Geodesic equation

v:l = Mwith V;y =0
Ye o I = M with VE 4. = 0, explicitly for ve = (Uz, Vi, Zpe)

Regularised equations

S

Zoe - 3002 = (o4 DG U (o U) T

V. — 5 HOL 02— 7M. 23 U. = —(e+ 2 02 6. — Us (H6. U-)) %
where

8e = 0c(Uc(t)), oL =0L(Uc(t)), e=0,%1,
e = Gs(Us(t)7ZP8(t))’ H = H(Zy(t)), and H, = Hp(Zu(t))
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Geodesic equation
v:l = Mwith V;y =0
Ye : I = M with VE 4. =0, explicitly for 7.

- (U€7 V€7 ZPE)

good news!

- 1 g n . U.
U= —(e+3 U2 6. — U. (Ho. U.)) TR B,
- 1 o 1o : Zpe
Zpe = SHp0.02 = — (e 5 U2 6. — U (Ho. U.)) YT
linear & decoupled ...simply integrate at the end
BUT

oL(Us(t)), e=0,=+1,

)
e = @s(Ue(t)7Zps(t))v H = H(Zp(t)), and H,=H,(Zs(t))

Roland Steinbauer
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Geodesic equation
v:l = Mwith V;y =0

Ye o I = M with VE 4. = 0, explicitly for ve = (Uz, Vi, Zpe)

Model system for 7. = x. = (ue,2z:) € R x R®

) 1o~ . ' te
e = (o 5 82 6 e (- w)) 57 s,
.. 1 2 e y ) =
zE—EDHésug——(e‘f'*“s Ge — i (Ho. “E)) 3/N— u2Hé.

Nl= N

with

H = H(z.) € C*(R?)
Ge(ug,zg) i = DH(z:) dc(ue) ze + H(ze) 02 (ue) ue

Roland Steinbauer
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Initial data & time of existence

Seed geodesics and initial conditions

The u-component of the seed geodesic
(black) reaches the regularisation sandwich
at

t=ae, ie., ula:) = —¢.

In the background spacetime « would con-
tinue (dotted red) to

Qe

U=0att=0.

In the regularised spacetime ~ continues as

Be

~e (green) solving the model equations.

Goal: show that ~. lives long enough to
cross the sandwich for ¢ small.

Roland Steinbauer Impulsive gravitational waves
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Initial data & time of existence

Seed geodesics and initial conditions

The u-component of the seed geodesic
(black) reaches the regularisation sandwich
at

t=ae, ie., ula:) = —¢.

In the background spacetime v would con-
tinue (dotted red) to

U=0att=0.

In the regularised spacetime ~ continues as
~e (green) solving the model equations.

Goal: show that ~. lives long enough to
cross the sandwich for ¢ small.

We look for solutions on
Je = [ac,ac +n] (1 >0)
and set data at t = .
Ye(ae) = (—¢,20)
fe(az) = (62(> 0), 27)

where we additionally demand conver-
gence to some seed data

(—-, zg) — (0, zO)

(6 >0,z)— (°>0,2°
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The full model system

Model system for 7. = x. = (u.,z.) € R x R3

) 1 . ' Y
i, <e+§u€2 G. — i, (H58 u5)> 3//\—723/'/55

1 1 ' 2
2 — SDHG.i2 = — (e+§ G: — i (de“a)) m
e €

with data

x:(ae) = (ve(ae), z-(ac)) = (uz-:7 80)

=(-2,22) = (0,2°) e R xR3

Xe(ae) = (te(oe), (ae)) = (i2,20) — (i°(>0),2°) e Rx R®
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Solution space & operator

%= {xe = (1n.2) € OB ¢ xe02) =0, (o) = X0

1.4 3
I = xOfloo < Ci, |12 = 20loe < G, i € [Euo.@uﬂ}

@ prospective solutions assume e-dependent data
@ centred around the ‘fixed' data (0, z°) and (uo, 2°)
@ (. forced to stay positive

@ X only depends on € via the domain J. and data
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Solution space & operator

Xe = {XE = (ue, z) € CI(J€7R4) D oxe(ae) = Xg’ Xe(ae) = Xg

1,3
e =xlloe < Gy |2 = Pllos < Gy e € 540, S
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Solution space & operator

Xe = {XE = (ue, z) € CI(JEaR4) D oxe(ae) = Xg’ Xe(ae) = Xg

1.4 3
1% — x%|oo < Ci, 12 — 2% < Co, e € [Euo,iuo}}

eu. + 2u.i?G. — u.d. (Ho 1)
Al € 2 HelHe Me gHe eHe d d
be) / /a 3/ — 12Hs. T

+ 02t —ae)—¢

1 ) ~ . .
) ez + 5z G. — z 0. (Hé: u:)
AZ(x:)(t / /as ( DH6. i? oo — ZH. drds

+ 20t —a)+2°
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Local existence & uniqueness

A lot of interesting estimates lead to

1(A)" () = (A)" (XDl < 2 Ballxe =Xl with Y~ B, < o0
and so Weissinger's fixed point theorem applies.

Theorem (Existence and uniqueness, (LSSP,16), (SS,17))

The initial value problem for the geodesic equation has a unique smooth
solution (for small )

Ve = (U€7 Ve, Za) on [asyas + 77]7

Moreover . is uniformly bounded in € together with U. and Z..
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Local existence & uniqueness

Alc . min{l 2 a 20, 2 26
' 24007 3 4+ 00 " 54]1p||1 || DH|leot® T 12(]29] + C1) " 8(]20] + C1)
Ga% /o, 0 0 , -1 G
— (a’(12°| + C1)(3||DH 2|+ )+ |H L O
| (021 + COEIDHI o llpll oo (12°] + C1) + [1Hlloc 16 l120)) SIERED)
C1a° o 0 3.0 , —1
and L (01221 + @) (31DH e Pl (12°] + € + 2l (16w + lpllc)) ) )

Theorem (Existence and uniqueness, (LSSP,16), (SS,17))

The initial value problem for the geodesic equation has a unique smooth
solution (for small )

Ve = (U€7 Ve, Za) on [asyas + 77]7

Moreover . is uniformly bounded in € together with U. and Z..
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Local existence & uniqueness

Alc 2 2

e <eommin 7 (31D llss liplloo (12°] + Co) + 1Hloo 16" lloo ) "
= = 1 a0 ' . oo oo oo oo
2|lplloo l1HIl oo 720 '

2
] . 3
| = (sDHlac lolloo (121 + €2) 4 2 WAl (Il + 1ollc) )+ ©

-0
3)IDH | so [l pllso (12°] + C2)) 1, }
and BIDHlso llplloo (12°] + C2)) P

Theorem (Existence and uniqueness, (LSSP,16), (SS,17))

The initial value problem for the geodesic equation has a unique smooth
solution (for small )

Ve = (U€7 Ve, Za) on [Oég,Olg + 77]7

Moreover . is uniformly bounded in € together with U. and Z..
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Extension of geodesics

Theorem (Global geodesics (LSSP,16), (SS,17))

The geodesics . extend to geodesics of the background de Sitter
spacetime ‘behind’ the sandwich wave zone. In particular

@ the solutions 7. are global, i.e. defined for all t € R

o the spacetime (M, g.) is geodesically complete (i.e. non-singular)

ag+n 0
Ug(ag—i—n):—s—i—/ Ua(s)dsZ—s—i—gUOZ—a—&-&eZE

Qe

since e < 1 U%6

For such €, v leaves the wave zone and extends to a geodesic of the
background spacetime since the geodesic equations coincide there.

O

Roland Steinbauer
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Preliminaries

Recall: v, leaves regularisation strip at some . : U.(t =0:) =¢

Lemma (Limits of exit data)
We have that . \, 0 and

Ye(B:) = (0,B+ V0, Z0)
Ye(Be) = (1,C+ V0, A+ 29)
where

1 z
A= (Hi20)+ S (H(Z?) - 6P1Z8H o(20)))

1
B= JH(Z))
1/< 1 1 2
o= 8(2 Hp(Z0) + SH(ZPY = = (079ZH4(2])) >
p=1

1 1 .
iy (0P1Z3H o(Z0) — H(ZP)) V° + Eép"H,p(z,O)zg

Roland Steinbauer Impulsive gravitational waves 19/28



Convergence result [LSSP,16]

e in front=seed: 7v~(0) = (0, V°, Z0), 4(0) = (1, V°, Z9)
e behind: v*(0) = (0, V° + B, Z0), 41(0) = (1, VO + C,Z0 + A))

@ combine:

Theorem (Limiting geodesics)

The global solutions converges weakly to the limiting geodesic,
Ye = (UE) V57Zpa) — = (0, \7, Zp)

Moreover, we have U — U in ct, Lpe — Zp in C° & this is optimal!

Roland Steinbauer Impulsive gravitational waves 20/28



Nice pictures & the null case
z
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Nice pictures & the null case

V4
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Nice pictures & the null case

Z 74
+ Ve1 = ’YJF
/ Ve = Yar ez ] /'Ye?: '7:;
76 + /’}/;'; = "}/82
Q/ K T /
- ey p
Y= —
v = ~ 7= T
Y= v
Oey O, ﬁaz ﬁal )aele Qe, /862 561

Null case: simple, backgrd. geodesics are straight lines (generators)

7N

Roland Steinbauer

A

VO 4+ VOA+O(N)B + CAy
Z0+ ZOX + Ao\
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(A) The geometric insight [PSSS,19]

‘Discontinuous transformation’ with A

U = u
V v+OWH+urHzHz (T)
n = Z+uiH;

Takes

ge? — —2dUdY + 2dnd7+2 H(y, z) 5(U) du? ()
[1+ A7 —UV)]?

to
dsQZ2\dz+u+(H,dez+HﬁdZ)yz—zdudv (R
[1+ IMZZ — uv+ usG))?
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(A) The geometric insight [PSSS,19]

‘Discontinuous transformation’ with A

U = u
V = v+Ow)H+utHzHz (T)
n = Z+uiH;

limiting geos w. null generators as seed

A
A = | VO+VOA+O(N)B+ CAp
23+ ZIA + Aphy
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(A) The geometric insight [PSSS,19]

‘Discontinuous transformation’ with A

U = u
V = v+Ow)H+utHzHz (T)
n = Z+uiH;

limiting geos w. null generators as seed

A
A = | V04 VOA+O(NB+ CAy
Z3+ ZIA + Ap)y

‘broken geodesic generators' are
coordinate lines of system in which the metric becomes continuous

Roland Steinbauer Impulsive gravitational waves 23/28



(A) The geometric insight & even nicer pictures

The new picture is a direct generalization of Penrose's cut & paste:

identify
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(B) Analytic insight [SSSS,23]

o 'discontinuous trsf.” via limiting geodesics

u
v+O(u)B+usC
= 7[V7Xa Y](U): X+U+Hix

Y + U+H’iy

< X< c©

@ geometric regularisation of trsf. via regularised geodesics

u -
U Ue
v T. Z
vl v ) vz = | %o |-
Y ZP ZPs
Beware: We have to go via 5D!
25 /28
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The regularized transformation

0.1V, Z,)(U) = // ﬁ ((r)) Ue(r) drds

—E& —€

U s
VAV.ZJ(0) = (1= 8OV + 5 [ [ H(Zoe)(0)8L(8:(0)) B2(0) s

—E& —€

U s
+//5Pq Hop(Zue (r)) 62 (0e(r)) Zae(r) Ue(r) drds

—E& —€

U s
// Ae( r) (Va(r) + H(Zpe(1) 6- (0:(1)) Oc(r)) drds
Zps[va Zol(U) =
with
A(r) = %Sljg(r) G-(r) - Dg(r)% (H(Zpe(r)) 8- (0-(r)) Ug(r)) with
C:'E(r) =0PTH, (ng(r)) 65(Ug(r)) Z,E(r) + H(ng(r)) Eé(Ua(r)) U:(r)
N:(r) := o a® — U3(r) H(Zpe(r)) 6<(Uc(r)).

Roland Steinbauer Impulsive gravitational waves



The generalized transformation

Theorem (SSSS,23)

The discontinuous coordinate transform T = [(T.)] is a generalized
diffeomorphism on suitable subsets.

That means in particular (on suitable open )

o T.:Q— T.(Q) = Q. is a diffeomorphism
& there is an open Q C ﬂ5<n

: _ T-1
o For the inverses T ! there is an open Q; C Ne<y T ().
Technically one has to
@ estimate the minors of the Jacobian uniformly
@ use a global univalence result by Gales & Nikaido

@ use results on generalized diffeos by Erlacher & Grosser
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