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1-INTRO: Kinetic Theory, Vlasov Equation

The model: ensemble of particles (mean field limit)
no internal structure
interaction only via collectively created field

phase space distribution function f (t, x , v) ≥ 0 (t ∈ R, x , v ∈ R3)∫ ∫
D

f (t, x , v) dx dv = # of particles with (x , v) ∈ D at time t

no collisions: rate of change along particle parts Df
Dt = 0

Df

Dt
= ∂t f + ∂x f · ẋ + ∂v f · v̇

Newton’s law: ; Vlasov Equation

∂t f + v · ∂x f + F · ∂v f = 0

F (t, x) . . . force field
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1-INTRO: The Vlasov-Poisson system

Vlasov-Poisson: F = −∇u, ∆u = ±4πρ = ±4π
∫

f dv

∂t f + v · ∂x f − ∂xu · ∂v f = 0 (V)
∆u = ±4πρ (P)
ρ =

∫
f dv (C)

f (0, x , v) =
◦
f (x , v) ∈ C1

c (R6) lim
|x |→∞

u(t, x) = 0 (IBC)

model: galaxy in Newtonian gravity, plasma in electrostatics

global-in-time classical solutions, i.e., f ∈ C1([0,∞)× R6)
(Pfaffelmoser 1989, Schaeffer 1991, Lions & Perthame 1991)

Relativistic Vlasov-Poisson: replace v by v̂ = v/
√

1 + |v |2

no general existence result; blow up in gravitational case
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1-INTRO: Vlasov-type equations—Related System

Vlasov-Maxwell:

∂t f + v̂ · ∂x f + (E + v̂ × B) · ∂v f = 0 (V)
(∂t −∆)E = −∂xρ− ∂t j
(∂t −∆)B = rot j (M)
ρ =

∫
f dv j =

∫
v̂ f dv (C)

model: plasma in relativistic electrodynamics

global-in-time weak solutions (DiPerna, Lions 1989)

global-in-time classical solutions only
with data rectrictions (Glassey, Schaeffer, Strauss, Rein)
in lower dimensions (Glassey, Schaeffer)

no general result !

Vlasov-Einstein: General relativity. . .
(Andreasson, Rein, Rendall, . . . )
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2-RVKG: The relativistic Vlasov-Klein Gordon system

u(t, x) scalar Klein-Gordon field, f (t, x , v) ≥ 0 distribution function

The RVKG system

∂t f + v̂ · ∂x f − ∂xu · ∂v f = 0 (V)
∂2

t u −∆u + u = −ρ (KG)
ρ =

∫
f dv (C)

Initial data

f (0) =
◦
f ∈ C1

c (R6) u(0) =
◦
u 1 ∈ C3(R3)

∂tu(0) =
◦
u 2 ∈ C2(R3)

models an ensemble of collisionless particles

moving at relativistic speed

interacting by a quantum mechanical Klein-Gordon field
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2-RVKG: Motivation, Aims and Results

Motivation and Aims

coupling of a single classical particle to a quantum field: dynamics
and asymptotics are an active area of research

(Imaikin, Komech, Markowich, Spohn,. . . )
→ RVKG generalizes this situation

close relation to Vlasov-Maxwell and other systems
→ hope to learn more about the general properties of these systems
by studying RVKG

Results

1 Existence of local classical solutions plus continuation criterion
(EJDE, Vol. 2005(1), 1-17, 2005)

2 Existence of global weak solutions for small data
(Commun. Math. Phys., 238, 367-378, 2003)
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2-1 RVKG-class: Solving (V) and (KG)

Solving (V) via method of characteristics

f (t, x , v) =
◦
f (X (0, t, x , v),V (0, t, x , v))

where (X (t, s, x , v),V (t, s, x , v)) is the solution of the characteristic
system with initial data X (s, s, x , v) = x , V (s, s, x , v) = v .

If the force F (t, x) is nice, so is f (t)
All Lp-norms of f are preserved in time, but only the L1-norm of ρ!

Solution of (KG) (ξ :=
√

(t − s)2 − |x − y |2, J1 Bessel fct.)

u(t, x) = data +
1

4π

∫ t

0

∫
|x−y |=t−s

ρ(s, y) dSy
ds

t − s

− 1

4π

∫ t

0

∫
|x−y |≤t−s

ρ(s, y)
J1(ξ)

ξ
dy ds

Problem: No gain in derivatives from ρ to u
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2-1 RVKG-class: Towards local classical solutions (1)

A-priori bounds

on f , ρ, ∂xu and the velocity support P(t) := sup{|v | : (x , v) ∈ suppf (t)}
by splitting derivatives along and tangential to the light cone

S = ∂t + v̂∂x , Tj = −
yj − xj

|x − y |
∂t + ∂j

; uniform bounds applied to a suitable iterative scheeme

Iterative Scheeme

1 f (0) =
◦
f, u(0) =

◦
u 1

2 Define f (n), u(n) recursively via

(∂t + v̂∂x)f
(n) − ∂xu

(n−1) · ∂v f (n) = 0

∂2
t u(n) −∆u(n) + u(n) = −

∫
f (n)(t, x , v) dv

3 f (n) ∈ C1(R+; C1
c (R6)), u(n) ∈ C2(R+ × R3) and ∂xu

(n−1)(t) is
bounded on cp. sets.
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2-1 RVKG-class: Towards local classical solutions (2)

Need also to show that

f (n)(t), ∂xu
(n)(t) are || ||∞-Cauchy (Existence)

∂(x ,v)f
(n)(t), ∂2

xu(n)(t) are || ||∞-Cauchy (Regularity)

need to control ∂2
xu since

|∂xu
(n+1)(x (n+1))− ∂xu

(n)(x (n))| ≤ ||∂2
xu(n+1)||∞ |x (n+1) − x (n)|

+||∂xu
(n+1)∂xu

(n)||∞

Solution

Use again representation formula.

Apply derivatives.

Rewrite ∂x in terms of S and T .

Work hard to obtain . . .
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2-1 RVKG-class: Representation of ∂2
xu

Lemma. Let u be a C2 sol. of (KG) and f ∈ C2. Then we have

∂k`u(t, x) = F k`
0 + F k`

SS + F k`
ST + F k`

TS + F k`
TT + F k`

RS + F k`
RT + F k`

JR + F k`
JJ ,

for k, ` ∈ {1, 2, 3, t} where (ζ = t − |x − y |)

F k`
SS = −1

4π

∫
|x−y |≤t

∫
ck`(ω, v̂)(S2f )(ζ, y , v)dv dy

|x−y | , |ck`| ≤ C
(1+ω·v̂)2

F k`
ST = 1

4π

∫
|x−y |≤t

∫
bk`

1 (ω, v̂)(Sf )(ζ, y , v)dv dy
|x−y |2 , |bk`

1 | ≤ C
(1+ω·v̂)3

F k`
TS = 1

4π

∫
|x−y |≤t

∫
bk`

2 (ω, v̂)(Sf )(ζ, y , v)dv dy
|x−y |2 , |bk`

2 | ≤ C
(1+ω·v̂)3

F k`
TT = 1

4π

∫
|x−y |≤t

∫
ak`(ω, v̂)f (ζ, y , v)dv dy

|x−y |3 ,
∫

ak`(ω, v̂)dω = 0,

F k`
RS = 1

8π

∫
|x−y |≤t

∫
dk`(ω, v̂)(Sf )(ζ, y , v)dv dy

|x−y |2 , |dk`| ≤ C
1+ω·v̂

F k`
RT = 1

8π

∫
|x−y |≤t

∫
ek`(ω, v̂)(Sf )(ζ, y , v)dv dy

|x−y |2 , |ek`| ≤ C
(1+ω·v̂)2

F k`
JR = −1

32π

∫
|x−y |≤t

ρ(ζ, y)ωkω`|x − y |dy ,

F k`
JJ = − 1

4π

∫ t

0

∫
|x−y |≤t−s

ρ(s, y)
(J3(ξ)

ξ3
(xk − yk)(x` − y`) +

J2(ξ)

ξ2
δk`

)
dy ds.
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2-1 RVKG-class: The Result

Theorem. Local existence and uniqueness, continuation criterion

Let
◦
f ∈ C1

c (R6), f ≥ 0,
◦
u 1 ∈ C3(R3) and

◦
u 2 ∈ C2(R3).

(i) Then there exists T > 0 and a unique solution (f , u) of the
relativistic Vlasov-Klein-Gordon system on [0,T )

(f , u) ∈ C1([0,T ); C1
c (R6))× C2([0,T )× R3)

with the initial data
◦
f,

◦
u 1 and

◦
u 2.

(ii) Choose T maximal. If

sup{|v | : (x , v) ∈ suppf (t), 0 ≤ t < T} <∞.

Then T = ∞.

Moreover we have

Conservation of mass and energy.

In one space dimension the criterion (ii) always holds true.
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2-2 RVGK-weak: A-Priori Bounds via Energy Conservation

The Energy of RVKG

∫ √
1 + |v |2f dxdv+

1

2

∫ [
|∂tu|2+|∂xu|2+|u|2

]
dx+

∫
ρudx =: EK+EF +EC

energy is conserved but EC is not positive

Idea: by Hölder, Sobolev and interpolation∣∣∣∣∫ ρu dx

∣∣∣∣ ≤ ‖ρ(t)‖6/5‖u(t)‖6 ≤ C EK (t)1/2‖∂xu(t)‖2

with C depending on ‖
◦
f ‖1 and ‖

◦
f ‖∞

Solution:
construct global classical solutions to regularized system
a-priori bounds for small data allow passage to weak limit
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2-2 RVGK-weak: Towards Global Weak Solutions (1)

The regularized system

Replace KG by ∂2
t u −∆u + u = −ρ ∗ η (η ∈ C∞c (R3)).

For given data (
◦
f ,

◦
u1,

◦
u2) ∈ C1

c × C3
b × C2

b there exist global classical
solutions

(f , u) ∈ C1([0,∞[×R6)× C2([0,∞[×R3).

Conservation of modified energy

Let η = d ∗ d with d even and (f , u) as above with data (
◦
f ,

◦
u1 ∗ η,

◦
u2 ∗ η).

Let ũ be the unique solution to

∂2
t ũ −∆ũ + ũ = −ρ ∗ d with data (

◦
u1 ∗ d ,

◦
u2 ∗ d).

Then

Ẽ := EK +
1

2

∫
[|∂t ũ|2 + |∂x ũ|2 + |ũ|2] dx + EC

is conserved.
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2-2 RVGK-weak: Towards Global Weak Solutions (2)

Modified bounds for EC

For p ∈]3/2,∞] and 1/p + 1/q = 1 and (f , u) as above we have∣∣∣∣∫ u(t, x) ρ(t, x) dx

∣∣∣∣ ≤ C (
◦
f ) ‖∂x ũ(t)‖2 EK (t)1/2, t ≥ 0,

with

C (
◦
f ) :=

(
4q

π

)1/2

3−7/6

(
q + 3

q

)(q+3)/6

‖
◦
f‖(3−q)/6

1 ‖
◦
f‖q/6

p .

Velocity-averaging lemma (Golse, Lions, Perthame, Sentis)

to prove that weak limit of approximating sequence solves non-linear(!) V∫
fn( . , . , v)ψ(v) dv →

∫
f ( . , . , v)ψ(v) dv in L2(]0,T [×BR(0)).
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2-2 RVGK-weak: The result

Theorem. Global Weak Solutions

Let
◦
f ∈ L1

kin(R6) ∩ Lp(R6) for some p ∈ [2,∞],
◦
f ≥ 0,

◦
u1 ∈ H1(R3),

◦
u2 ∈ L2(R3),

1/p + 1/q = 1 and

‖
◦
f‖(3−q)/3

1 ‖
◦
f ‖q/3

p <
π

2q
37/3

(
q

q + 3

)(q+3)/3

Then there exists a unique global weak solution

f ∈ L∞([0,∞[, Lp(R6)), u ∈ L∞([0,∞[,H1(R3))

with ∂tu ∈ L∞([0,∞[, L2(R3))

of the relativistic Vlasov-Klein-Gordon system with these initial data.

(University of Novi Sad) March 2006 16 / 26



2-2 RVGK-weak: The result—Details

That is, in particular

(a) (f , u) satisfies (V), (KG) in D′(]0,∞[×R6).

(b) The mapping

[0,∞[3 t 7→ (f (t), u(t), ∂tu(t)) ∈ L2(R6)× L2(R3)× L2(R3)

is weakly continuous with (f , u, ∂tu)(0) = (
◦
f ,

◦
u1,

◦
u2).

In addition we have

f (t) ≥ 0 a.e., ‖f (t)‖p ≤ ‖
◦
f‖p, t ≥ 0.

∂tρ+ divj = 0 in D′(]0,∞[×R3) where j(t, x) :=
∫

v̂ f (t, x , v) dv .

The weak solution conserves mass: ‖f (t)‖1 = ‖
◦
f‖1 for a. a. t ≥ 0.
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3-GVP: Recall the Vlasov-Poisson system

Vlasov-Poisson:

∂t f + v · ∂x f − ∂xu · ∂v f = 0 (V)
∆u = 4πγρ (P)
ρ =

∫
f dv (C)

f (0, x , v) =
◦
f (x , v) ∈ C1

c (R6) lim
|x |→∞

u(t, x) = 0 (IBC)

model: galaxy in Newtonian gravity, plasma in electrostatics

global-in-time classical solutions, i.e., f ∈ C1([0,∞)× R6)
(Pfaffelmoser 1989, Schaeffer 1991, Lions & Perthame 1991)
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3-GVP: Singular Limits of (VP)

Euler Poisson: f (t, x , v) = g(t, x) δ(v − w(t, x)) (velocity field w)

(f , u) solves (VP) ⇔ (g ,w , u) solves Euler-Poisson w. zero pressure

∂tg + div(gw) = 0

∂tw + (w∂x)u = −∂xu (EP0)

∆u = 4πγg

N-body problem: f (t, x , v) =
∑N

k=1 δ
(
x − xk(t)

)
δ
(
v − vk(t)

)
(f , u) solves (VP) ⇔ (xk , vk) solves N-body problem

ẋk = vk

ẋk = ∓
N∑

k 6=j=1

xk − xj

|xk − xj |3
(N)
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3-GVP: Motivation and Aims

Why Singular Limits of (VP)?

1 Existence-theory of (VP) is much better

2 shell crossing singularities in (EP0)

3 (N) has only local solutions, time of existence may shrink with
growing N

Why Colombeau Generalized Solutions?

1 few rigorous classical results on singular limits of (VP):
[Sandor 1996, Dietz/Sandor 1999] on (EP0) [Neunzert 1984] on (N)

2 “weak” convergence results:
not on the whole time of existence of (EP0)
convergence in measure spaces, . . .

3 use of ad-hoc weak sol. concepts for nonlinear term ∂xu ∂v f in (V)
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3-GVP: What are Colombeau Algebras?

Algebras of generalized functions in the sense of J.F. Colombeau
[Colombeau 1984, 1985] are differential algebras

that contain the vector space of distributions and

display maximal consistency with classical analysis
(in the sense of L. Schwartz impossibility result).
In particular

the product of C∞ function
partial derivatives of distributions

are preserved

Main ideas of the construction are

regularization of distributions by nets of C∞-functions

asymptotic estimates in terms of a regularization parameter
(quotient construction)
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3-GVP: On the main result

The algebras used

E(R+ × Rn) := C∞(R+ × Rn)(0,1]

E g̃
M(R+ × Rn) := {(uε)ε ∈ E : ∀K ⊂⊂ R+ ∀α ∈ Nn+1

0 ∃N ∈ N :

sup
(t,z)∈K×Rn

|∂αuε(t, z)| = O(ε−N)}

Ng̃ (R+ × Rn) := {(uε)ε ∈ E : ∀K ⊂⊂ R+ ∀α ∈ Nn+1
0 ∀m ∈ N :

sup
(t,z)∈K×Rn

|∂αuε(t, z)| = O(εm)}

Gg̃ (R+ × Rn) := G g̃
M(R+ × Rn)/Ng̃ (R+ × Rn).
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3-GVP: The Result

Theorem. Generalized solutions to the spherically symmetric (VP)-System

Let
◦
f ∈ Gg (R6) with a representative (

◦
fε)ε such that

(i) (
◦
fε)ε is compactly supported uniformly in ε, non-negative and

spherically symmetric,

(ii) ||
◦
fε||1 = M (the mass), and

(iii) ||
◦
fε||∞ ≤ Cσ(ε)−1, where σ is an appropriate scale.

Then there exists a unique solution

(f , u) ∈ Gg̃ (R+ × R6)× Gg̃ (R+ × R3)

of (VP) with f (0, x , v) =
◦
f(x , v) and u strongly vanishing at infinity.

Moreover f (t) is non-negative and spherically symmetric.

math.AP/0601552
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3-GVP: On the Existence of Generalized Solutions

For fixed ε we have global-in-time classical solutions (fε, uε).
To prove existence in Gg̃ we only have to prove moderateness.

Lemma 0. (0th order est.—no problem) ||fε||, ||ρε||, ||∂xuε|| ≤ Cσ−N

Lemma 1. (1st order estimates—it starts getting bad)

||∂(x ,v)fε||∞ ≤ eCσ−2 ||∂2
xuε||∞ ≤ Cσ−2 ||∂xρε||∞ ≤ eCσ−2

Why? Gronwall for the derivatives of the characteristics
|∂x V̇ε| ≤ ||∂2

xuε|| |∂xVε| ≤ ||ρε|| |∂xVε| ≤ Cσ−2 |∂xVε| ; ||∂fε|| ≤ eCσ−2

Lemma 2. (Higher order estimates—it doesn’t get worse)

||∂α
(x ,v)fε||∞ ≤ eCσ−2 ||∂β+2

x uε||∞ ≤ eCσ−2 ||∂β
x ρε||∞ ≤ eCσ−2

Why? only ||∂2
xuε|| hence ||ρ||∞ enters Gronwall
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3-GVP: On the Uniqueness of Generalized Solutions

How to generalized the boundary condition lim
|x |→∞

u(x) = 0 (∗) ?

Problem: Every u = [(uε)ε] ∈ G (est. on cp. sets!) has a rep. with (∗)
; naive way lim|x |→∞ uε(x) = 0 ∀ε (∗∗) doesn’t work!
non-uniqueness: ∆0 = 0 = ∆1 and both satisfy (∗∗)

Solution: Let ρ ∈ Gc(R3). We call u ∈ Gg (R3) a solution of (P) vanishing
at infinity if ∆u = 4πρ and if there exists a representative (uε)ε such that

(i) lim
|x |→∞

uε(x) = 0 ∀ε, and

(ii) supp(∆uε)ε ⊆ Bε−N (0)

Proposition. Let ρ ∈ Gc(R3). Then there exists one and only one
solution of ∆u = 0 in Gg (R3) vanishing at infinity.
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3-GVP: Outlook—Future Prospects

study limits (association) of generalized solutions given by the
theorem ; singular limits of (VP)

study exact (generalized) solutions of (VP)

. . .

shell crossing singularities of dust models in general relativity;
non-unique continuation of solutions after the singularity
regularizing by kinetic models !?! (Brien Nolan, DCU, Dublin)

. . .
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