Some topics in kinetic equations

Roland Steinbauer

University of Vienna Faculty of Mathematics

March 2006

Collisionles models in kinetic theory

A brief intoduction to Vlasov-type equations

- The relativistic Vlasov-Klein Gordon system (M. Kunzinger, G. Rein, R.S., G. Teschl)
 - Local-in-time classical solutions
 - Ø Global-in-time weak solutions for small initial data
- Generalized soultions of the Vlasov-Poisson system

(I. Kmit, M. Kunzinger, R.S.)

1-INTRO: Kinetic Theory, Vlasov Equation

- The model: ensemble of particles (mean field limit)
 - no internal structure
 - interaction only via collectively created field
- phase space distribution function $f(t, x, v) \ge 0$ $(t \in \mathbb{R}, x, v \in \mathbb{R}^3)$

$$\int \int_D f(t,x,v) \, dx \, dv = \# ext{ of particles with } (x,v) \in D ext{ at time } t$$

• no collisions: rate of change along particle parts $\frac{Df}{Dt} = 0$

$$\frac{Df}{Dt} = \partial_t f + \partial_x f \cdot \dot{x} + \partial_v f \cdot \dot{v}$$

• Newton's law: ~> Vlasov Equation

$$\partial_t f + \mathbf{v} \cdot \partial_x f + F \cdot \partial_v f = \mathbf{0}$$

 $F(t, x) \dots$ force field

Vlasov-Poisson:
$$F = -\nabla u$$
, $\Delta u = \pm 4\pi \rho = \pm 4\pi \int f \, dv$

$$\partial_t f + \mathbf{v} \cdot \partial_x f - \partial_x u \cdot \partial_v f = 0 \qquad (V)$$

$$\Delta u = \pm 4\pi\rho \qquad (P)$$

$$\rho = \int f \, d\mathbf{v} \qquad (C)$$

$$(0, x, \mathbf{v}) = \stackrel{\circ}{f}(x, \mathbf{v}) \in \mathcal{C}^1_c(\mathbb{R}^6) \qquad \lim_{|x| \to \infty} u(t, x) = 0 \qquad (IBC)$$

- model: galaxy in Newtonian gravity, plasma in electrostatics
- global-in-time classical solutions, i.e., f ∈ C¹([0,∞) × ℝ⁶) (Pfaffelmoser 1989, Schaeffer 1991, Lions & Perthame 1991)

Relativistic Vlasov-Poisson: replace v by $\hat{v} = v/\sqrt{1+|v|^2}$

• no general existence result; blow up in gravitational case

Vlasov-Maxwell:

$$\partial_t f + \hat{v} \cdot \partial_x f + (E + \hat{v} \times B) \cdot \partial_v f = 0 \qquad (V)$$

$$(\partial_t - \Delta)E = -\partial_x \rho - \partial_t j$$

$$(\partial_t - \Delta)B = \operatorname{rot} j \qquad (M)$$

$$\rho = \int f \, dv \qquad j = \int \hat{v} f \, dv \qquad (C)$$

- model: plasma in relativistic electrodynamics
- global-in-time weak solutions (DiPerna, Lions 1989)
- global-in-time classical solutions only
 - with data rectrictions (Glassey, Schaeffer, Strauss, Rein)
 - in lower dimensions (Glassey, Schaeffer)
- no general result !

Vlasov-Einstein: General relativity...

(Andreasson, Rein, Rendall, ...)

2-RVKG: The relativistic Vlasov-Klein Gordon system

u(t,x) scalar Klein-Gordon field, $f(t,x,v) \ge 0$ distribution function

The RVKG system

$$\partial_t f + \hat{v} \cdot \partial_x f - \partial_x u \cdot \partial_v f = 0 \qquad (V)$$

$$\partial_t^2 u - \Delta u + u = -\rho \qquad (KG)$$

$$\rho = \int f \, dv \qquad (C)$$

Initial data

$$f(0) = \stackrel{\circ}{f} \in \mathcal{C}^{1}_{c}(\mathbb{R}^{6}) \qquad u(0) = \stackrel{\circ}{u}_{1} \in \mathcal{C}^{3}(\mathbb{R}^{3})$$
$$\partial_{t} u(0) = \stackrel{\circ}{u}_{2} \in \mathcal{C}^{2}(\mathbb{R}^{3})$$

models an ensemble of collisionless particles

- moving at relativistic speed
- interacting by a quantum mechanical Klein-Gordon field

2-RVKG: Motivation, Aims and Results

Motivation and Aims

• coupling of a single classical particle to a quantum field: dynamics and asymptotics are an active area of research

(Imaikin, Komech, Markowich, Spohn,...)

- \rightarrow RVKG generalizes this situation
- close relation to Vlasov-Maxwell and other systems \rightarrow hope to learn more about the general properties of these systems by studying RVKG

Results

Existence of local classical solutions plus continuation criterion

(EJDE, Vol. 2005(1), 1-17, 2005)

2 Existence of global weak solutions for small data

(Commun. Math. Phys., 238, 367-378, 2003)

2-1 RVKG-class: Solving (V) and (KG)

Solving (V) via method of characteristics

$$f(t,x,v) = \stackrel{\circ}{f}(X(0,t,x,v), V(0,t,x,v))$$

where (X(t, s, x, v), V(t, s, x, v)) is the solution of the characteristic system with initial data X(s, s, x, v) = x, V(s, s, x, v) = v.

- If the force F(t, x) is nice, so is f(t)
- All L^{*p*}-norms of *f* are preserved in time, but **only** the L^1 -norm of ρ !

Solution of (KG)
$$(\xi := \sqrt{(t-s)^2 - |x-y|^2}, J_1 \text{ Bessel fct.})$$

 $u(t,x) = \text{data} + \frac{1}{4\pi} \int_0^t \int_{|x-y|=t-s} \rho(s,y) \, dS_y \frac{ds}{t-s}$
 $- \frac{1}{4\pi} \int_0^t \int_{|x-y| \le t-s} \rho(s,y) \, \frac{J_1(\xi)}{\xi} \, dy \, ds$

• Problem: No gain in derivatives from ρ to u

2-1 RVKG-class: Towards local classical solutions (1)

A-priori bounds

on f, ρ , $\partial_x u$ and the velocity support $P(t) := \sup\{|v| : (x, v) \in \operatorname{supp} f(t)\}$ by splitting derivatives along and tangential to the light cone

$$S = \partial_t + \hat{v}\partial_x, \qquad T_j = -rac{y_j - x_j}{|x - y|}\partial_t + \partial_j$$

 \rightsquigarrow uniform bounds applied to a suitable iterative scheeme

Iterative Scheeme

2 Define $f^{(n)}$, $u^{(n)}$ recursively via

$$(\partial_t + \hat{v}\partial_x)f^{(n)} - \partial_x u^{(n-1)} \cdot \partial_v f^{(n)} = 0 \partial_t^2 u^{(n)} - \Delta u^{(n)} + u^{(n)} = -\int f^{(n)}(t, x, v) dv$$

• $f^{(n)} \in C^1(\mathbb{R}^+; C^1_c(\mathbb{R}^6)), u^{(n)} \in C^2(\mathbb{R}^+ \times \mathbb{R}^3) \text{ and } \partial_x u^{(n-1)}(t) \text{ is bounded on cp. sets.}$

2-1 RVKG-class: Towards local classical solutions (2)

Need also to show that

f⁽ⁿ⁾(t), ∂_xu⁽ⁿ⁾(t) are || ||_∞-Cauchy (Existence)
 ∂_(x,v)f⁽ⁿ⁾(t), ∂²_xu⁽ⁿ⁾(t) are || ||_∞-Cauchy (Regularity)

need to control $\partial_x^2 u$ since

$$\begin{aligned} |\partial_x u^{(n+1)}(x^{(n+1)}) - \partial_x u^{(n)}(x^{(n)})| &\leq ||\partial_x^2 u^{(n+1)}||_{\infty} |x^{(n+1)} - x^{(n)}| \\ &+ ||\partial_x u^{(n+1)} \partial_x u^{(n)}||_{\infty} \end{aligned}$$

Solution

- Use again representation formula.
- Apply derivatives.
- Rewrite ∂_x in terms of S and T.
- Work hard to obtain ...

2-1 RVKG-class: Representation of $\partial_x^2 u$

Lemma. Let *u* be a C^2 sol. of (KG) and $f \in C^2$. Then we have

$$\partial_{k\ell} u(t,x) = F_0^{k\ell} + F_{SS}^{k\ell} + F_{ST}^{k\ell} + F_{TS}^{k\ell} + F_{TT}^{k\ell} + F_{RS}^{k\ell} + F_{RT}^{k\ell} + F_{JR}^{k\ell} + F_{JJ}^{k\ell},$$

for $k, \ell \in \{1, 2, 3, t\}$ where $(\zeta = t - |x - y|)$

$$\begin{array}{lll} F_{SS}^{k\ell} &=& \frac{-1}{4\pi} \int_{|x-y| \leq t} \int c^{k\ell}(\omega, \hat{v}) (S^2 f)(\zeta, y, v) dv \frac{dy}{|x-y|}, & |c^{k\ell}| \leq \frac{C}{(1+\omega\cdot\hat{v})^2} \\ F_{ST}^{k\ell} &=& \frac{1}{4\pi} \int_{|x-y| \leq t} \int b_1^{k\ell}(\omega, \hat{v}) (Sf)(\zeta, y, v) dv \frac{dy}{|x-y|^2}, & |b_1^{k\ell}| \leq \frac{C}{(1+\omega\cdot\hat{v})^3} \\ F_{TS}^{k\ell} &=& \frac{1}{4\pi} \int_{|x-y| \leq t} \int b_2^{k\ell}(\omega, \hat{v}) (Sf)(\zeta, y, v) dv \frac{dy}{|x-y|^2}, & |b_2^{k\ell}| \leq \frac{C}{(1+\omega\cdot\hat{v})^3} \\ F_{TT}^{k\ell} &=& \frac{1}{4\pi} \int_{|x-y| \leq t} \int a^{k\ell}(\omega, \hat{v}) f(\zeta, y, v) dv \frac{dy}{|x-y|^3}, & \int a^{k\ell}(\omega, \hat{v}) d\omega = 0, \\ F_{RS}^{k\ell} &=& \frac{1}{8\pi} \int_{|x-y| \leq t} \int d^{k\ell}(\omega, \hat{v}) (Sf)(\zeta, y, v) dv \frac{dy}{|x-y|^2}, & |d^{k\ell}| \leq \frac{C}{1+\omega\cdot\hat{v}} \\ F_{RT}^{k\ell} &=& \frac{1}{8\pi} \int_{|x-y| \leq t} \int e^{k\ell}(\omega, \hat{v}) (Sf)(\zeta, y, v) dv \frac{dy}{|x-y|^2}, & |e^{k\ell}| \leq \frac{C}{(1+\omega\cdot\hat{v})^2} \\ F_{JR}^{k\ell} &=& \frac{-1}{32\pi} \int_{|x-y| \leq t} \rho(\zeta, y) \omega_k \omega_\ell |x-y| dy, \end{array}$$

$$F_{JJ}^{k\ell} = -\frac{1}{4\pi} \int_0^t \int_{|x-y| \le t-s} \rho(s,y) \Big(\frac{J_3(\xi)}{\xi^3} (x_k - y_k) (x_\ell - y_\ell) + \frac{J_2(\xi)}{\xi^2} \delta_{k\ell} \Big) dy \, ds.$$

2-1 RVKG-class: The Result

Theorem. Local existence and uniqueness, continuation criterion

Let
$$\overset{\circ}{f} \in \mathcal{C}^1_c(\mathbb{R}^6)$$
, $f \ge 0$, $\overset{\circ}{u}_1 \in \mathcal{C}^3(\mathbb{R}^3)$ and $\overset{\circ}{u}_2 \in \mathcal{C}^2(\mathbb{R}^3)$.

(i) Then there exists T > 0 and a unique solution (f, u) of the relativistic Vlasov-Klein-Gordon system on [0, T)

$$(f, u) \in \mathcal{C}^1([0, T); \mathcal{C}^1_c(\mathbb{R}^6)) \times \mathcal{C}^2([0, T) \times \mathbb{R}^3)$$

with the initial data $\stackrel{\circ}{f}$, $\stackrel{\circ}{u}_1$ and $\stackrel{\circ}{u}_2$.

(ii) Choose T maximal. If

```
\sup\{|v|: (x,v) \in \operatorname{supp} f(t), \ 0 \leq t < T\} < \infty.
```

Then $T = \infty$.

Moreover we have

- Conservation of mass and energy.
- In one space dimension the criterion (ii) always holds true.

2-2 RVGK-weak: A-Priori Bounds via Energy Conservation

The Energy of RVKG

$$\int \sqrt{1+|v|^2} f \, dx dv + \frac{1}{2} \int \left[|\partial_t u|^2 + |\partial_x u|^2 + |u|^2 \right] dx + \int \rho u dx =: E_K + E_F + E_C$$

- energy is conserved **but** E_C is not positive
- Idea: by Hölder, Sobolev and interpolation

$$\left|\int \rho u \, dx\right| \leq \|\rho(t)\|_{6/5} \|u(t)\|_6 \leq C \, E_{\mathcal{K}}(t)^{1/2} \|\partial_x u(t)\|_2$$

with C depending on $\|\mathring{f}\|_1$ and $\|\mathring{f}\|_\infty$

• Solution:

- construct global classical solutions to regularized system
- · a-priori bounds for small data allow passage to weak limit

2-2 RVGK-weak: Towards Global Weak Solutions (1)

The regularized system

Replace KG by $\partial_t^2 u - \Delta u + u = -\rho * \eta$ $(\eta \in \mathbb{C}^{\infty}_c(\mathbb{R}^3))$. For given data $(\mathring{f}, \mathring{u}_1, \mathring{u}_2) \in \mathcal{C}^1_c \times \mathcal{C}^3_b \times \mathcal{C}^2_b$ there exist global classical solutions

$$(f, u) \in \mathcal{C}^1([0, \infty[\times \mathbb{R}^6) \times \mathcal{C}^2([0, \infty[\times \mathbb{R}^3).$$

Conservation of modified energy

Let $\eta = d * d$ with d even and (f, u) as above with data $(\mathring{f}, \mathring{u}_1 * \eta, \mathring{u}_2 * \eta)$. Let \tilde{u} be the unique solution to

$$\partial_t^2 \widetilde{u} - \Delta \widetilde{u} + \widetilde{u} = -
ho * d$$
 with data $(\mathring{u}_1 * d, \mathring{u}_2 * d).$

Then

$$\tilde{E} := E_{\mathcal{K}} + \frac{1}{2} \int \left[|\partial_t \tilde{u}|^2 + |\partial_x \tilde{u}|^2 + |\tilde{u}|^2 \right] dx + E_C$$

is conserved.

(University of Novi Sad)

2-2 RVGK-weak: Towards Global Weak Solutions (2)

Modified bounds for E_C

For $p \in]3/2,\infty]$ and 1/p + 1/q = 1 and (f, u) as above we have

$$\left|\int u(t,x)\,\rho(t,x)\,dx\right|\leq C(\mathring{f})\,\|\partial_x\widetilde{u}(t)\|_2\,E_{\mathcal{K}}(t)^{1/2},\,\,t\geq 0,$$

with

$$C(\mathring{f}) := \left(\frac{4q}{\pi}\right)^{1/2} 3^{-7/6} \left(\frac{q+3}{q}\right)^{(q+3)/6} \|\mathring{f}\|_{1}^{(3-q)/6} \|\mathring{f}\|_{p}^{q/6}$$

Velocity-averaging lemma

(Golse, Lions, Perthame, Sentis)

to prove that weak limit of approximating sequence solves non-linear(!) V

$$\int f_n(.,.,v)\psi(v)\,dv \to \int f(.,.,v)\psi(v)\,dv \text{ in } L^2(]0,T[\times B_R(0)).$$

٠

2-2 RVGK-weak: The result

Theorem. Global Weak Solutions

Let

•
$$\mathring{f} \in L^{1}_{kin}(\mathbb{R}^{6}) \cap L^{p}(\mathbb{R}^{6})$$
 for some $p \in [2, \infty]$, $\mathring{f} \ge 0$,
• $\mathring{u}_{1} \in H^{1}(\mathbb{R}^{3})$, $\mathring{u}_{2} \in L^{2}(\mathbb{R}^{3})$,
• $1/p + 1/q = 1$ and
 $\|\mathring{f}\|_{1}^{(3-q)/3} \|\mathring{f}\|_{p}^{q/3} < \frac{\pi}{2q} 3^{7/3} \left(\frac{q}{q+3}\right)^{(q+3)/3}$

Then there exists a unique global weak solution

$$f \in L^{\infty}([0,\infty[,L^{p}(\mathbb{R}^{6})), u \in L^{\infty}([0,\infty[,H^{1}(\mathbb{R}^{3}))$$

 $\partial_{t}u \in L^{\infty}([0,\infty[,L^{2}(\mathbb{R}^{3}))$

with

of the relativistic Vlasov-Klein-Gordon system with these initial data.

That is, in particular

(a) (f, u) satisfies (V), (KG) in $\mathcal{D}'(]0, \infty[\times \mathbb{R}^6)$.

(b) The mapping

$$[0,\infty[\ni t\mapsto (f(t),u(t),\partial_t u(t))\in L^2(\mathbb{R}^6)\times L^2(\mathbb{R}^3)\times L^2(\mathbb{R}^3)$$

is weakly continuous with $(f, u, \partial_t u)(0) = (\mathring{f}, \mathring{u}_1, \mathring{u}_2).$

In addition we have

- $f(t) \ge 0$ a.e., $\|f(t)\|_p \le \|\mathring{f}\|_p, t \ge 0.$
- $\partial_t \rho + \operatorname{div} j = 0$ in $\mathcal{D}'(]0, \infty[\times \mathbb{R}^3)$ where $j(t, x) := \int \hat{v} f(t, x, v) dv$.
- The weak solution conserves mass: $\|f(t)\|_1 = \|\mathring{f}\|_1$ for a. a. $t \ge 0$.

Vlasov-Poisson:

$$\partial_t f + v \cdot \partial_x f - \partial_x u \cdot \partial_v f = 0 \qquad (V)$$
$$\Delta u = 4\pi\gamma\rho \qquad (P)$$
$$\rho = \int f \, dv \qquad (C)$$
$$f(0, x, v) = \stackrel{\circ}{f}(x, v) \in \mathcal{C}^1_c(\mathbb{R}^6) \qquad \lim_{|x| \to \infty} u(t, x) = 0 \qquad (IBC)$$

model: galaxy in Newtonian gravity, plasma in electrostatics
global-in-time classical solutions, i.e., f ∈ C¹([0,∞) × ℝ⁶) (Pfaffelmoser 1989, Schaeffer 1991, Lions & Perthame 1991)

3-GVP: Singular Limits of (VP)

Euler Poisson:
$$f(t, x, v) = g(t, x) \delta(v - w(t, x))$$
 (velocity field w)

(f, u) solves (VP) \Leftrightarrow (g, w, u) solves Euler-Poisson w. zero pressure

$$\partial_t g + \operatorname{div}(gw) = 0$$

$$\partial_t w + (w\partial_x)u = -\partial_x u \quad (\mathsf{EP}_0)$$

$$\Delta u = 4\pi\gamma g$$

N-body problem:
$$f(t, x, v) = \sum_{k=1}^{N} \delta(x - x_k(t)) \delta(v - v_k(t))$$

(f, u) solves (VP) \Leftrightarrow (x_k, v_k) solves *N*-body problem

$$\dot{x}_{k} = v_{k}$$

 $\dot{x}_{k} = \mp \sum_{k \neq j=1}^{N} \frac{x_{k} - x_{j}}{|x_{k} - x_{j}|^{3}}$ (N)

3-GVP: Motivation and Aims

Why Singular Limits of (VP)?

- Existence-theory of (VP) is much better
- Shell crossing singularities in (EP₀)
- (N) has only local solutions, time of existence may shrink with growing N

Why Colombeau Generalized Solutions?

- few rigorous classical results on singular limits of (VP): [Sandor 1996, Dietz/Sandor 1999] on (EP₀) [Neunzert 1984] on (N)
- "weak" convergence results:
 - not on the whole time of existence of (EP₀)
 - convergence in measure spaces, ...
- **③** use of ad-hoc weak sol. concepts for nonlinear term $\partial_x u \partial_v f$ in (V)

3-GVP: What are Colombeau Algebras?

Algebras of generalized functions in the sense of J.F. Colombeau [Colombeau 1984, 1985] are differential algebras

- that contain the vector space of distributions and
- display maximal consistency with classical analysis (in the sense of L. Schwartz impossibility result). In particular
 - $\bullet\,$ the product of \mathcal{C}^∞ function
 - partial derivatives of distributions

are preserved

Main ideas of the construction are

- ullet regularization of distributions by nets of \mathcal{C}^∞ -functions
- asymptotic estimates in terms of a regularization parameter (quotient construction)

The algebras used

$$\begin{split} \mathcal{E}(\mathbb{R}^{+} \times \mathbb{R}^{n}) &:= \mathbb{C}^{\infty}(\mathbb{R}^{+} \times \mathbb{R}^{n})^{(0,1]} \\ \mathcal{E}_{M}^{\tilde{g}}(\mathbb{R}^{+} \times \mathbb{R}^{n}) &:= \{(u_{\varepsilon})_{\varepsilon} \in \mathcal{E} : \forall K \subset \mathbb{C} \mathbb{R}^{+} \forall \alpha \in \mathbb{N}_{0}^{n+1} \exists N \in \mathbb{N} : \\ \sup_{(t,z) \in K \times \mathbb{R}^{n}} |\partial^{\alpha} u_{\varepsilon}(t,z)| = O(\varepsilon^{-N}) \} \\ \mathcal{N}_{\tilde{g}}(\mathbb{R}^{+} \times \mathbb{R}^{n}) &:= \{(u_{\varepsilon})_{\varepsilon} \in \mathcal{E} : \forall K \subset \mathbb{C} \mathbb{R}^{+} \forall \alpha \in \mathbb{N}_{0}^{n+1} \forall m \in \mathbb{N} : \\ \sup_{(t,z) \in K \times \mathbb{R}^{n}} |\partial^{\alpha} u_{\varepsilon}(t,z)| = O(\varepsilon^{m}) \} \end{split}$$

 $\mathcal{G}_{\tilde{g}}(\mathbb{R}^+\times\mathbb{R}^n) \ := \ \mathcal{G}_M^{\tilde{g}}(\mathbb{R}^+\times\mathbb{R}^n)/\mathcal{N}_{\tilde{g}}(\mathbb{R}^+\times\mathbb{R}^n).$

3-GVP: The Result

Theorem. Generalized solutions to the spherically symmetric (VP)-System

- Let $\mathring{f} \in \mathcal{G}_g(\mathbb{R}^6)$ with a representative $(\mathring{f_\varepsilon})_\varepsilon$ such that
 - (i) $(\mathring{f}_{\varepsilon})_{\varepsilon}$ is compactly supported uniformly in ε , non-negative and spherically symmetric,

(ii)
$$||\check{f}_{\varepsilon}||_1 = M$$
 (the mass), and

(iii) $||\mathring{f}_{\varepsilon}||_{\infty} \leq C\sigma(\varepsilon)^{-1}$, where σ is an appropriate scale.

Then there exists a unique solution

$$(f, u) \in \mathcal{G}_{\tilde{g}}(\mathbb{R}^+ \times \mathbb{R}^6) \times \mathcal{G}_{\tilde{g}}(\mathbb{R}^+ \times \mathbb{R}^3)$$

of (VP) with $f(0, x, v) = \mathring{f}(x, v)$ and *u* strongly vanishing at infinity. Moreover f(t) is non-negative and spherically symmetric.

math.AP/0601552

3-GVP: On the Existence of Generalized Solutions

For fixed ε we have global-in-time classical solutions $(f_{\varepsilon}, u_{\varepsilon})$. To prove existence in $\mathcal{G}_{\tilde{g}}$ we only have to prove moderateness.

Lemma 0. (0th order est.—no problem) $||f_{\varepsilon}||, ||\rho_{\varepsilon}||, ||\partial_{x}u_{\varepsilon}|| \leq C\sigma^{-N}$

Lemma 1. (1st order estimates—it starts getting bad)

$$||\partial_{(x,v)}f_{\varepsilon}||_{\infty} \leq e^{C\sigma^{-2}} \quad ||\partial_{x}^{2}u_{\varepsilon}||_{\infty} \leq C\sigma^{-2} \quad ||\partial_{x}\rho_{\varepsilon}||_{\infty} \leq e^{C\sigma^{-2}}$$

Why? Gronwall for the derivatives of the characteristics $|\partial_x \dot{V}_{\varepsilon}| \leq ||\partial_x^2 u_{\varepsilon}|| |\partial_x V_{\varepsilon}| \leq ||\rho_{\varepsilon}|| |\partial_x V_{\varepsilon}| \leq C\sigma^{-2} |\partial_x V_{\varepsilon}| \rightsquigarrow ||\partial f_{\varepsilon}|| \leq e^{C\sigma^{-2}}$

Lemma 2. (Higher order estimates—it doesn't get worse)

$$||\partial_{(x,\nu)}^{\alpha}f_{\varepsilon}||_{\infty} \leq e^{C\sigma^{-2}} \quad ||\partial_{x}^{\beta+2}u_{\varepsilon}||_{\infty} \leq e^{C\sigma^{-2}} \quad ||\partial_{x}^{\beta}\rho_{\varepsilon}||_{\infty} \leq e^{C\sigma^{-2}}$$

Why? only $||\partial_x^2 u_{\varepsilon}||$ hence $||\rho||_{\infty}$ enters Gronwall

3-GVP: On the Uniqueness of Generalized Solutions

How to generalized the boundary condition $\lim_{|x|\to\infty} u(x) = 0$ (*)?

Problem: Every $u = [(u_{\varepsilon})_{\varepsilon}] \in \mathcal{G}$ (est. on cp. sets!) has a rep. with (*) \sim naive way $\lim_{|x|\to\infty} u_{\varepsilon}(x) = 0 \ \forall \varepsilon$ (**) doesn't work! non-uniqueness: $\Delta 0 = 0 = \Delta 1$ and both satisfy (**)

Solution: Let $\rho \in \mathcal{G}_c(\mathbb{R}^3)$. We call $u \in \mathcal{G}_g(\mathbb{R}^3)$ a solution of (P) vanishing at infinity if $\Delta u = 4\pi\rho$ and if there exists a representative $(u_{\varepsilon})_{\varepsilon}$ such that (i) $\lim_{|x|\to\infty} u_{\varepsilon}(x) = 0 \quad \forall \varepsilon$, and

(ii) $\operatorname{supp}(\Delta u_{\varepsilon})_{\varepsilon} \subseteq B_{\varepsilon^{-N}}(0)$

Proposition. Let $\rho \in \mathcal{G}_c(\mathbb{R}^3)$. Then there exists one and only one solution of $\Delta u = 0$ in $\mathcal{G}_g(\mathbb{R}^3)$ vanishing at infinity.

- study limits (association) of generalized solutions given by the theorem \rightsquigarrow singular limits of (VP)
- study exact (generalized) solutions of (VP)
- . . .
- shell crossing singularities of dust models in general relativity; non-unique continuation of solutions after the singularity regularizing by kinetic models !?!
 (Brien Nolan, DCU, Dublin)

• . . .