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@ Collisionles models in kinetic theory
A brief intoduction to Vlasov-type equations

@ The relativistic Vlasov-Klein Gordon system
(M. Kunzinger, G. Rein, R.S., G. Teschl)

©® Local-in-time classical solutions

@ Global-in-time weak solutions for small initial data

© Generalized soultions of the Vlasov-Poisson system
(I. Kmit, M. Kunzinger, R.S.)
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1-INTRO: Kinetic Theory, Vlasov Equation

@ The model: ensemble of particles (mean field limit)
e no internal structure
e interaction only via collectively created field

e phase space distribution function f(t,x,v) >0 (t € R, x,v € R3)

// f(t,x,v)dxdv = # of particles with (x,v) € D at time t
D

@ no collisions: rate of change along particle parts g—i =0
Df : .
ﬁ :atf+8xfx+avf 14

@ Newton's law: ~» Vlasov Equation

ef +v - Oxf + F-0,f =0 )

F(t,x)... force field
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1-INTRO: The Vlasov-Poisson system

Vlasov-Poisson: F = —Vu, Au = t4rp = 4 [ f dv

O + v Ouf — Oxu-0,f = 0 (V)
Au = H4np (P)

p = [fdv (©)

£(0, x, v) =F (x, v) € CL(RO) Jim u(t,x) =0 (IBO)

@ model: galaxy in Newtonian gravity, plasma in electrostatics

@ global-in-time classical solutions, i.e., f € C1([0, 00) x R®)
(Pfaffelmoser 1989, Schaeffer 1991, Lions & Perthame 1991)

Relativistic Vlasov-Poisson: replace v by ¥ = v/{/1 + |v|?
@ no general existence result; blow up in gravitational case
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1-INTRO: Vlasov-type equations—Related System

Vlasov-Maxwell:

Of +V-Of+(E+VxB)-0,f = 0 (V)
(O~ A)E = —Oep—0yj
(0r —A)B = rotj (M)
p = [fdv Jj=[0fdv (©)

@ model: plasma in relativistic electrodynamics

@ global-in-time weak solutions (DiPerna, Lions 1989)
@ global-in-time classical solutions only

o with data rectrictions (Glassey, Schaeffer, Strauss, Rein)
o in lower dimensions (Glassey, Schaeffer)

@ no general result !

Vlasov-Einstein: General relativity. . .
(Andreasson, Rein, Rendall, ...)
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2-RVKG: The relativistic Vlasov-Klein Gordon system

u(t, x) scalar Klein-Gordon field, f(t,x,v) > 0 distribution function

The RVKG system

Oef + 0 - 0xf —Oxu-0,f = 0 (V)
Ru—NAut+u = —p (KG)
p = [fav (Q)

F(0) =fe CLRE)  w(0) = iy eC3(RY)
B:u(0) = up € CA(R3)

models an ensemble of collisionless particles
@ moving at relativistic speed

@ interacting by a quantum mechanical Klein-Gordon field
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2-RVKG: Motivation, Aims and Results

Motivation and Aims J

@ coupling of a single classical particle to a quantum field: dynamics
and asymptotics are an active area of research
(Imaikin, Komech, Markowich, Spohn,...)
— RVKG generalizes this situation

@ close relation to Vlasov-Maxwell and other systems

— hope to learn more about the general properties of these systems
by studying RVKG

Results )

© Existence of local classical solutions plus continuation criterion
(EJDE, Vol. 2005(1), 1-17, 2005)
@ Existence of global weak solutions for small data
(Commun. Math. Phys., 238, 367-378, 2003)
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2-1 RVKG-class: Solving (V) and (KG)

Solving (V) via method of characteristics

F(t,x,v) =F(X(0, t,x, v), V(0, £, x, v))

where (X(t,s,x,v), V(t,s, x, v)) is the solution of the characteristic
system with initial data X(s,s, x,v) = x, V(s,s,x,v) = v.

o If the force F(t, x) is nice, so is f(t)

@ All LP-norms of f are preserved in time, but only the L!-norm of p!

Solution of (KG) (€ :=/(t —s)?> — |x — y|?, /1 Bessel fct.)

ds

1 t
= — dS
u(t,x) = data + 47T/0 /lx_”_tfs(s,Y) G

1 [f ()
S d
4m /0 /|X—y|§t—p§S,y) § e

@ Problem: No gain in derivatives from p to u
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2-1 RVKG-class: Towards local classical solutions (1)

A-priori bounds

on f, p, Oxu and the velocity support P(t) := sup{|v|: (x,v) € suppf(t)}
by splitting derivatives along and tangential to the light cone

e
S=0,+00, T=-4"7

x =yl
~> uniform bounds applied to a suitable iterative scheeme

Iterative Scheeme

)

J
0 O —f 40 —g,

@ Define f(”), u(n) recursively via

(0 + 00 (M — o u(n—1) .9, f(M = 0
O2um — Aulm) 4y = — [ (¢ x, v)dv
9 (M e CY(RT;CLR®)), ul" e C3(R* x R3) and d,u("D(t) is
bounded on cp. sets.
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2-1 RVKG-class: Towards local classical solutions (2)

Need also to show that )

° f(")(t), Gxu(")(t) are || ||co-Cauchy (Existence)
° Iy F(M(t), 92u(")(t) are || ||so-Cauchy (Regularity)

need to control 92u since J

|8Xu(n+1)(x(n+1)) 8un)( n))‘ < H82 n+1)H ’ (n+1) (n)|
|05 DD ()|

Solution )

@ Use again representation formula.
@ Apply derivatives.

@ Rewrite Oy in terms of S and T.
@ Work hard to obtain ...
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2-1 RVKG-class: Representation of 92u

Lemma. Let u be a C? sol. of (KG) and f € C2. Then we have
Oneu(t, x) = Fg* + F&s + Fst + Fis + Fi + FRs + FAT + Fig + FJ,

for k, ¢ € {1,2,3,t} where (( =t — |x —y]|)

i = 3 |x_y|§tfc“(w NSy 25, 1] < oy
Fr = ooy [ BE@ 0SNGy v, 1] < ey
FE6 = Jieyice [ D5 (0, 0)(SF(C, w)dwx gk lb”l<<1+£io>
Fib = & faoyec/ @0y v, J #(w, 9)dw =0,
s = & oy @0 SIG . v ld“l<1+iv
FE = & e S @ NSHC v En, 169 < 5 Sop
Fik = 32r Jixoyice PG y)wnnlx — yldy,

Fli = _7/ / < (f)(xk = yi)(xe J2(2§)§ke)dyds'

x— y|<t 5 ¢
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2-1 RVKG-class: The Result

Theorem. Local existence and uniqueness, continuation criterion J

Let f€ CL(RS), f >0, i; € C3(R3) and U5 € C2(R3).
(i) Then there exists T > 0 and a unique solution (f, u) of the
relativistic Vlasov-Klein-Gordon system on [0, T)

(f,u) € CL([0, T); CL(R®)) x C3([0, T) x R3)

(e}
with the initial data f, 131 and 32.

(i) Choose T maximal. If
sup{|v|: (x,v) € suppf(t), 0 <t < T} < oc.

Then T = oo.
Moreover we have
@ Conservation of mass and energy.
@ In one space dimension the criterion (ii) always holds true.
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2-2 RVGK-weak: A-Priori Bounds via Energy Conservation

The Energy of RVKG

1
/\/ 14 ‘v|2f dXdV-f—E /Uatu|2+|axu|2+|u|2] dX+/pUdX =: Ex+EF+Ec

@ energy is conserved but Ec is not positive

o Idea: by Holder, Sobolev and interpolation

e

with C depending on ||f||1 and ||f]s
@ Solution:

e construct global classical solutions to regularized system
e a-priori bounds for small data allow passage to weak limit

< lo(®)lessllu(t)lls < C Ex(t)/?[[0xu(t)]2
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2-2 RVGK-weak: Towards Global Weak Solutions (1)

The regularized system J

Replace KG by 0?u—Au+u=—pxn (neCXR3)).

For given data (f, (i, (h) € CL x C3 x C2 there exist global classical
solutions

(f, u) € CY([0, co[xR®) x C2([0, co[xR3).

Conservation of modified energy J

Let n = d * d with d even and (f, u) as above with data (f, th 1, (b *n).
Let i be the unique solution to

% — Ali+ 0= —pxd with data (& * d, (b * d).
Then 1
E:=Ex+ 5 /[|8ta|2 + 050 + |6]?] dx + Ec

is conserved.
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2-2 RVGK-weak: Towards Global Weak Solutions (2)

Modified bounds for E¢ )
For p €]3/2,00] and 1/p+1/q =1 and (f, u) as above we have
’/u(t,x)p(t,x) dx| < C(F)110xi(8)]]2 Ex(£)2, ¢ > 0,
with
C(f) = (?)m = (T)(mm 1A A5
Velocity-averaging lemma (Golse, Lions, Perthame, Sentis)J

to prove that weak limit of approximating sequence solves non-linear(!) V

/f( V) dv _>/ v)dv in L2(]0, T[x Br(0)).
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2-2 RVGK-weak: The result

Theorem. Global Weak Solutions

)
Let

o fe L1 (R6)N LP(RO) for some p € [2,00], > 0,
o (1 € HY(R3), i € L%(R3),
e1l/p+1/g=1and
(g+3)/3
IS < o3 ()
1 P 2q q+ 3

Then there exists a unique global weak solution
f e L=([0, 00, LP(R®)), u & L([0, 00], H}(R®))
with Oru € LOO([O7 OO[, L2(R3))
of the relativistic Vlasov-Klein-Gordon system with these initial data.
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2-2 RVGK-weak: The result—Details

That is, in particular
(a) (f,u) satisfies (V), (KG) in D'(]0, co[xR®).
(b) The mapping
[0,00[3 t — (£(t), u(t), Beu(t)) € L2(R®) x L3(R3) x L?(R3)

is weakly continuous with (£, u, d;u)(0) = (f, &, (3).

In addition we have

o f(t)>0ae., [[f(t)]p < [|fl t>0.

e Orp+divj = 0in D'(]0, 0o[xR3) where j(t,x) := [ Uf(t,x,v)dv.

@ The weak solution conserves mass: ||f(t)||1 = ||fq||1 fora.a. t > 0.
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3-GVP: Recall the Vlasov-Poisson system

Vlasov-Poisson:

Ocf +v - Ouf — Ou-0,f = 0 (V)
Au = A4myp (P)
p = [fdv (©)
£(0,x, v) =f (x, v) € CL(R®) Jim u(t,x) =0 (IBO)

@ model: galaxy in Newtonian gravity, plasma in electrostatics

@ global-in-time classical solutions, i.e., f € C1([0, ) x R®)
(Pfaffelmoser 1989, Schaeffer 1991, Lions & Perthame 1991)
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3-GVP: Singular Limits of (VP)

Euler Poisson: f(t,x, v) = g(t,x)d(v — w(t,x)) (velocity field w)

(f, u) solves (VP) < (g, w, u) solves Euler-Poisson w. zero pressure

Oig +div(gw) = 0
0w + (Wox)u = —0xu (EPo)
Au = 4dryg

N-body problem: f(t,x,v) = S o1 8(x — xk(t)) (v — v(t))

(f, u) solves (VP) < (x, vk) solves N-body problem

Xk = Vg
N
. Xk — Xj
= g _ N
Xk :F - |Xk—XJ"3 ( )
k#£j=1
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3-GVP: Motivation and Aims

Why Singular Limits of (VP)? ]

@ Existence-theory of (VP) is much better
@ shell crossing singularities in (EPg)

© (N) has only local solutions, time of existence may shrink with
growing N

Why Colombeau Generalized Solutions? J

@ few rigorous classical results on singular limits of (VP):
[Sandor 1996, Dietz/Sandor 1999] on (EPg) [Neunzert 1984] on (N)
© ‘“weak” convergence results:

e not on the whole time of existence of (EP)
e convergence in measure spaces,

@ use of ad-hoc weak sol. concepts for nonlinear term Oyxu 0, f in (V)
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3-GVP: What are Colombeau Algebras?

Algebras of generalized functions in the sense of J.F. Colombeau
[Colombeau 1984, 1985] are differential algebras

@ that contain the vector space of distributions and

o display maximal consistency with classical analysis

(in the sense of L. Schwartz impossibility result).
In particular

e the product of C* function
e partial derivatives of distributions

are preserved
Main ideas of the construction are
@ regularization of distributions by nets of C*°-functions

@ asymptotic estimates in terms of a regularization parameter
(quotient construction)
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3-GVP: On the main result

The algebras used

E(RT x R")
E& (RT x R")

NE(RJF x R™)

Ge(R™ x R")

(Coo(RJr % Rn)(o,l]
{(): €€: VK CCRT Va e Nt IN N

sup  |0%u:(t,2)] = O( ™)}
(t,z)eKxR"

{(u): €E: YK CCRT Va e NI Vme N
sup  |0%(t,z)| = O(e™)}

(t,z)eKxR"

GE (RT x R")/Nz(RT x R").
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3-GVP: The Result

Theorem. Generalized solutions to the spherically symmetric (VP)—SystemJ

Let £ € Gg(IR®) with a representative (1?5)6 such that

(i) (1?5)5 is compactly supported uniformly in &, non-negative and
spherically symmetric,

(i) ||f€||1 = M (the mass), and

(iii) HFEHOO < Co(e)7t, where o is an appropriate scale.

Then there exists a unique solution
(f,u) € Gg(RT x R®) x Gz(R" x R3)

of (VP) with (0, x,v) = fq(x, v) and u strongly vanishing at infinity.
Moreover f(t) is non-negative and spherically symmetric.

math.AP /0601552
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3-GVP: On the Existence of Generalized Solutions

For fixed £ we have global-in-time classical solutions (£, u;).
To prove existence in Gz we only have to prove moderateness.

Lemma 0. (0" order est.—no problem) Il l1oell, |1Oxue|| < Co=N J

Lemma 1. (1% order estimates—it starts getting bad)

100y Elloo < €77 [|02e]loo < Co2 [|Oxpelloo < €€

Why? Gronwall for the derivatives of the characteristics
v —2
0 V| < |\3)2<u5|| 0 Ve| <l pel| 10X Ve| < Co? 10X Ve| ~ |0F]] < e”

Lemma 2. (Higher order estimates—it doesn't get worse)

108 felloo < €7 105+ ueloo < €€7 [|00pelloo < €€

(X7V

Why? only ||02u.|| hence ||p||s enters Gronwall

(University of Novi Sad) March 2006 24 / 26



3-GVP: On the Uniqueness of Generalized Solutions

How to generalized the boundary condition lim u(x) =0 (x)? J

|x]—00

Problem: Every u=[(u:):] € G (est. on cp. sets!) has a rep. with (%)
~> naive way lim|y| oo Us(x) = 0 Ve (**) doesn’t work!
non-uniqueness: A0 =0 = Al and both satisfy (s)

Solution: Let p € G.(R3?). We call u € G,(R?) a solution of (P) vanishing
at infinity if Au = 4mp and if there exists a representative (u.). such that

(i) | Ilim us(x) =0 Ve, and

(i) supp(Auc): € B.-n(0)

Proposition. Let p € G-(R3). Then there exists one and only one
solution of Au = 0 in Gz(IR3) vanishing at infinity.
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3-GVP: Outlook—Future Prospects

@ study limits (association) of generalized solutions given by the
theorem ~» singular limits of (VP)

@ study exact (generalized) solutions of (VP)

@ shell crossing singularities of dust models in general relativity;
non-unique continuation of solutions after the singularity

regularizing by kinetic models 17! (Brien Nolan, DCU, Dublin)
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