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Overview

Theoretical outcome of a long term project on

Geodesics and geodesic completeness
of impulsive gravitational waves

jointly with

Jǐŕı Podolský, Robert Švarc (Relativity Group @ Prague)

Clemens Sämann (Mathematics @ Vienna)
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Low regularity changes props. of geodesics

Riemannian counterexample [Hartman&Wintner, 1951]

gij(x , y) =

(
1 0
0 1− |x |λ

)
on (−1, 1)× R ⊆ R2

λ ∈ (1, 2) =⇒ g ∈ C1,λ−1 Hölder, slightly below C1,1

(nevertheless) geodesic equation uniquely solvable

BUT

shortest curves from (0,0) to (0,y) are two symmetric arcs

; minimising curves not unique, even locally

the y -axis is a geodesic which is

non-minimising between any of its points
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The Riemannian case

Added regularity of shortest curves

g ∈ C0 =⇒ shortest (Lipschitz) curves exist [Hilbert, 1899]

g ∈ C0,α =⇒ all shortest curves are C1,β with β = α
2−α (optimal)

[Calabi, Hartman, 70]
in particular [Lytchak, Yaman, 06]

g ∈ C0,1 =⇒ all shortest curves are C1,1 and γ̈ = 0 a.e.

g ∈ C1 =⇒ all shortest curves satisfy γ̈ = 0 and γ ∈ C2

The Lorentzian case is different

problems with length structure
; Lorentzian length spaces...talk by C. Sämann
; use geodesic equation

added regularity of maximising curves ?
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Lorentzian metrics & low regularity

Lorentzian counterexample [Chrusciel,Grant,12]

ds2 = −(du + (1− |u|λ)dx)2 + dx2 ∈ C0,λ (λ ∈ (0, 1])

λ < 1 : null geodesics branch ; causal bubble; no push up

General remarks

g ∈ C1,1 : almost as good as the smooth case

g ∈ C0,1 ⇒ causally plain (no bubbles)

g ∈ C0: Cauchy time functions [CG,12, Fathi,Siconolfi,12]
Avez-Seifert [Sämann, 15]

Focus on locally Lipschitz metrics: g ∈ C0,1 ⇒ Γ ∈ L∞loc

Geodesic equations have locally bounded but discontinuous r.h.s.

7 / 25

On geodesics in low regularity



Intro Existence of geodesics Uniqueness of geodesics Impulsive gravitational waves

Table of Contents

1 Intro: Regularity & properties of geodesics

2 Existence of geodesics for locally Lipschitz metrics
Interlude: Filippov solutions for ODEs with discont. r.h.s
Existence of geodesics in C0,1

3 Uniqueness of geodesics for locally Lipschitz metrics
Interlude: Uniqueness of Filippov solutions for pw-cont. r.h.s.
Uniqueness of geodesics in C0,1, pw. C2

4 Impulsive gravitational waves: Geodesic completeness

8 / 25

On geodesics in low regularity



Intro Existence of geodesics Uniqueness of geodesics Impulsive gravitational waves

Filippov solutions I: Basic idea

replace ODE with discont. r.h.s. by a differential inclusion relation

ẋ(t) = F (t, x(t)) ; ẋ(t) ∈ F [F ](t, x(t))

where the Filippov set-valued map associated with F is

F [F ](t, x) :=
⋂
δ>0

⋂
µ(S)=0

co
(
F
(
Bδ(t, x)

)
\ S)

)
.

(non-empty, closed and convex set)

A Filippov solution of the ODE is an absolutely continuous curve
satisfying the inclusion relation almost everywhere.

AC-functions can be reconstructed from their derivatives:
f ∈ AC (R) ⇔ ∃f ′ a.e., L-integrable, and f (x) = f (a) +

∫ x

a
f ′(t)dt.
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Filippov solutions II: Existence

General existence theorem for differential inclusions

ξ̇(s) ∈ A(s, ξ(s)) a.e., ξ(t0) = x0 (t0, x0) ∈ J × Rn

has an AC-solution if the set valued map (t, x)→ A(t, x) satisfies

1 t 7→ A(t, x) is Lebesgue measurable on J for all fixed x ,

2 x 7→ A(t, x) is upper semi-continuous for almost all t, and

3 supx∈Rn |A(t, x)| ≤ β(t) ∈ L1
loc(J) for almost all t.

Simple Corollary

If F ∈ L∞loc(Rn) then the ODE

ẋ(t) = F (x(t)), x(t0) = x0

possesses Filippov solutions, that is AC-curves x : J → Rn with

ẋ(t) ∈ F(F )(x(t)), x(t0) = x0.
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Existence of geodesics

Every Lipschitz metric has C1-geodesics

Let (M, g) be a C∞-manifold with a C0,1-semi Riemannian metric.
Then the geodesic equation has Filippov solutions, which are C1.

Rademacher: g ∈ C0,1 ⇒ Γ ∈ L∞loc

Rewrite geodesic equation for in first order form:

ż = F (z(t)) where z = (x , ẋ), F (z) = (ẋ i ,−Γi
jk(x)ẋ j ẋk)

Corollary provides Filippov solutions which are AC.
Hence the geodesics are curves with AC-speeds.

Regularity almost matches up with simple LY-result in Riemannian
case.
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Uniqueness: The general picture

g ∈ C0,1 is much below classical threshold for uniqueness (g ∈ C1,1)

One-sided Lipschitz conditions

(F (x)− F (x ′))T (x − x ′) ≤ L ‖x − x ′‖2
2

give one-sided uniqueness of F-solutions
without the need of continuous r.h.s. (here: Γ)

But: ill-suited for piecewise continuous r.h.s.

more powerful results for piecewise continuous r.h.s.
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Filippov solutions III: Uniqueness

Consider D ⊆ Rn connected

split into two parts D+, D− by a C2-hypersurface N = ∂D+ = ∂D−

F ∈ C1(D±) up to the boundary N

F± := extensions of F |D± to the boundary N

F±N := projections of F± on the unit normal ~n of N
pointing from D− to D+

Uniqueness results

All F-solutions are unique, unless F+
N > 0 and F−N < 0

rules out repulsive trajectories

If F±N > 0 all F-solutions are unique and pass from D− to D+.
Analogously for F±N < 0 and passing from D+ to D−.

rules out sliding motion
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A Uniqueness result

Theorem (g smooth off a totally geodesic hypersurface)

Let (M, g) be a C∞-manifold with a C0,1-semi Riemannian metric.
Assume that

N is a totally geodesic C2-hypersurface, and

g ∈ C2(M \ N).

Then all (Filippov) geodesics starting not on N are unique and
those who hit N pass through.

Locally write N = {x1 = 0}, D± = {x1 > ±0} then ~n = e1

and for the geodesic γ(t) = (x1(t), . . . )

Rewrite geodesic equation as first order system ; F±N = ẋ1

; only have to show that ẋ1 6= 0 if x1 = 0

But this follows for all geodesics starting off N and reaching it
since N is totally geodesic.

15 / 25
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Impulsive gravitational waves

Exact radiative spacetimes that

model short but strong pulses of gravitational radiation

models of ultrarelativistic particle

curvature concentrated on the null hypersurface {U = 0}
continuous form g ∈ C0,1 vs. ‘distributional form’ g ∈ D′

Nonexpanding impulsive gravitational waves

on constant curvature background

Goals

1 Geodesic completenss:
analytically ‘singular’ vs. geometrically ‘non-singular’

2 Explicitly calculate geodesics
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Metric and geodesic equation

ds2 =
gij (U,X k) dX idX j − 2dUdV(

1 + Λ
12 (δijX iX j − 2UV − 2U+G )

)2

with

gij = δij + 2U+ H,ij + U2
+ δ

klH,ikH,jl , G = H − X iH,i

H smooth fct of the spatial variables, and U+ the kink-fct.

C1-matching of the geodesics

Physicists like to derive the geodesics by matching geodesics of
background across wave-surface.

Only possible if geodesics — cross the wave-surface at all
— are C1 across the wave-surface
— are unique
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ω,V
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gjk
ω,U

ω
− 1
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−2δik
ω,V

ω
V̇ Ẋ k +
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g ijgjk,U − 2δik
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Existence, regularity, uniqueness,
completeness

g ∈ C0,1 ⇒ For any initial condition Filippov solutions to the
geodesic equation exist

⇒ they are curves with AC velocities, in particular C1

g ∈ C∞ off the wave surface N := {U = 0}

The wave srfc. N is totally geodesic:
• N totally geodesic in the background
• Geodesics are C1-curves and

background geodesics off N
⇒ All geodesics with data given off N are unique

and they cross N
⇒ The C1-matching applies

g is the background metric off N
⇒ geodesic completeness

19 / 25
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The explicit matching

For the geodesics in non-expanding impulsive gravitational waves
on any constant curvature background we obtain

U−i = 0 = U+
i , U̇−i = U̇+

i ,

V−i = V+
i − Hi , V̇−i = V̇+

i − Hi,X ẋ+
i − Hi,Y ẏ+

i

+ 1
2

(
(Hi,X )2 + (Hi,Y )2

)
U̇+
i ,

x−i = x+
i , ẋ−i = ẋ+

i − Hi,X U̇+
i ,

y−i = y+
i , ẏ−i = ẏ+

i − Hi,Y U̇+
i .

w.r.t. the conformally flat coordinates of the background

20 / 25
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Related result: Expanding impulsive
gravitational waves

ds2 =
2
∣∣(V /p) dZ + U+ p H̄ dZ̄

∣∣2 + 2 dU dV − 2εdU2[
1 + 1

6 ΛU(V − εU)
]2 ,

with

p = 1 + εZZ̄ , ε = −1, 0,+1,

H(Z ) = 1
2 [h′′′/h′ − (3/2)(h′′/h′)2]

C1-matching procedure

N is a cone, hence not totally geodesic

Uniqueness and crossing of wave surface by hand

; completeness

21 / 25
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ω
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ω
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ω
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ds2 =
2
∣∣(V /p) dZ + U+ p H̄ dZ̄

∣∣2 + 2 dU dV − 2εdU2[
1 + 1

6 ΛU(V − εU)
]2 ,

with

p = 1 + εZZ̄ , ε = −1, 0,+1,

H(Z ) = 1
2 [h′′′/h′ − (3/2)(h′′/h′)2]

C1-matching procedure

N is a cone, hence not totally geodesic

Uniqueness and crossing of wave surface by hand

; completeness
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Less but still related result

Distributional full Brinkmann form of IGW—gyratons

ds2 = hijdx
idx j − 2dudr + H(x)δα,β(u)du2 + 2ai (x)ϑL(u)dudx i

where δα,β(u) = αδ(u) + βδ(u − L)

and ϑL(u) =
1

L

(
Θ(u)−Θ(u − L)

)
regularisation of δ and Θ

completeness of geodesics in the regularised smooth spacetime

via a fixed point argument
for small regularisation parameter, say ε ≤ ε0

BUT ε0 depends on the initial values of the geodesic

formulation in terms of nonlinear distributional geometry based on
Colombeau algebras
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List of completeness results

Prague Relativity Group Diana Vienna

Jǐŕı Podolský Robert Švarc

Clemens

Sämann Alexander Lecke

• C0,1, Λ = 0, non-exp. [Lecke, S., Švarc, 14]
• C0,1, Λ 6= 0, non-exp. [Podolský, Sämann, S., Švarc, 15]
• D′, Λ 6= 0, non-exp. [Sämann, S., Lecke, Podolský, 16 & 17]
• C0,1, Λ 6= 0, expanding [Podolský, Sämann, S., Švarc, 16]
• D′, general non-flat wave-surface [Sämann, S., 12, 15]
• D′, gyratons [Podolský, S., Švarc, 14]

[Podolský, Sämann, S., Švarc, 16]
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Outlook

properties of F-geodesics

application to matched spacetimes

Ehlers-Kundt conjecture

find Lipschitz continuous metric for gyratons

relation between Lipschitz and distributional metric

Thank you for your attention!

24 / 25

On geodesics in low regularity



Intro Existence of geodesics Uniqueness of geodesics Impulsive gravitational waves

Outlook

properties of F-geodesics

application to matched spacetimes

Ehlers-Kundt conjecture

find Lipschitz continuous metric for gyratons

relation between Lipschitz and distributional metric

Thank you for your attention!

24 / 25

On geodesics in low regularity



Intro Existence of geodesics Uniqueness of geodesics Impulsive gravitational waves
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[SS,12] C. Sämann, R. Steinbauer, On the completeness of impulsive gravitational wave spacetimes. CQG 29 (2012)
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