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GR in low regularity situations

1 Why?
physically reasonable: “concentrated” but locally integrable energy
singularity theorems: not just failure of smoothness

2 The problem
concentrated sources of the gravitational field

curvature from a metric of low regularity
analytical demand: low regularity vs.

geometrical demand: nonlinearities
3 Different approaches

(0) the classical C∞-setting still fine down to C1,1-metrics
(1) linear distributional geometry (tensor distributions)

restricted “maximal” distributional setting using Sobolev spaces
(2) nonlinear distributional geometry (Colombeau algebras)

unrestricted generalised setting
4 Compatibilty

Compatibility: in the range where (1) and (2) work, do they agree?
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Distributional setting(s) for GR

distributional metric [Marsden, 68], [Parker, 79]

g ∈ D′02(M) ∼= D′(M)⊗C∞ T 0
2 (M) ∼= LC∞(X(M),X(M);D′(M))

symmetric and nondegenerate, i.e., g(X ,Y ) = 0 ∀Y ⇒ X = 0.

; no way to define, inverse, curvature, . . .

“maximal reasonable” setting: Geroch-Traschen class

g ∈
(
H1

loc ∩ L∞loc

)0
2 (M)

(gt-setting) [Geroch&Traschen, 87], [LeFloch&Mardare, 07]

Pro’s: may define curvature Riem[g], Ric[g], R[g], W [g] in distributions
consistent limits ; valid modelling

Con’s: Bianchi identities fail ; energy conservation ?
dim(supp(Riem[g])) ≥ 3 ; thin shells yes, but strings no!
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The (special) Colombeau algebra

scalars: u = [(uε)ε] ∈ G(M) :=
EM(M)

N (M)
[DeRoever&Damsma, 91]

EM(M) := {(uε)ε ∈ C∞(0,1] : ∀K ∀P ∃ l : sup
x∈K
|Puε(x)| = O(ε−l )}

N (M) := {(uε)ε ∈ EM(M) : ∀K ∀m : sup
x∈K
| uε(x)| = O(εm)}

fine sheaf of differential algebras w.r.t. LX u := [(LX uε)ε]

tensor fields: Gr
s(M) := EM

r
s(M)/N r

s (M) [Kunzinger&S., 02]

Gr
s(M) ∼= G(M)⊗G T r

s (M) ∼= LC∞(M)

(
Ω1(M)r ,X(M)s;G(M)

)
∼= LG(M)

(
G0

1 (M)r ,G1
0 (M)s;G(M

)
fine sheaf of finitely generated and projective G(M)-modules

Embeddings: ∃ injective sheaf morphisms (basically convolution)

ι : T r
s (_) ↪→ D′rs(_) ↪→ Gr

s(_).

association: G 3 u ≈ v ∈ D′ :⇔
∫

uεω → 〈v , ω〉
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Generalised setting for GR

generalised metric: (technicalities on the index skipped)
g ∈ G0

2 (M) symmetric and det(g) invertible in G, i.e.,

∀K comp. ∃m : inf
p∈K
|det(gε(p))| ≥ εm (Nε)

captures idea of smoothing: locally ∃ representative gε
consisting of smooth metrics and det(g) invertible in G
usual machinery works, i.e., [Kunzinger&S., 02]

pointwise characterization of nondegeneracy

raise and lower indices: G1
0(M) 3 X 7→ X [ := g(X , . ) ∈ G0

1(M)

∃! generalised Levi-Civita connection for g

generalised curvature Riem[g], Ric[g], R[g] via usual formulae

basic C2-compatibility: gε → g in C2, g a vacuum solution of
Einstein’s equation⇒ Ric[gε]→ 0 in D′13 .
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The question of compatibility

g ∈
(
H1

loc ∩ L∞loc

)0
2 (M) two ways to calculate the curvature

(i) gt-setting: coordinate formulae in D′ resp. W m,p
loc

; Riem[g] ∈ D′13
(ii) G-setting: embed g via convolution with a mollifier

usual formulae for fixed ε ; Riem[gε] ∈ G1
3

Do we get the same answer?

H1
loc ∩ L∞loc 3 g ∗ρε−−−−→ [gε] ∈ G

gt-setting
y yG-setting

Riem[g]
limε→0←−−−− Riem[gε]

Answer: Yes, but. . .
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On the gt-class of metrics

H1
loc ∩ L∞loc is an algebra

f ∈ H1
loc ∩ L∞loc invertible :⇔ loc. unif. bounded away from 0, i.e.,

∀K compact ∃C : |f (x)| ≥ C > 0 a.e. on K

then f−1 is again loc. unif. bded away from 0

Definition (Nondegenerate gt-metrics [LeFM07], [SV09])

A gt-regular metric is a section g ∈
(
H1

loc ∩ L∞loc

)0
2 (M), which is a

Semi-Riemannian metric almost everywhere.
It is called nondegenerate, if
∀K compact ∃C : |det g(x)| ≥ C > 0 a.e. on K . (N)

⇒ g−1 ∈
(
H1

loc ∩ L∞loc

)0
2 (M) and nondegenerate, i.e.,

det(g−1) loc. unif. bded away from 0
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Smoothing gt-regular metrics

chartwise convolution with strict δ-nets ψε, which are cut-off
versions of a standard mollifier with vanishing moments:

ρ ∈ S(Rn),
∫
ρ = 1,

∫
xαρ(x)dx = 0 ∀|α| ≥ 1

ψε(x) := χ
( x√

ε

)
ρε(x) := χ

( x√
ε

) 1
εn ρ
( x
ε

)
g ∈

(
H1

loc ∩ L∞loc

)0
2 (M): gεij := gij ∗ ψε, ; metric gε, ι(g) = [(gε)ε]

Lemma (Stability of the determinant)
Let g be nondegenerate, gt-regular, then

det(gε) → det g in H1
loc ∩ Lp

loc for all p <∞.

But (N) for g does not imply (Nε) for gε and m = 0, (N0
ε )!

g nondegenerate gt-regular metric 6⇒ gε generalised metric
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Preserving nondegeneracy (1)
problem (1): preserving positivity for scalars

want: 0 ≤ f ∈ H1
loc ∩ L∞loc & loc. unif. bounded away from 0

⇒ ∀K compact ∃C, ε0 : fε(x) ≥ C > 0 ∀x ∈ K , ε ≤ ε0 (N ′ε)

Then 1/fε smooth, locally uniformly bounded net, and
1/fε → 1/f in H1

loc ∩ Lp
loc for all p <∞.

true if ψε ≥ 0, but ρ with vanishing moments⇒ ρ 6≥ 0⇒ ψε 6≥ 0

Lemma (Existence of admissible mollifiers)
There exist moderate strict delta nets ρε with

(i) supp(ρε) ⊆ Bε(0) (ii)
∫
ρε(x) dx = 1

(iii) ∀j ∈ N ∃ε0 :
∫

xαρε(x) dx = 0 for all 1 ≤ |α| ≤ j and all ε ≤ ε0

(iv) ∀η > 0 ∃ε0 :
∫
|ρε(x)|dx ≤ 1 + η for all ε ≤ ε0.

Convolution with ρε provides an embedding ιρ into G with (N ′ε).

10 / 16
On Lorentzian metrics of low differentiability



Preserving nondegeneracy (2)
problem (2): preserving nondegeneracy for metrics

want: ∀K cp. ∃C, ε0 : |det(gε)| ≥ C > 0 ∀x ∈ K , ε ≤ ε0 (N0
ε )

Definition (Stability condition)
Let g be a gt-regular metric and λ1, . . . , λn its eigenvalues.

(i) For any compact K we set µK := min
1≤i≤n

essinf
x∈K

|λi (x)|.

(ii) We call g stable if on any compact K there is AK continuous, s. t.
max

i,j
essup

x∈K
|gij (x)− AK

ij (x)| ≤ C < µK
2n .

Lemma (Nondegeneracy of smoothed gt-regular metrics)
Let g be a nondegenerate, stable, and gt-regular metric.
Let gε be a smoothing of g with an admissible mollifier (ρε)ε.
Then (N0

ε ) holds, and the embedding ιρ(g) is a gen. metric.
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Stability results

Lemma (Stability of the inverse and Christoffel symbols)
Let g be a nondegenerate, stable, and gt-regular metric.
Let gε be a smoothing of g with an admissible mollifier (ρε)ε.

(i) The inverse of the smoothing (gε)−1 is a smooth and locally
uniformly bounded net (on rel. cp. sets for ε small), and

(gε)−1 → g−1 in H1
loc ∩ Lp

loc for all p <∞.

In particular, for any embedding we have that (ιρ(g))−1 ≈ g−1.

(ii) The Christoffel symbols of the smoothing Γijk [gε], Γi
jk [gε] are

smooth and L2
loc-bounded nets (on rel. cp. sets for ε small), and

Γijk [gε]→ Γijk and Γi
jk [gε]→ Γi

jk in L2
loc

In particular, for any embedding Γijk [ιρ(g)] ≈ Γijk [g] and
Γi

jk [ιρ(g)] ≈ Γi
jk [g].
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Compatibility results

Theorem (Compatibility of the gt- with the G-setting)
Let g be a nondegenerate, stable, and gt-regular metric, and
denote its Riemann tensor by Riem[g].
Let gε be a smoothing of g with an admissible mollifier (ρε)ε.
Then we have for the Riemann tensor Riem[gε] of gε

Riem[gε]→ Riem[g] in D′13.
Hence for any embedding ιρ we have Riem[ιρ(g)] ≈ Riem[g].

H1
loc ∩ L∞loc

nondeg., stable
3 g

∗ιρ admissible−−−−−−−−→ [gε] ∈ G

gt-setting
y yG-setting

Riem[g]
≈←−−−−− Riem[gε]
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Discussion

Relation to older stability results: (gn)n gt-regular sequence

[LeFloch&Mardare, 07]
gn → g in H1

loc, g−1
n → g−1 in L∞loc ⇒ Riem[gn]→ Riem[g], in D′13 .

for smoothings via convolution g−1
n 6→ g−1 in L∞loc.

[Geroch&Traschen, 87]
gn → g in H1

loc, g−1
n → g−1 in L2

loc, gn, g−1
n bded in L∞loc (∗)

⇒ Riem[gn]→ Riem[g] in D′13 .

Existence of approximating sequences with (∗)
[Geroch&Traschen, 87]
Only for continuous g, open for general g.

Positive answer for general g by the above Theorem.
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Further prospects

Jump conditions along singular hypersurfaces in the spirit of
[LeFloch&Mardare, 07], [Lichnerowicz, 55-79] in the generalised
setting plus compatibility. Applications to gravitational shock
waves.
Diploma thesis of Nastasia Grubic.

Regularity of generalised solutions to wave equations in singular
space-times. [Grant, Mayerhofer, S., 09]

Wave equation on gt-regular space-times.

Compatibility for generalised connections in fibre bundles.
[Kunzinger, Vickers, S., 05]
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