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Singularities in GR

singularities occur in exact solutions; high degree of symmetries

singularities as obstruction to extend causal geodesics [Penrose, 65]

Theorem (Pattern singularity theorem [Senovilla, 98])

In a spacetime the following are incompatible

(i) Energy condition

(ii) Causality condition

(iii) Initial or boundary condition

(iv) Causal geodesic completeness

(iii) initial condition ; causal geodesics start focussing

(i) energy condition ; focussing goes on ; focal point

(ii) causality condition ; no focal points

way out: one causal geodesic has to be incomplete, i.e., ¬ (iv)
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The classical theorems

Theorem ([Penrose, 1965] Gravitational collapse)

A spacetime is future null geodesically incomplete, if

(i) Ric (X ,X ) ≥ 0 for every null vector X

(ii) There exists a non-compact Cauchy hypersurface S in M

(iii) There exists a trapped surface
(cp. achronal spacelike 2-srf. w. past-pt. timelike mean curvature)

Theorem ([Hawking, 1967] Big Bang)

A spacetime is future timelike geodesically incomplete, if

(i) Ric (X ,X ) ≥ 0 for every timelike vector X

(ii) There exists a compact space-like hypersurface S in M

(iii) The unit normals to S are everywhere converging, θ := −trK < 0.
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Hawking’s Thm: proof strategy (C2-case)

Analysis: θ evolves along the normal geodesic congruence of S by
Raychaudhury’s equation

θ′ +
θ2

3
+ Ric(γ̇, γ̇) + tr(σ2) = 0

(i) =⇒ θ′ + (1/3)θ2 ≤ 0 =⇒ (θ−1)′ ≥ 1/3

(iii) =⇒ θ(0) < 0 =⇒ θ →∞ in finite time =⇒ focal point

Causality theory: ∃ longest curves in the Cauchy development
=⇒ no focal points in the Cauchy development

completeness =⇒ D+(S) ⊆ exp([0,T ] · nS). . . compact
=⇒ horizon H+(M) compact, ; 2 possibilities

(1) H+(M) = ∅. Then I+(S) ⊆ D+(S) =⇒ timlike incomplete  
(2) H+(M) 6= ∅ compact =⇒ p 7→ d(S , p) has min on H+(S)

But from every point in H+(M) there starts a past null generator γ
(inextendible past directed null geodesic contained in H+(S))

and p 7→ d(S , p) strictly decreasing along γ =⇒ unbounded  
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Regularity for the singularity theorems of GR

Pattern singularity theorem [Senovilla, 98]

In a C2-spacetime the following are incompatible

(i) Energy condition

(ii) Causality condition

(iii) Initial or boundary condition

(iv) Causal geodesic completeness

Theorem allows (i)–(iv) and g ∈ C1,1 ≡ C2−. But C1,1-spacetimes

are physically reasonable models

are not really singular (curvature bounded)

still allow unique solutions of geodesic eq. ; formulation sensible

Moreover below C1,1 we have

unbded curv., non-unique geos, no convexity ; ‘really singular’

Hence C1,1 is the natural regularity class for singularity theorems!
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Low regularity GR

What is is?

GR and Lorentzian geometry on spacetime manifolds (M, g),
where M is smoot but g is non-smooth (below C2)

Why is it needed?

1 Physics: Realistic matter models ; g 6∈ C2

2 Analysis: ivp solved in Sobolev spaces ; g ∈ H5/2(M)

Where is the problem?

Physics and Analysis vs.
want/need low regularity

Lorentzian geometry
needs high regularity

But isn’t it just a silly game for mathematicians?

NO! Low regularity really changes the geometry!
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Why Low Regularity?

(1) Realistic matter—Physics

want discontinuous matter configurations ; T 6∈ C0 =⇒ g 6∈ C2

finite jumps in T ; g ∈ C1,1 (derivatives locally Lipschitz)

more extreme situations (impulsive waves): g piecew. C3, globally C0

(2) Initial value problem—Analysis

Local existence and uniqueness Thms.
for Einstein eqs. in terms of Sobolev spaces

classical [CB,HKM]: g ∈ H5/2 =⇒ C1(Σ)

recent big improvements [K,R,M,S]: g ∈ C0(Σ)
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Low regularity changes the geometry

Riemannian counterexample [Hartman&Wintner, 51]

gij(x , y) =

(
1 0
0 1− |x |λ

)
on (−1, 1)× R ⊆ R2

λ ∈ (1, 2) =⇒ g ∈ C1,λ−1 Hölder, slightly below C1,1

(nevertheless) geodesic equation uniquely solvable

BUT

shortest curves from (0,0) to (0,y) are two symmetric arcs

; minimising curves not unique, even locally

the y -axis is a geodesic which is

non-minimising between any of its points
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GR and low regularity

The challenge

Physics and Analysis vs.
want/need low regularity

Lorentzian geometry
needs high regularity

Lorentzian geometry and regularity

classically g ∈ C∞, for all practical purposes g ∈ C2

things go wrong below C2

convexity goes wrong for g ∈ C1,α (α < 1) [HW, 51]
causality goes wrong, light cones “bubble up” for g ∈ C0 [CG, 12]

Things that can be done

impulisve grav. waves g ∈ Lip, D′ [J.P., R.Š., C.S., R.S., A.L.]

causality theory for continuous metrics [CG, 12], [Sämann, 16]

singularity theorems in C1,1 [KSSV, 15], [KSV, 15]

13 / 27

The Penrose and Hawking Singularity Theorems revisited



Classical singularity thms. Interlude: Low regularity in GR Low regularity singularity thms. Proofs Outlook

GR and low regularity

The challenge

Physics and Analysis vs.
want/need low regularity

Lorentzian geometry
needs high regularity

Lorentzian geometry and regularity

classically g ∈ C∞, for all practical purposes g ∈ C2

things go wrong below C2

convexity goes wrong for g ∈ C1,α (α < 1) [HW, 51]
causality goes wrong, light cones “bubble up” for g ∈ C0 [CG, 12]

Things that can be done

impulisve grav. waves g ∈ Lip, D′ [J.P., R.Š., C.S., R.S., A.L.]
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Again: Why go to C1,1?

Recall:

Theorem (Pattern singularity theorem [Senovilla, 98])

In a C2-spacetime the following are incompatible

(i) Energy condition

(ii) Causality condition

(iii) Initial or boundary condition

(iv) Causal geodesic completeness

Theorem allows (i)–(iv) and g ∈ C1,1. But C1,1-spacetimes

are physically okay/not singular

allow to formulate the theorems

C1,1 is the natural regularity class for the singularity theorems.
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The classical Theorems

Theorem [Hawking, 1967]

A C2 -spacetime is future timelike geodesically incomplete, if

(i) Ric (X ,X ) ≥ 0 for every timelike vector X

(ii) There exists a compact space-like hypersurface S in M

(iii) The unit normals to S are everywhere converging

Theorem [Penrose, 1965]

A C2 -spacetime is future null geodesically incomplete, if

(i) Ric (X ,X ) ≥ 0 for every null vector X

(ii) There exists a non-compact Cauchy hypersurface S in M

(iii) There exists a trapped surface T
(cp. achronal spacelike 2-srf. w. past-pt. timelike mean curvature)
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The C1,1-Theorems

Theorem [Kunzinger, S., Stojković, Vickers, 2015]

A C1,1-spacetime is future timelike geodesically incomplete, if

(i) Ric (X ,X ) ≥ 0 for every smooth timelike local vector field X

(ii) There exists a compact space-like hypersurface S in M

(iii) The unit normals to S are everywhere converging

Theorem [Kunzinger, S., Vickers, 2015]

A C1,1-spacetime is future null geodesically incomplete, if

(i) Ric (X ,X ) ≥ 0 for every Lip-cont. local null vector field X

(ii) There exists a non-compact Cauchy hypersurface S in M

(iii) There exists a trapped surface T
(cp. achronal spacelike 2-srf. w. past-pt. timelike mean curvature)
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Obstacles in the C1,1-case

No appropriate version of calculus of variations available
(second variation, maximizing curves, focal points, index form, . . . )

C2-causality theory rests on local equivalence with Minkowski space.
This requires good properties of exponential map.

; big parts of causality theory have to be redone

Ricci tensors is only L∞

; problems with energy conditions

strategy:

Proof that the exponential map is a bi-Lipschitz homeo

Re-build causality theory for C1,1-metrics
regularisation adapted to causal structure replacing calculus of var.

use surrogate energy condition
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The exponential map in low regularity

expp : TpM 3 v 7→ γv (1) ∈ M,
where γv is the (unique) geodesic
starting at p in direction of v

g ∈ C2 ⇒ expp local diffeo

g ∈ C1,1 ⇒ expp loc. homeo [W,32]

Optimal regularity

g ∈ C1,1 ⇒ expp bi-Lipschitz homeo

[KSS,14]: regularisation &
comparison geometry

[Minguzzi,15]: refined ODE methods

; bulk of causality theory remains true
in C1,1 [CG,12, KSSV,14, Ming.,15]
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Chrusciel-Grant regularization of the metric

Regularisation adapted to the causal structure [CG,12], [KSSV, 14]

Sandwich null cones of g between
null cones of two approximating
families of smooth metrics so that

ǧε ≺ g ≺ ĝε.

applies to continuous metrics

local convolution plus small shift

Properties of the approximations for g ∈ C1,1

(i) ǧε, ĝε → g locally in C 1

(ii) D2ǧε, D2ĝε locally uniformly bded. in ε, but Ric[gε] 6→ Ric[g]

20 / 27
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Surrogate energy condition (Hawking case)

Lemma [KSSV, 15]

Let (M, g) be a C1,1-spacetime satisfying the energy condition

Ric [g] (X ,X ) ≥ 0 for all timelike local C∞-vector fields X .

Then for all K ⊂⊂ M ∀C > 0 ∀δ > 0 ∀κ < 0 ∀ε small

Ric [ǧε](X ,X ) > −δ ∀X ∈TM|K : ǧε(X ,X ) ≤ κ, ‖X‖h ≤ C .

Proof. ǧε − g ∗ ρε → 0 in C2 ; only consider gε := g ∗ ρε
Rjk = R i

jki = ∂x i Γi
kj − ∂xk Γi

ij + Γi
imΓm

kj − Γi
kmΓm

ij

Blue terms|ε converge uniformly

For red terms use variant of Friedrich’s Lemma:

ρε ≥ 0 =⇒
(
Ric[g](X ,X )

)
∗ ρε ≥ 0(

Ric[g](X ,X )
)
∗ ρε − Ric[gε](X ,X )→ 0 unif.
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The C1,1-proof (Hawking case)

D+(S) ⊆ D+
ǧε

(S):

S

p

D   (S)gεˆ

D (S)

J  (p)-

+

+

Limiting argument ⇒ ∃ maximising g-geodesic γ for all p ∈ D+(S)
and γ = lim γǧε

in C1

Surrogate energy condition for ǧε and Raychaudhury equation
⇒ D+(S) relatively compact

otherwise ∃ ǧε-focal pt. too early

⇒ H+(S) ⊆ D+(S) compact

Derive a contradiction as in the C∞-case using C1,1-causality

22 / 27
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Surrogate energy condition (Penrose case)

Lemma [KSV, 15]

Let (M, g) be a C1,1-spacetime satisfying the energy condition

Ric [g] (X ,X ) ≥ 0 for every local Lip. null vector field X .

Then for all K ⊂⊂ M ∀C > 0 ∀δ > 0 ∃η > 0 s.t. we have

Ric [ĝε](X ,X ) > −δ

for all p ∈ K and all X ∈ TpM with ‖X‖h ≤ C which are close to
a g-null vector in the sense that

∃Y0 ∈ TM|K g-null, ‖Y0‖h ≤ C , dh(X ,Y0) ≤ η.

23 / 27
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The C1,1-proof (Penrose case)

Choose ĝε globally hyperbolic (stability [NM,11], [S,15])

Surrogate energy condition is strong enough to guarantee that

E+
ε (T ) = J+

ε (T ) \ I+
ε (T ) is relatively compact

in case of null geodesic completeness

ĝε globally hyperbolic ⇒

E+
ε (T ) = ∂J+

ε (T ) is a ĝε-achronal, compact C0-hypersrf.

g < ĝε ⇒ E+
ε (T ) is g-achronal

derive usual (topological) contradiction

24 / 27

The Penrose and Hawking Singularity Theorems revisited



Classical singularity thms. Interlude: Low regularity in GR Low regularity singularity thms. Proofs Outlook

Table of Contents

1 The classical singularity theorems

2 Interlude: Low regularity in GR

3 The low regularity singularity theorems

4 Key issues of the proofs

5 Outlook

25 / 27

The Penrose and Hawking Singularity Theorems revisited



Classical singularity thms. Interlude: Low regularity in GR Low regularity singularity thms. Proofs Outlook

Lemma [Hawking and Penrose, 1967]

In a causally complete C2-spacetime, the following cannot all hold:
1 Every inextendible causal geodesic has a pair of conjugate points
2 M contains no closed timelike curves and
3 there is a future or past trapped achronal set S

Theorem

A C2-spacetime M is causally incomplete if Einstein’s eqs. hold and

1 M contains no closed timelike curves
2 M satisfies an energy condition
3 Genericity: nontrivial curvature at some pt. of any causal geodesic
4 M contains either

a trapped surface
some p s.t. convergence of all null geodesics changes sign in the past
a compact spacelike hypersurface

26 / 27
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[LSŠ,14] A. Lecke, R. Steinbauer, R. Švarc, The regularity of geodesics in impulsive pp-waves. GRG 46 (2014)
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