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@ singularities occur in exact solutions; high degree of symmetries
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5 /27



Interlude: Low regularity in GR Low regularity singularity thms. Proofs Outlook
. e, = .
Singularities in GR

@ singularities occur in exact solutions; high degree of symmetries
@ singularities as obstruction to extend causal geodesics [Penrose, 65]

Theorem (Pattern singularity theorem [Senovilla, 98])
In a spacetime the following are incompatible
(i) Energy condition (i) [Initial or boundary condition

(i) Causality condition (iv) Causal geodesic completeness

/27



Interlude: Low regularity in GR Low regularity singularity thms. Proofs Outlook
. e, = .
Singularities in GR

@ singularities occur in exact solutions; high degree of symmetries
@ singularities as obstruction to extend causal geodesics [Penrose, 65]

Theorem (Pattern singularity theorem [Senovilla, 98])
In a spacetime the following are incompatible

(i) Energy condition (i) [Initial or boundary condition

(i) Causality condition (iv) Causal geodesic completeness

(iii) initial condition ~» causal geodesics start focussing
(i) energy condition ~» focussing goes on ~» focal point

(ii) causality condition ~» no focal points

way out: one causal geodesic has to be incomplete, i.e., = (iv)
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.
The classical theorems

Theorem ([Penrose, 1965] Gravitational collapse)
A spacetime is future null geodesically incomplete, if
(i) Ric(X,X) >0 for every null vector X
(i) There exists a non-compact Cauchy hypersurface S in M

(iii) There exists a trapped surface
(cp. achronal spacelike 2-srf. w. past-pt. timelike mean curvature)
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Theorem ([Penrose, 1965] Gravitational collapse)
A spacetime is future null geodesically incomplete, if
(i) Ric(X,X) > 0 for every null vector X
(ii) There exists a non-compact Cauchy hypersurface S in M

(iii) There exists a trapped surface
(cp. achronal spacelike 2-srf. w. past-pt. timelike mean curvature)
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Theorem ([Hawking, 1967] Big Bang)

A spacetime is future timelike geodesically incomplete, if
(i) Ric(X,X) > 0 for every timelike vector X

(ii) There exists a compact space-like hypersurface S in M

(iii) The unit normals to S are everywhere converging, 0 := —trK < 0.
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Hawking’s Thm: proof strategy (C>-case)

@ Analysis: 0 evolves along the normal geodesic congruence of S by
Raychaudhury’s equation
2

9
0 + 3+ Ric(¥,%) + tr(o?) = 0

o (i) = 0 +(1/3)° <0 = (67') >1/3
o (iii) = 6(0) <0 = 6 — oo in finite time = focal point

@ Causality theory: 3 longest curves in the Cauchy development
= no focal points in the Cauchy development

@ completeness —> D*(S) C exp([0, T] - ng)...compact
= horizon H*(M) compact, ~ 2 possibilities
(1) H*(M)=10. Then I"(S) C D*(S) = timlike incomplete 4
(2) H(M) # 0 compact = p+ d(S, p) has min on H*(S)
But from every point in Ht(M) there starts a past null generator «y
(inextendible past directed null geodesic contained in H(S))
and p — d(S, p) strictly decreasing along v = unbounded ¢
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Regularity for the singularity theorems of GR

Pattern singularity theorem [Senovilla, 98]

In a C?-spacetime the following are incompatible
(i) Energy condition (iii) Initial or boundary condition

(i) Causality condition (iv) Causal geodesic completeness

Theorem allows (i)—(iv) and g € C1! = C2~. But C1!-spacetimes
@ are physically reasonable models
@ are not really singular (curvature bounded)
@ still allow unique solutions of geodesic eq. ~» formulation sensible
Moreover below C1'! we have
@ unbded curv., non-unique geos, no convexity ~» ‘really singular’

Hence CY! is the natural regularity class for singularity theorems!
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Low regularity GR

What is is?

GR and Lorentzian geometry on spacetime manifolds (M, g),
where M is smoot but g is non-smooth (below C?)

Why is it needed?

@ Physics: Realistic matter models ~ g & C?
@ Analysis: ivp solved in Sobolev spaces ~» g € H>/2(M)

Where is the problem?

Physics and Analysis vs. Lorentzian geometry
want/need low regularity needs high regularity

But isn’t it just a silly game for mathematicians?

NO! Low regularity really changes the geometry!
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Why Low Regularity?

(1) Realistic matter—Physics

@ want discontinuous matter configurations ~ T ¢ C° = g & C?
@ finite jumps in T ~» g € C1! (derivatives locally Lipschitz)
@ more extreme situations (impulsive waves): g piecew. C3, globally C°
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Why Low Regularity?

(1) Realistic matter—Physics

@ want discontinuous matter configurations ~ T ¢ C* — g & C?
@ finite jumps in T ~» g € C1! (derivatives locally Lipschitz)

@ more extreme situations (impulsive waves): g piecew. C3, globally C°

(2) Initial value problem—Analysis

Local existence and uniqueness Thms.
for Einstein egs. in terms of Sobolev spaces

@ classical [CB,HKM]: g € H*/? — C}(%)
@ recent big improvements [K,R,M,S]: g € C°(X)

11 /27



Classical singularity thms. (Interlude: Low regularity in GR) Low regularity singularity thms. Proofs Outlook

Low regularity changes the geometry

Riemannian counterexample [Hartman&Wintner, 51]

1 0
gij(X,Y): (O 1—|X‘)‘) on (_171)XR§R2

@ A€ (1,2) = geCh* 1 Holder, slightly below C1'?
@ (nevertheless) geodesic equation uniquely solvable
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Low regularity changes the geometry

Riemannian counterexample [Hartman&Wintner, 51]

1 0
gij(X,Y): (O 1—’X‘)‘) on (_171)XR§R2

@ \c(1,2) = ge 1 Holder, slightly below C'!
@ (nevertheless) geodesic equation uniquely solvable

BUT

@ shortest curves from (0,0) to (0,y) are two symmetric arcs

~» minimising curves not unique, even locally

@ the y-axis is a geodesic which is

non-minimising between any of its points

12 /27



Classical singularity thms. (Interlude: Low regularity in GR) Low regularity singularity thms. Proofs Outlook

GR and low regularity

The challenge

Physics and Analysis VS. Lorentzian geometry
want/need low regularity needs high regularity

13/ 27



Classical singularity thms. (Interlude: Low regularity in GR) Low regularity singularity thms. Proofs

GR and low regularity
The challenge

Physics and Analysis VS. Lorentzian geometry
want/need low regularity needs high regularity

Outlook

Lorentzian geometry and regularity

@ classically g € C*°, for all practical purposes g € C?
@ things go wrong below C?

o convexity goes wrong for g € C* (o < 1) [HW, 51]
o causality goes wrong, light cones “bubble up” for g € C° [CG, 12]
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GR and low regularity
The challenge

Physics and Analysis VS. Lorentzian geometry
want/need low regularity needs high regularity

Lorentzian geometry and regularity

@ classically g € C*°, for all practical purposes g € C?
@ things go wrong below C?

o convexity goes wrong for g € C* (o < 1) [HW, 51]
o causality goes wrong, light cones “bubble up” for g € C° [CG, 12]

Things that can be done

@ impulisve grav. waves g € Lip, D’ [J.P,, RS., CS., RS, A.L]
@ causality theory for continuous metrics [CG, 12], [Sdmann, 16]
@ singularity theorems in C1! [KSSV, 15], [KSV, 15]
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Again: Why go to C!'?

Recall:
Theorem (Pattern singularity theorem [Senovilla, 98))

In a C?-spacetime the following are incompatible
(i) Energy condition (iii) Initial or boundary condition

(ii) Causality condition (iv) Causal geodesic completeness
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Again: Why go to C*'?

Recall:
Theorem (Pattern singularity theorem [Senovilla, 98))

In a C?-spacetime the following are incompatible
(i) Energy condition (iii) Initial or boundary condition

(ii) Causality condition (iv) Causal geodesic completeness

Theorem allows (i)—(iv) and g € C1!. But C1!1-spacetimes
@ are physically okay/not singular

@ allow to formulate the theorems

CY1 is the natural regularity class for the singularity theorems.
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The classical Theorems

Theorem [Hawking, 1967]
A C? -spacetime is future timelike geodesically incomplete, if

(i) Ric(X,X) > 0 for every timelike vector X

(i) There exists a compact space-like hypersurface S in M

(iii) The unit normals to S are everywhere converging

Theorem [Penrose, 1965]
A C? -spacetime is future null geodesically incomplete, if

(i) Ric(X,X) > 0 for every null vector X

(ii) There exists a non-compact Cauchy hypersurface S in M

(iii) There exists a trapped surface T
(cp. achronal spacelike 2-srf. w. past-pt. timelike mean curvature)
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The CH'-Theorems
[Kunzinger, S., Stojkovi¢, Vickers, 2015]

Classical singularity thms.

Theorem
A C'l-spacetime is future timelike geodesically incomplete, if

(i) Ric(X,X) > 0 for every smooth timelike local vector field X
(i) There exists a compact space-like hypersurface S in M

(iii) The unit normals to S are everywhere converging

Theorem [Kunzinger, S., Vickers, 2015]

A C'-spacetime is future null geodesically incomplete, if
(i) Ric(X,X) > 0 for every Lip-cont. local null vector field X

(ii) There exists a non-compact Cauchy hypersurface S in M

(iii) There exists a trapped surface T
(cp. achronal spacelike 2-srf. w. past-pt. timelike mean curvature)
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Obstacles in the Cl1l-case

@ No appropriate version of calculus of variations available
(second variation, maximizing curves, focal points, index form, ...)

@ (C?-causality theory rests on local equivalence with Minkowski space.
This requires good properties of exponential map.

~> big parts of causality theory have to be redone
@ Ricci tensors is only L™

~> problems with energy conditions

strategy:

@ Proof that the exponential map is a bi-Lipschitz homeo

@ Re-build causality theory for C1:1-metrics
regularisation adapted to causal structure replacing calculus of var.

@ use surrogate energy condition

17
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The exponential map in low regularity

@ exp,: T,M>ve—=~,(1)eM,
where 7, is the (unique) geodesic
starting at p in direction of v

@ gcC? = exp, local diffeo
@ geCh! = exp, loc. homeo [W,32]

Optimal regularity
g € CH! = exp, bi-Lipschitz homeo

@ [KSS,14]: regularisation &
comparison geometry /\‘
@ [Minguzzi,15]: refined ODE methods /

~» bulk of causality theory remains true
in C11 [CG,12, KSSV, 14, Ming.,15]
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Chrusciel-Grant regularization of the metric

Regularisation adapted to the causal structure [CG,12], [KSSV, 14]

Sandwich null cones of g between
null cones of two approximating
families of smooth metrics so that

g <g < 8.

@ applies to continuous metrics

@ local convolution plus small shift

Properties of the approximations for g ¢ C1'!
(i) g, & — g locally in C*
(i) D?g., D?g. locally uniformly bded. in ¢, but Ric[g.] / Ric[g]

20 / 27
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Surrogate energy condition (Hawking case)
Lemma [KSSV, 15]
Let (M,g) be a C'+'-spacetime satisfying the energy condition

Ric[g] (X, X) >0 for all timelike local C*°-vector fields X.

Then forall K cc M VC >0 V6 >0 Ve <0 Ve small
Ric[g:](X,X) > -6 VX eTM|k: g.(X,X) <&, || X||n < C.

v

Proof. @ 5. —g*p. — 0inC?~> only consider g. := g * p.

® Rj =Ry = 04T}, — 0l +Th T T 7

@ Blue terms|. converge uniformly

@ For red terms use variant of Friedrich's Lemma:
p >0 = (Riclg](X, X)) # p- > 0

(Ric[g](X, X)) * p — Ric[g:](X, X) — 0 unif.

21 /27
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The C''-proof (Hawking case)

e D(S) C Dét(S):

@ Limiting argument = 3 maximising g-geodesic ~y for all p € D*(S)
and v = limg_ in ct

@ Surrogate energy condition for §. and Raychaudhury equation
= D7(S) relatively compact

otherwise 3 g.-focal pt. too early

= H*(S) C D*(S) compact

@ Derive a contradiction as in the C*-case using C1'}-causality

22 /27
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Surrogate energy condition (Penrose case)

Lemma [KSV, 15]
Let (M,g) be a C''-spacetime satisfying the energy condition

Ric[g] (X, X) > 0 for every local Lip. null vector field X.
Then forall KcCc M vC >0 V§>0 dIn>0s.t. we have
Ric[g:](X, X) > —¢

for all p € K and all X € T,M with ||X]||5 < C which are close to
a g-null vector in the sense that

EYO & T/\/”K g—null, ||Y0”h < C, dh(X, Yg) < n.

23 /27
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The C!!-proof (Penrose case)

@ Choose g. globally hyperbolic (stability [NM,11], [S,15])
@ Surrogate energy condition is strong enough to guarantee that
EX(T)=JX(T)\IZ(T) is relatively compact
in case of null geodesic completeness
@ g. globally hyperbolic =
EX(T) = 0JF(T) is a g.-achronal, compact C%-hypersrf.
@ g <g. = E(T) is g-achronal
@ derive usual (topological) contradiction

24 /27
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Lemma [Hawking and Penrose, 1967]

In a causally complete C2-spacetime, the following cannot all hold:

@ Every inextendible causal geodesic has a pair of conjugate points
@ M contains no closed timelike curves and

© there is a future or past trapped achronal set S

Theorem

A C2-spacetime M is causally incomplete if Einstein's eqgs. hold and
@ M contains no closed timelike curves
@ M satisfies an energy condition

© Genericity: nontrivial curvature at some pt. of any causal geodesic
© M contains either

@ a trapped surface

@ some p s.t. convergence of all null geodesics changes sign in the past
@ a compact spacelike hypersurface

Low regularity singularity thms. Proofs Outlook
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Lemma [Hawking and Penrose, 1967]

In a causally complete C2-spacetime, the following cannot all hold:

© Every inextendible causal geodesic has a pair of conjugate points
@ M contains no closed timelike curves and

© there is a future or past trapped achronal set S

Theorem

A C2-spacetime M is causally incomplete if Einstein's eqgs. hold and
@ M contains no closed timelike curves
@ M satisfies an energy condition

© Genericity: nontrivial curvature at some pt. of any causal geodesic
© M contains either
o a trapped surface

@ some p s.t. convergence of all null geodesics changes sign in the past
@ a compact spacelike hypersurface
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