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General Topic

General Relativity and semi-Riemannian geometry with metrics of
low regularity

Prelude: The basic setup of General Relativity

e Albert Einstein's theory of gravity created exactly 99 years ago
e current description of gravitation in physics

e geometric theory due to Galileo’s principle of equivalence:
all bodies fall the same in a gravitational field
~» gravitational field as property
of the surrounding space

o Gravitational field influences how we
measure lengths and angles hence
the curvature of space and time

N
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The mathematical setup of GR

Lorentzian geometry (basic geometric setup)

e smooth 4-dimensional space-time manifold M

e smooth space-time metric g € I'3(M): at any T,M symmetric,
non-degenerate scalar product with signature (—, +, +, +)

Field equations (basic physical/analytical setup)

e Einstein Equations Gj[g] := Rj[g] — sR[g]g;j = 87T,

e Ricci-tensor Rjj, curvature scalar R built from
Riemann tensor R}, | :.8,( F’”,-P —0pl™, .—&- Ml Mok — T2 MM
and Christoffel symbols I, = gl jx = 38" (Okgy + 0jgu — igjk)
= R;,R ~ &g+ (0g)°

e coupled system of 10 quasi-linear PDEs of 2nd order for g
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Why Low Regularity?
(1) Physics
e want discontinuous matter configurations ~ T ¢ C0 — g & C?
e finite jumps in T~ g € C1'!
e standard approach: g piecewise C3, globally only C*

e more extreme situations (impulsive waves): g piecew. C3, globally C°

(2) Initial value problem—Analysis
e 3+ 1-split: M =X x {t}; C. data (X0, go, k)
with Xo = {t = 0}, g(.,0) = go, 9:8(.,0) =k

e |ocal existence and uniqueness Thms.
(80.K) € H* x HY(Ty) — g€ H*(Z)

e classical [CB,HKM]: s > 5/2 = g € C}(X)
e recent big improvements [K,R,M,S]: g € C°(X)
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GR and low regularity

The big quest
Physics and Analysis VS. Lorentzian geometry
want/need low regularity needs high regularity

to maintain standard results

Lorentzian geometry and regularity

e classically g € C>, for all practical purposes g € C?

exponential map works

existence of totally normal ngbhds. = geodesically convex
causality theory works [C]

needed for singularity thms. [S]

e things go wrong below C2

e causality goes wrong, light cones “bubble up” for g € C° [CG12]
e convexity goes wrong for g € C* (a < 1) [HW], see M.K.'s talk

e treshold g € C1'!: Unique solvability of geodesics eq. suffices 7?7
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Causality theory

What is CT?
e essentially the theory of future & past

e tells how signals propagate, in particular how fields propagate
~> PDE, see talks of G.H. and C.S.

Simplest ex: Minkowski space

(M, g) = (R*,n),
where n = diag(—1,1,1,1)

e (X, X) < 0: timelike

e 75(X, X) =0: null (lightlike)

e (X, X) <0: causality

e (X, X) > 0: spacelike -  z»
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Local causality in a general space-time

Definitions

Timelike (causal) curve: v € C%!
with &,(0(3(). 3(£)) < 0 (< 0) a.e.

Timelike/causal future /7 (p)/J*(p):
points reachable by future directed
timelike (causal) curve

Expectation and classically true:

Locally the causality in any space-time is Minkowskian, in part.

e the local causal structure is given by the image of the lightcone
under the exponential map

e the push up principles hold, in particular: any curve from p to
A1 (p) is a null geodesic
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The exponential map in low regularity

The exponential map

e exp,: ToM3vies (1) eM,
where ~, is the (unique) geodesic
starting at p in direction of v

e maps rays through 0 € T,M to
geodesics through p € M

Regularity
e g€ (C?= exp, local diffeo
e gcCl! = exp, loc. homeo [W32]

e g cCh! = exp, bi-Lipschitz homeo
[KSS14],[M13]
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Tools for causality theory with Cl''-metrics

Theorem (Maximal regularity of exp [KSS14])

If g € CYY then ¥Yp € M there exist open ngbhds. Uof0e ToM
and U of p in M such that exp, : U — U is a bi-Lipschitz homeo.

v

Theorem (Existence of totally normal ngbhds. [KSS14])
If g € CY! then all p € M possess a basis of totally normal ngbhds.

Theorem (The Gauss Lemma [KSSV14))

Ifg e CLt then all p € M possess a basis of normal ngbhds. U y
with exp, : U — U a bi-Lipschitz homeo. and for almost all x € U,
if v, wx € Tu(TpM) and vy is radial, then

(Txexp p(vx), Tx exp p(WX)> = (Va, W)
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Method of proof
(details: M. Stojkovi¢’s poster)

[KSS14], [KSSV14] use

e regularisation technique
approximate g € C1'! by smooth g. gained via convolution
= g. — g € C' and Riem|[g.] locally uniformly bounded
Beware: Riem[g.] /~ Riem|g]

e comparison geometry
new methods from Lorentzian comparison geometry [LeFC,08]

Alternative approach by E. Minguzzi [M13] uses
e careful ODE-analysis based on Picard-Lindelof approximations

e inverse function theorem for Lipschitz maps

Merrits: [M13] gives somewhat stronger results but techniques
do not extend below C%.
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Causality for C'''-metrics

Theorem (Local causality [KSSV14])

Ifg e C~1’1 then all p € M possess a basis of normal ngbhds.
exp, : U — U a bi-Lipschitz homeomorphism and

It (p,U) = exp,(IT(0) N T),  JT(p,U) = exp,(JT(0)n D)
AT (p, U) = 04 (p, U) = exp ,(811(0) N 0).

Theorem (Push up principles [CG12])
If g € CO' then we have

o [f there is a timelike curve from p to q and a causal curve from q to
r then there is a timelike curve from p to r.

e [f a causal curve o from p to q has is timelike piece then there
exists a timelike curve from p to q arbitrarily close to a.

11 /17



Main technique

Regularisations of the metric adapted to the causal structure

If g € CO then for any € > 0 there
exist smooth metrics g. and g,
with
éé = g = gE?
dh(gayg) + dh(gaag) <e
where dp(g1, &) =

1(X7Y)7g2(X7Y)‘

le:
SUPoX,YETM —IXTIall Y s

and h is some Riem. backgrd metr.

[CG12],[KSSV14]

g<h &
g(X,X)<0=h(X,X) <0
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Further results and outlook

Cl1-causality theory works!

e Fundamental constructions (local causality, push up principles) of
causality theory remain valid for g € C1'1.

e Accumulation curves of causal curves are causal. [CG12]
e This allows to obtain all of standard causality theory for g € C1:!
following the classical proofs. [KSSV14]
Outlook:

This (finally) puts us into a position to try to prove singularity
theorems for g € C1.
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Geodescis in impulsive gravitational waves

Impulsive gravitational waves

e model short but strong pulses of
gravitational radiation propagating in
constant curvature backgrounds
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e frequently described by a g € C%!

Line element in the non-expanding case (coords (U, V, Z, 7))

2|dZ + Uy (H 72dZ + H 33dZ)]? — 2dUdV

2
° [(1+INZZ -0V - U, G)]?

where G(Z,Z)=H—ZHz — ZH 3.

e curvature concentrated on the null hypersurface {U = 0}

e relevant models of ultrarelativistic particles
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Geodesics: regularity, matching, completeness
(details: A. Lecke’s poster)

C'-matching of the geodesics in impulsive grav. waves

e Physicists like to derive the geodesics by matching the geodesics of
the background across the wave-surface.

e This is only possible if the geodesics
— cross the wave-surface at all, and
— are C! across the wave-surface )

Task: Prove that these space-times are geodesically complete with

Cl-geodesics.
Problem: Geodesic eqs. are ODEs with discontinuous r.h.s.

(1) + Fa(1(8) 74(1) /(1) = 0
gj €COl =T e L2,
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Regularity of geodesics in imp. grav. waves

The case A =0 [LSS14]

e simple structure of the metric ~» equations can be written as
non-autonomous system with U as “time"-parameter

e Geodesic equations possess unique globally defined solutions in the
sense of Carathéodory and the solutions are C!-curves.
= geodesic completeness and C!-matching is ok!

The case A # 0
e U is not a parameter ~» use Filippov's solution concept.

e Observation [S14]: g € C1'? = geodesic equations possess solutions
in the sense of Filippov which are C!-curves.

e [PSS514]: In case of (1) solutions are unique and globally defined.
= geodesic completeness and C!-matching is ok!

Work in progress: expanding impulsive waves
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