Semi-Riemannian Metrics of Low Differentiability

Roland Steinbauer

Faculty of Mathematics University of Vienna

PDEs and Function Spaces Imperial College, London December 3, 2008

Introduction

Basic geometry for General Relativity in low regularity situations

The problem

concentrated sources of the gravitational field

curvature from a metric of low regularity

• analytical demand: low regularity vs.

geometrical demand: nonlinearities

2 Different approaches

(0) the classical C^{∞} -setting

still fine down to $C^{1,1}$ -metrics

- linear distributional geometry (tensor distributions) restricted "maximal" distributional setting using Sobolev spaces
- (2) nonlinear distributional geometry (Colombeau algebras)

unrestricted generalised setting

The question

• Compatibility: in the range where (1) and (2) work, do they agree?

Outline

- The theme
- Some motivation from physics

Two approaches

- The distributional setting
- The generalised setting
- The question of compatibility
- 3 The compatibility result
 - Old and new on the Geroch-Traschen class of metrics
 - Compatibility results
 - Discussion & Outlook

Why is it needed?

General Relativity

- space-time (M, g) Einstein equations $G_{ab}[g] = \kappa T_{ab}$
- problem: many reasonable space-times are singular e.g.:

impulsive gravitational waves, shell-crossing singularities, cosmic strings, ...

• often the metric is below C^{1,1}

 T_{ab} "concentrated" but locally integrable

singularity theorems:

incompleteness not just due to failure of smoothness

- Singular Yang-Mills Theory
 - fractionally charged instantons

 \rightsquigarrow singular connections in fibre bundles

Maximal distributional setting for GR

distributional metric

[Marsden, 68], [Parker, 79]

$$g \in \mathcal{D'}_2^0(M) \cong \mathcal{D'}(M) \otimes_{\mathcal{C}^{\infty}} \mathcal{T}_2^0(M) \cong L_{\mathcal{C}^{\infty}}(\mathfrak{X}(M), \mathfrak{X}(M); \mathcal{D'}(M))$$

symmetric and nondegenerate, i.e., $g(X, Y) = 0 \forall Y \Rightarrow X = 0$. \rightarrow no way to define, inverse, curvature, ...

maximal "reasonable" setting: Geroch-Traschen class

$$g\in \left(H^1_{\mathrm{loc}}\cap L^\infty_{\mathrm{loc}}
ight)^0_2(M)$$

(gt-setting)

[Geroch&Traschen, 87], [LeFloch&Mardare, 07]

- Pro's: allows to define curvature $\operatorname{Riem}[g], \operatorname{Ric}[g], \operatorname{R}[g]$ in distributions consistent limits \rightsquigarrow valid modelling
- Con's: Bianchi identities fail \rightsquigarrow energy conservation ? dim(supp(Riem[g])) $\ge 3 \rightsquigarrow$ thin shells yes, but strings no!

Colombeau Algebras

Algebras of generalised functions in the sense of J.F. Colombeau [Colombeau 1984, 1985] are differential algebras

- that contain the vector space of distributions and
- display maximal consistency with classical analysis (in the light of L. Schwartz' impossibility result). In particular the construction preserves
 - the product of C[∞]-functions
 - (Lie) derivatives of distributions.

Main ideas of the construction are

- regularisation of distributions by nets of \mathcal{C}^{∞} -functions
- asymptotic estimates in terms of a regularisation parameter (quotient construction)

The (special) algebra on manifolds

• scalars:
$$\mathcal{G}(M) := \mathcal{E}_M(M)/\mathcal{N}(M)$$

 $\mathcal{E}_M(M) := \{(u_{\varepsilon})_{\varepsilon} \in \mathcal{C}^{\infty(0,1]} : \forall K \forall P \exists I : \sup_{x \in K} |Pu_{\varepsilon}(x)| = O(\varepsilon^{-1})\}$
 $\mathcal{N}(M) := \{(u_{\varepsilon})_{\varepsilon} \in \mathcal{E}_M(M) : \forall K \quad \forall m : \sup_{x \in K} |u_{\varepsilon}(x)| = O(\varepsilon^m)\}$

notation: $\mathcal{G} \ni u = [(u_{\varepsilon})_{\varepsilon}]$ fine sheaf of differential algebras w.r.t. $L_X u := [(L_X u_{\varepsilon})_{\varepsilon}]$

• tensor fields: $\mathcal{G}_{s}^{r}(M) := \mathcal{E}_{M_{s}}^{r}(M) / \mathcal{N}_{s}^{r}(M)$ $\mathcal{G}_{s}^{r}(M) \cong \mathcal{G}(M) \otimes_{\mathcal{G}} \mathcal{T}_{s}^{r}(M) \cong L_{\mathcal{C}^{\infty}(M)}(\Omega^{1}(M)^{r}, \mathfrak{X}(M)^{s}; \mathcal{G}(M))$ $\cong L_{\mathcal{G}(M)}(\mathcal{G}_{1}^{0}(M)^{r}, \mathcal{G}_{0}^{1}(M)^{s}; \mathcal{G}(M))$

fine sheaf of finitely generated and projective $\mathcal{G}(M)$ -modules

• Embeddings: ∃ injective sheaf morphisms (basically convolution)

$$\iota: \mathcal{T}_{s}^{r}(_) \hookrightarrow \mathcal{D'}_{s}^{r}(_) \hookrightarrow \mathcal{G}_{s}^{r}(_).$$

Generalised setting for GR

• generalised metric: (technicalities on the index skipped) $g \in \mathcal{G}_2^0(M)$ symmetric and det(g) invertible in \mathcal{G} , i.e.,

$$\forall \mathsf{K} \text{ comp. } \exists m : \inf_{p \in \mathsf{K}} |\det(g_{\varepsilon}(p))| \ge \varepsilon^m \qquad (\mathsf{N}_{\varepsilon})$$

- for all generalised points $g(\tilde{x})$ is nondegenerate as map $\tilde{\mathbb{R}}^n \times \tilde{\mathbb{R}}^n \to \tilde{\mathbb{R}}$ (pointwise generalised nondegeneracy)
- locally there exists a representative g_ε consisting of smooth metrics and det(g) invertible in G (idea of smoothing)
- g induces an isomorphism $\mathcal{G}_0^1(M) \ni X \mapsto X^{\flat} := g(X, .) \in \mathcal{G}_1^0(M)$
- ∃! generalised Levi-Civita connection for g
- generalised curvature Riem[g], Ric[g], R[g].
 defined via usual coordinate formulae for fixed ε
- basic C²-compatibility: g_ε → g in C², g a vacuum solution of Einstein's equation ⇒ Ric[g_ε] → 0 in D'¹₃.

Two approaches

Compatibility

- $g \in \left(H^1_{\text{loc}} \cap L^{\infty}_{\text{loc}}\right)^0_2(M)$ two ways to calculate the curvature
 - (i) gt-setting: coordinate formulae in \mathcal{D}' resp. $W_{loc}^{m,p}$
- \rightsquigarrow Riem[g] $\in \mathcal{D'}_3^1$
- (ii) *G*-setting: embed *g* via convolution with a mollifier usual formulae for fixed ε → Riem[*g*_ε] ∈ *G*¹₃
- Do we get the same answer?

$$\begin{array}{ccc} H^{1}_{\mathrm{loc}} \cap L^{\infty}_{\mathrm{loc}} \ni g & \stackrel{*\rho_{\varepsilon}}{\longrightarrow} & [g_{\varepsilon}] \in \mathcal{G} \\ \\ \mathrm{gt-setting} & & & & \downarrow \mathcal{G}\text{-setting} \\ & & & & & \downarrow \mathcal{G}\text{-setting} \\ & & & & & \mathrm{Riem}[g] & \stackrel{\lim_{\varepsilon \to 0}}{\longleftarrow} & \mathrm{Riem}[g_{\varepsilon}] \end{array}$$

10/21

Embeddings and association

• scalars on
$$\Omega \subseteq \mathbb{R}^n$$
 open: $u \in \mathcal{E}'(\Omega)$

$$u_{\varepsilon} := u * \rho_{\varepsilon} \quad \rho \in \mathcal{S}(\mathbb{R}^{n}), \ \int \rho = 1, \ \rho_{\varepsilon} := \frac{1}{\varepsilon^{n}} \rho\left(\frac{\cdot}{\varepsilon}\right) \\ \int x^{\alpha} \rho(x) dx = \mathbf{0} \ \forall |\alpha| \ge 1$$

•
$$u \in \mathcal{D}'(\Omega)$$
: sheaf theoretic construction, or
set $u_{\varepsilon} = u * \psi_{\varepsilon}$, $\psi_{\varepsilon}(x) = \chi\left(\frac{x}{\sqrt{\varepsilon}}\right)\rho_{\varepsilon}(x)$, χ a cut-off

ψ_ε is a strict δ-net (moderate, asymptotic vanishing moments)
 (i) supp(ψ_ε) → {0} (ε → 0)
 (ii) ∫ψ_ε → 1 (ε → 0)

(iii)
$$\|\psi_{\varepsilon}\|_{L^{1}} \leq C$$
 for all ε (small)

•
$$g \in \left(\mathcal{H}^{1}_{\mathrm{loc}} \cap L^{\infty}_{\mathrm{loc}}\right)^{0}_{2}(M)$$
: $g^{\varepsilon}_{ij} := g_{ij} * \psi_{\varepsilon}, \rightsquigarrow$ metric $g_{\varepsilon}, \iota(g) = [(g_{\varepsilon})_{\varepsilon}]$

• association: $\mathcal{G} \ni u \approx v \in \mathcal{D}' :\Leftrightarrow \int u_{\varepsilon} \omega \to \langle v, \omega \rangle$

On the gt-class of metrics

- $H^1_{\text{loc}} \cap L^{\infty}_{\text{loc}}$ is an algebra
- $f \in H^1_{\text{loc}} \cap L^{\infty}_{\text{loc}}$ invertible : \Leftrightarrow loc. uniformly bounded away from 0,

 $\forall K \text{ compact } \exists C : |f(x)| \geq C > 0 \text{ a.e. on } K$

then f^{-1} is again loc. unif. bded away from 0

Definition (Nondegenerate gt-metrics [LeFM07], [SV08])

A gt-regular metric is a section $g \in (H^1_{loc} \cap L^{\infty}_{loc})^0_2(M)$, which is a Semi-Riemannian metric almost everywhere. It is called nondegenerate, if

$$\forall K \text{ compact } \exists C : |\det g(x)| \ge C > 0 \text{ a.e. on } K.$$
 (N

 $\Rightarrow g^{-1} \in (H^1_{\text{loc}} \cap L^{\infty}_{\text{loc}})^0_2(M)$ and nondegenerate, i.e., det (g^{-1}) loc. unif. bded away from 0

Smoothing gt-metrics

Basic properties of smoothing (ψ_{ε} a strict δ -net)

•
$$f \in L^1_{\text{loc}} \Rightarrow f_{\varepsilon} = f * \psi_{\varepsilon} \in \mathcal{C}^{\infty}(\Omega_{\psi_{\varepsilon}})$$

•
$$f \in W_{\text{loc}}^{m,p} \Rightarrow f_{\varepsilon} := f * \psi_{\varepsilon} \to f$$
 in $W_{\text{loc}}^{m,p}$ for all $m, 1 \le p < \infty$

• $f, h \in H^1_{\text{loc}} \cap L^{\infty}_{\text{loc}} \Rightarrow f_{\varepsilon}h_{\varepsilon} \to fh$ in $H^1_{\text{loc}} \cap L^p_{\text{loc}}$ for all $p < \infty$

Lemma (Stability of the determinant) Let g be nondegenerate, gt-regular, then $det(g_{\varepsilon}) \rightarrow det g \text{ in } H^{1}_{loc} \cap L^{p}_{loc}$ for all $p < \infty$.

• But (*N*) for *g* does not imply (N_{ε}) for g_{ε} and m = 0, (N_{ε}^{0})!

g nondegenerate gt-regular metric $eq g_{\varepsilon}$ generalised metric

Preserving nondegeneracy (1)

problem (1): preserving positivity for scalars

• want: $0 \le f \in H^1_{loc} \cap L^{\infty}_{loc}$ & loc. unif. bounded away from 0

 $\Rightarrow \ \forall K \text{ compact } \exists C, \varepsilon_0 : \ f_{\varepsilon}(x) \ge C > 0 \quad \forall x \in K, \ \varepsilon \le \varepsilon_0 \qquad (N'_{\varepsilon})$

Then $1/f_{\varepsilon}$ smooth, locally uniformly bounded net, and $1/f_{\varepsilon} \rightarrow 1/f$ in $H_{\text{loc}}^{1} \cap L_{\text{loc}}^{p}$ for all $p < \infty$.

• not true if $\psi_{\varepsilon} \geq 0$, ρ with vanishing moments $\Rightarrow \rho \geq 0 \Rightarrow \psi_{\varepsilon} \geq 0$

Lemma (Existence of admissible mollifiers)

There exist moderate strict delta nets ρ_{ε} with

(i) $\operatorname{supp}(\rho_{\varepsilon}) \subseteq B_{\varepsilon}(0)$ (ii) $\int \rho_{\varepsilon}(x) \, dx = 1$

(iii) $\forall j \in \mathbb{N} \exists \varepsilon_0 : \int x^{\alpha} \rho_{\varepsilon}(x) \, dx = 0$ for all $1 \le |\alpha| \le j$ and all $\varepsilon \le \varepsilon_0$

(iv) $\forall \eta > 0 \exists \varepsilon_0 : \int |\rho_{\varepsilon}(x)| \, dx \leq 1 + \eta$ for all $\varepsilon \leq \varepsilon_0$.

Convolution with ρ_{ε} provides an embedding ι_{ρ} into \mathcal{G} with (N'_{ε}) .

Preserving nondegeneracy (2)

problem (2): preserving nondegeneracy for metrics

• want: $\forall K \text{ cp. } \exists C, \varepsilon_0 : |\det(g_{\varepsilon})| \ge C_K > 0 \ \forall x \in K, \ \varepsilon \le \varepsilon_0 \quad (N_{\varepsilon}^0)$

Definition (Stability condition)

Let *g* be a gt-regular metric and $\lambda_i, \ldots, \lambda_n$ its eigenvalues.

(i) For any compact K we set $\mu_K := \min_{1 \le i \le n} \operatorname{esinf}_{x \in K} |\lambda^i(x)|$.

(ii) We call *g* stable if on *K* there is A^{K} continuous, such that $\max_{\substack{i,j \\ x \in K}} \operatorname{essup}_{x \in K} |g_{ij}(x) - A^{K}_{ij}(x)| \leq C < \frac{\mu_{K}}{2n}.$

Lemma (Nondegeneracy of smoothed gt-regular metrics)

Let g be a nondegenerate, stable, and gt-regular metric. Let g_{ε} be a smoothing of g with an admissible mollifier $(\rho_{\varepsilon})_{\varepsilon}$. Then (N_{ε}^{0}) holds, and the embedding $\iota_{\rho}(g)$ is a gen. metric.

Stability results

Lemma (Stability of the inverse and Christoffel symbols)

Let g be a nondegenerate, stable, and gt-regular metric. Let g_{ε} be a smoothing of g with an admissible mollifier $(\rho_{\varepsilon})_{\varepsilon}$.

 (i) The inverse of the smoothing (g_ε)⁻¹ is a smooth and locally uniformly bounded net (on rel. cp. sets for ε small), and

 $(g_{\varepsilon})^{-1}
ightarrow g^{-1}$ in $H^1_{
m loc} \cap L^p_{
m loc}$ for all $p < \infty$.

In particular, for any embedding we have that $(\iota_{\rho}(g))^{-1} \approx g^{-1}$.

(ii) The Christoffel symbols of the smoothing $\Gamma_{ijk}[g_{\varepsilon}]$, $\Gamma_{jk}^{i}[g_{\varepsilon}]$ are smooth and L^{2}_{loc} -bounded nets (on rel. cp. sets for ε small), and

$$\Gamma_{ijk}[g_{\varepsilon}] \rightarrow \Gamma_{ijk} \text{ and } \Gamma^{i}_{jk}[g_{\varepsilon}] \rightarrow \Gamma^{i}_{jk} \text{ in } L^{2}_{loc}$$

In particular, for any embedding $\Gamma_{ijk}[\iota_{\rho}(g)] \approx \Gamma_{ijk}[g]$ and $\Gamma^{i}_{jk}[\iota_{\rho}(g)] \approx \Gamma^{i}_{jk}[g]$.

Compatibility results (1)

Theorem (Compatibility of the gt- with the \mathcal{G} -setting)

Let g be a nondegenerate, stable, and gt-regular metric, and denote its Riemann tensor by Riem[g].

Let g_{ε} be a smoothing of g with an admissible mollifier $(\rho_{\varepsilon})_{\varepsilon}$. Then we have for the Riemann tensor $\operatorname{Riem}[g_{\varepsilon}]$ of g_{ε}

 $\operatorname{Riem}[g_{\varepsilon}] \to \operatorname{Riem}[g] \text{ in } \mathcal{D}'_{3}^{1}.$

Hence for any embedding ι_{ρ} we have $\operatorname{Riem}[\iota_{\rho}(g)] \approx \operatorname{Riem}[g]$.

$$\begin{array}{ccc} H^{1}_{\text{loc}} \cap L^{\infty}_{\text{loc}} & \ni g \xrightarrow{*\iota_{\rho} \text{ admissible}} & [g_{\varepsilon}] \in \mathcal{G} \\ \text{nondeg., stable} & & \downarrow \mathcal{G}\text{-setting} \\ \text{gt-setting} & & & \downarrow \mathcal{G}\text{-setting} \\ & & & & \text{Riem}[g] & \xleftarrow{\approx} & \text{Riem}[g_{\varepsilon}] \end{array}$$

Compatibility results (2)

for other curvature quantities in the gt-setting use following trick

$$\begin{array}{rcl} \frac{1}{2} \, g^{rs} \mathcal{R}^{i}_{jkl} &=& g^{rs} (\partial_{[l} \Gamma^{i}_{k]j} + g^{rs} \Gamma^{i}_{m[l} \Gamma^{m}_{k]j}) \\ &=& \partial_{[l} (g^{rs} \Gamma^{i}_{k]j}) - (\partial_{[l} g^{rs}) \Gamma^{i}_{k]j} + g^{rs} \Gamma^{i}_{m[l} \Gamma^{m}_{k]j}, \end{array}$$

analogously for any product of the form $\otimes_m g \otimes_l g^{-1} \otimes \operatorname{Riem}[g]$

Corollary (Compatibility for curvature quantities)

Let g be a nondegenerate, stable, and gt-regular metric. Let g_{ε} be a smoothing of g with an admissible mollifier $(\rho_{\varepsilon})_{\varepsilon}$. Then we have $(m, l \in \mathbb{N})$

 $\otimes_m g_{\varepsilon} \otimes_l g_{\varepsilon}^{-1} \otimes \operatorname{Riem}[g_{\varepsilon}] \to \otimes_m g \otimes_l g^{-1} \otimes \operatorname{Riem}[g] \text{ in } \mathcal{D}_{3+2m}^{\prime 1+2l}.$

In particular, we have for any embedding ι_{ρ} $\operatorname{Ric}[\iota_{\rho}(g)] \approx \operatorname{Ric}[g], \ R[\iota_{\rho}(g)] \approx R[g], \ W[\iota_{\rho}(g)] \approx W[g].$

Discussion

Relation to older stability results: $(g_n)_n$ gt-regular sequence

- [LeFloch&Mardare, 07] $g_n \to g \text{ in } H^1_{\text{loc}}, g_n^{-1} \to g^{-1} \text{ in } L^{\infty}_{\text{loc}} \Rightarrow \text{Riem}[g_n] \to \text{Riem}[g], \text{ in } \mathcal{D}'^1_3.$ for smoothings via convolution $g_n^{-1} \nrightarrow g^{-1}$ in $L^{\infty}_{\text{loc}}.$
- [Geroch&Traschen, 87] $g_n \to g \text{ in } H^1_{\text{loc}}, g_n^{-1} \to g^{-1} \text{ in } L^2_{\text{loc}}, g_n, g_n^{-1} \text{ bded in } L^{\infty}_{\text{loc}} (*)$ $\Rightarrow \text{Riem}[g_n] \to \text{Riem}[g] \text{ in } \mathcal{D}'^1_3.$

Existence of approximating sequences with (*)

- [Geroch&Traschen, 87] Only for continuous *g*, open for general *g*.
- Positive answer for general *g* by the above Theorem.

Further prospects

 Jump conditions along singular hypersurfaces in the spirit of [LeFloch&Mardare, 07], [Lichnerowicz, 55-79] in the generalised setting plus compatibility.

Applications to gravitational shock waves.

- Regularity of generalised solutions to wave equations in singular space-times ([Grant, Mayerhofer, S., 08]).
- Compatibility for connections in fibre bundles ([Kunzinger, Vickers, S., 05]).

Some References

- R. Geroch, J. Traschen, "Strings and Other distributional Sources in General Relativity." Phys. Rev. D 36, 1987.
- P. LeFloch, C. Mardare, "Definition and Stability of Lorentzian Manifolds With Distributional Curvature." Port. math. 64, 2007.
- R. Steinbauer, J. A. Vickers, "On the Geroch-Traschen class of metrics." arXiv:0811.1376 [gr-qc]
- M. Kunzinger, R. Steinbauer, "Generalized Pseudo-Riemannian Geometry." Trans. Amer. Math. Soc. 354, 2002.
- M. Kunzinger, R. Steinbauer, J. Vickers, "Generalised Connections and Curvature." Math. Proc. Cambridge Philos. Soc. 139, 2005.
- R. Steinbauer, J. Vickers, "The Use of Generalized Functions and Distributions in General Relativity." Class. Q. Grav. 23, 2006.
- M. Grosser, M. Kunzinger, M. Oberguggenberger, R. Steinbauer, "Geometric Theory of Generalized Functions" (Kluwer, 2001.)

Conference Announcement

GF2009

International Conference on Generalized Functions August 31 – September 4, 2009 Vienna, Austria http://www.mat.univie.ac.at/~gf2009