Distributional curvature and the focusing of geodesics

Roland Steinbauer
Faculty of Mathematics, University of Vienna

NADu22, Dubrovnik, June 2022

The wider topic

Focusing of geodesics is the
main analytical ingredient in the singularity thms. of GR

The wider topic

Focusing of geodesics is the main analytical ingredient in the singularity thms. of GR

What are the singularity theorems of GR?

- rigorous results in Lorentzian differential geometry
- physically resonsable assumptions lead to singularities of spacetime
- singularity \sim incomplete causal geodesic

The wider topic

Focusing of geodesics is the main analytical ingredient in the singularity thms. of GR

What are the singularity theorems of GR?

- rigorous results in Lorentzian differential geometry
- physically resonsable assumptions lead to singularities of spacetime
- singularity \sim incomplete causal geodesic

Why should you care?

- Roger Penrose's 2020 Nobel Prize in Physics
- recent extensions to non-smooth spacetimes

The wider topic

Focusing of geodesics is the main analytical ingredient in the singularity thms. of GR

What are the singularity theorems of GR?

- rigorous results in Lorentzian differential geometry
- physically resonsable assumptions lead to singularities of spacetime
- singularity \sim incomplete causal geodesic

Why should you care?

- Roger Penrose's 2020 Nobel Prize in Physics
- recent extensions to non-smooth spacetimes

Here: bring out the analysis underneath the geometry

- classical: analysis of Riccati equation, comparison results
- low regularity: distributional curvature, regularsiation, focusing

The structure of the singularity theorems

Pattern theorem

A spacetime (M, g) is singular if it satisfies:
(I) A suitable initial condition,
(E) an energy or curvature condition,
(C) a causality condition.
geometric conditions to be feed into analytic machinery
global structure of spacetime

The structure of the singularity theorems

Pattern theorem

A spacetime (M, g) is singular if it satisfies:
(I) A suitable initial condition,
(E) an energy or curvature condition,
(C) a causality condition.
geometric conditions to be feed into analytic machinery
global structure of spacetime

The structure of the singularity theorems

Pattern theorem

A spacetime (M, g) is singular if it satisfies:
(I) A suitable initial condition,
(E) an energy or curvature condition,
geometric conditions to be feed into analytic machinery
(C) a causality condition.
(I) \leadsto causal geodesics start focusing
(E) \sim focusing goes on (Raychaud. Riccati) \leadsto focal pt. \leadsto geos. stop maximising
(C) \leadsto there are maximising causal geos resolution: some causal geodesics stop existing before conj. pt.
global structure of spacetime

Geodesics, maximisers \& Jacobi tensors

- Geodesics: $\gamma: I \rightarrow M$ with $\nabla_{\dot{\gamma}} \dot{\gamma}=0$

$$
\ddot{\gamma}^{i}(s)=\Gamma_{j k}^{i}(\gamma(s)) \dot{\gamma}^{j}(s) \dot{\gamma}^{k}(s) \quad \text { with } \Gamma \sim g^{-1} \partial g
$$

- For data $p \in M, v \in T_{p} M$ unique max. extended sol.
- Locally causal geodesics $(g(\dot{\gamma}, \dot{\gamma}) \leq 0)$ maximise Lor. distance

Geodesics, maximisers \& Jacobi tensors

- Geodesics: $\gamma: I \rightarrow M$ with $\nabla_{\dot{\gamma}} \dot{\gamma}=0$

$$
\ddot{\gamma}^{i}(s)=\Gamma_{j k}^{i}(\gamma(s)) \dot{\gamma}^{j}(s) \dot{\gamma}^{k}(s) \quad \text { with } \Gamma \sim g^{-1} \partial g
$$

- For data $p \in M, v \in T_{p} M$ unique max. extended sol.
- Locally causal geodesics $(g(\dot{\gamma}, \dot{\gamma}) \leq 0)$ maximise Lor. distance
- Stop maximising after first conjuagte point, i.e. $\gamma(a)$ such that exists Jacobi tensor $A(s): \dot{\gamma}^{\perp}(s) \rightarrow \dot{\gamma}^{\perp}(s)$, i.e. unique sol. of

$$
\ddot{A}+R A=0 \text {, with tidal force op. } R: v \mapsto \operatorname{Riem}(v, \dot{\gamma}) \dot{\gamma}
$$

with $A(0)=0, \dot{A}(0)=$ id satisfies $\operatorname{ker} A(a) \neq\{0\}$

- Key idea: estimates on curvature say when geos stop maximising

Geodesic focusing

- Raychaudhuri eq. for expansion $\theta:=\operatorname{tr}\left(\dot{A} A^{-1}\right)=(\operatorname{det} A)^{-1}(\operatorname{det} A)$.

$$
\dot{\theta}=-\operatorname{Ric}(\dot{\gamma}, \dot{\gamma})-\operatorname{tr}\left(\sigma^{2}\right)-\frac{\theta^{2}}{d}
$$

(SEC) $\operatorname{Ric}(\dot{\gamma}, \dot{\gamma}) \geq 0$ "generates" conjugate points:

$$
\theta(0)<0 \text { then } \theta \rightarrow-\infty \text { for } t \in[0,-d / \theta(0)) .
$$

Geodesic focusing

- Raychaudhuri eq. for expansion $\theta:=\operatorname{tr}\left(\dot{A} A^{-1}\right)=(\operatorname{det} A)^{-1}(\operatorname{det} A)$.

$$
\dot{\theta}=-\operatorname{Ric}(\dot{\gamma}, \dot{\gamma})-\operatorname{tr}\left(\sigma^{2}\right)-\frac{\theta^{2}}{d} \quad \text { simple focusing }
$$

(SEC) $\operatorname{Ric}(\dot{\gamma}, \dot{\gamma}) \geq 0$ "generates" conjugate points:

$$
\theta(0)<0 \text { then } \theta \rightarrow-\infty \text { for } t \in[0,-d / \theta(0))
$$

Geodesic focusing

- Raychaudhuri eq. for expansion $\theta:=\operatorname{tr}\left(\dot{A} A^{-1}\right)=(\operatorname{det} A)^{-1}(\operatorname{det} A)$.

$$
\dot{\theta}=-\operatorname{Ric}(\dot{\gamma}, \dot{\gamma})-\operatorname{tr}\left(\sigma^{2}\right)-\frac{\theta^{2}}{d} \quad \text { simple focusing }
$$

(SEC) $\operatorname{Ric}(\dot{\gamma}, \dot{\gamma}) \geq 0$ "generates" conjugate points:

$$
\theta(0)<0 \text { then } \theta \rightarrow-\infty \text { for } t \in[0,-d / \theta(0))
$$

Advanced focusing

All Lagrange ${ }^{1}$ Jacobi tensors with $[A(0)]=$ id and $\theta(0) \leq 0$ become singular for some $t>0$.

- Needs analysis of full matrix Riccati eq. for $B=\dot{A} A^{-1}$:

$$
\dot{B}+B^{2}+R=0
$$

- Needs (SEC) and genericity condition:
tidal force operator R nontrivial at some $\gamma(t)$
${ }^{1} W(A, A):=\dot{A}^{\dagger} A-A^{\dagger} \dot{A}=0$

The Hawking-Penrose theorem

Theorem

Let (M, g) be a spacetime such that
(E) (SEC) holds, i.e., $\operatorname{Ric}(X, X) \geq 0$ for all X timelike, and (GC) holds along any causal geodesic γ
(C) it is chronological.

Moreover, assume it contains at least one of the following:
(I1) a compact achronal set without edge,
(I2) a closed future trapped surface P,
(I3) a future trapped point
Then M is causal geodesically incomplete.

Low regularity: Why \& How?

- Why: nature of "singularities", physical models, analysis of i.v.p.

Low regularity: Why \& How?

- Why: nature of "singularities", physical models, analysis of i.v.p.
- Results for $g \in C^{1,1}$: all three classical thms.

Low regularity: Why \& How?

- Why: nature of "singularities", physical models, analysis of i.v.p.
- Results for $g \in C^{1,1}$: all three classical thms.
- Issues for $g \in C^{1}$:
(A) Curvature merely a distribution of order one
(B) Normal neighbourhoods \& exponential map not available
(C) Geodesic equation fails to be uniquely solvable

Low regularity: Why \& How?

- Why: nature of "singularities", physical models, analysis of i.v.p.
- Results for $g \in C^{1,1}$: all three classical thms.
- Issues for $g \in C^{1}$:
(A) Curvature merely a distribution of order one
(B) Normal neighbourhoods \& exponential map not available
(C) Geodesic equation fails to be uniquely solvable
- Basis: chartwise regularisation by convolution

$$
g_{\varepsilon}(x):=g \star_{M} \rho_{\varepsilon}(x):=\sum \chi_{i}(x) \psi_{i}^{*}\left(\left(\psi_{i *}\left(\zeta_{i} \cdot g\right)\right) * \rho_{\varepsilon}\right)(x)
$$

Low regularity: Why \& How?

- Why: nature of "singularities", physical models, analysis of i.v.p.
- Results for $g \in C^{1,1}$: all three classical thms.
- Issues for $g \in C^{1}$:
(A) Curvature merely a distribution of order one
(B) Normal neighbourhoods \& exponential map not available
(C) Geodesic equation fails to be uniquely solvable
- Basis: chartwise regularisation by convolution

$$
g_{\varepsilon}(x):=g \star_{M} \rho_{\varepsilon}(x):=\sum \chi_{i}(x) \psi_{i}^{*}\left(\left(\psi_{i *}\left(\zeta_{i} \cdot g\right)\right) * \rho_{\varepsilon}\right)(x)
$$

Lemma 1 (Reg. and conv. for $g \in C^{1}$)

There are smooth $\check{g}_{\varepsilon} \prec g \prec \hat{g}_{\varepsilon}$ with $\check{g}_{\varepsilon}, \hat{g}_{\varepsilon} \rightarrow g$ in C^{1}, and

$$
\left\|g-g_{\varepsilon}\right\|_{\infty, K} \leq c_{K} \varepsilon \quad \text { and } \quad\left\|\check{g}_{\varepsilon}-g_{\varepsilon}\right\|_{\infty, K} \leq c_{K} \varepsilon
$$

Analogously for \hat{g}_{ε} and inverses $g^{-1}, g_{\varepsilon}^{-1},\left(\check{g}_{\varepsilon}\right)^{-1}$, and $\left(\hat{g}_{\varepsilon}\right)^{-1}$.
C^{1}-focusing: The rough guide (1)
(1) Formulate suitable (E) for $g \in C^{1}$
(2) Derive surrogate (E) for $\check{g}_{\varepsilon}: \operatorname{Ric}\left[\check{g}_{\varepsilon}\right](X, X)>-\delta$ (on $K \mathrm{cp}$.)
(3) still show advanced focusing for \check{g}_{ε}
(9) show that geodesics of g stop maximising.
C^{1}-focusing: The rough guide (1)
(1) Formulate suitable (E) for $g \in C^{1}$
(2) Derive surrogate (E) for $\check{g}_{\varepsilon}: \operatorname{Ric}\left[\check{g}_{\varepsilon}\right](X, X)>-\delta$ (on $K \mathrm{cp}$.)
(3) still show advanced focusing for \check{g}_{ε}
(9) show that geodesics of g stop maximising.
(1) easy for (SEC): $\operatorname{Ric}(X, X) \geq 0$ in \mathcal{D}^{\prime} for all timelike fields X more delicate for (GC): need to build in C^{1}-stability
C^{1}-focusing: The rough guide (1)
(1) Formulate suitable (E) for $g \in C^{1}$
(2) Derive surrogate (E) for $\check{g}_{\varepsilon}: \operatorname{Ric}\left[\check{g}_{\varepsilon}\right](X, X)>-\delta$ (on $K \mathrm{cp}$.)
(3) still show advanced focusing for \check{g}_{ε}
(9) show that geodesics of g stop maximising.
(1) easy for (SEC): $\operatorname{Ric}(X, X) \geq 0$ in \mathcal{D}^{\prime} for all timelike fields X more delicate for (GC): need to build in C^{1}-stability
(2) Problem: $\operatorname{Ric}\left[\check{g}_{\varepsilon}\right] \rightarrow \operatorname{Ric}[g]$ only distributionally \leadsto cannot carry $\operatorname{Ric}[g](X, X) \geq 0$ through construction
Solution: $\operatorname{Ric}[g] \star_{M} \rho_{\varepsilon}-\operatorname{Ric}\left[g_{\varepsilon}\right], \operatorname{Ric}\left[g_{\varepsilon}\right]-\operatorname{Ric}\left[\check{g}_{\varepsilon}\right] \rightarrow 0$ loc. unif.
C^{1}-focusing: The rough guide (1)
(1) Formulate suitable (E) for $g \in C^{1}$
(2) Derive surrogate (E) for $\check{g}_{\varepsilon}: \operatorname{Ric}\left[\check{g}_{\varepsilon}\right](X, X)>-\delta$ (on $K \mathrm{cp}$.)
(3) still show advanced focusing for \check{g}_{ε}
(9) show that geodesics of g stop maximising.
(1) easy for (SEC): $\operatorname{Ric}(X, X) \geq 0$ in \mathcal{D}^{\prime} for all timelike fields X more delicate for (GC): need to build in C^{1}-stability
(2) Problem: $\operatorname{Ric}\left[\check{g}_{\varepsilon}\right] \rightarrow \operatorname{Ric}[g]$ only distributionally
\leadsto cannot carry $\operatorname{Ric}[g](X, X) \geq 0$ through construction
Solution: $\operatorname{Ric}[g] \star_{M} \rho_{\varepsilon}-\operatorname{Ric}\left[g_{\varepsilon}\right], \operatorname{Ric}\left[g_{\varepsilon}\right]-\operatorname{Ric}\left[\check{g}_{\varepsilon}\right] \rightarrow 0$ loc. unif.

$$
\begin{align*}
& \text { Friedrichs Lemma for } \Gamma \text {-terms in Ric }\left(\Gamma \sim g^{-1} \partial g\right) \\
& \partial g \in C^{0}, g_{\varepsilon}^{-1}, g_{\varepsilon}^{-1} \in C^{1} \text { with }\left|g_{\varepsilon}^{-1}-g^{-1}\right|_{\infty, K} \leq C \varepsilon \tag{Lem.1!}\\
& \text { Then } g_{\varepsilon}^{-1}\left(\partial g \star \rho_{\varepsilon}\right)-\left(g^{-1} \partial g\right) \star \rho_{\varepsilon} \rightarrow 0 \text { in } C^{1} .
\end{align*}
$$

C^{1}-focusing: The rough guide (1)
(1) Formulate suitable (E) for $g \in C^{1}$
(2) Derive surrogate (E) for $\breve{g}_{\varepsilon}: \operatorname{Ric}\left[\check{g}_{\varepsilon}\right](X, X)>-\delta$ (on $K \mathrm{cp}$.)
(3) still show advanced focusing for \check{g}_{ε}
(9) show that geodesics of g stop maximising.
(1) easy for (SEC): $\operatorname{Ric}(X, X) \geq 0$ in \mathcal{D}^{\prime} for all timelike fields X more delicate for (GC): need to build in C^{1}-stability
(2) Problem: $\operatorname{Ric}\left[\check{g}_{\varepsilon}\right] \rightarrow \operatorname{Ric}[g]$ only distributionally
\leadsto cannot carry $\operatorname{Ric}[g](X, X) \geq 0$ through construction
Solution: $\operatorname{Ric}[g] \star_{M} \rho_{\varepsilon}-\operatorname{Ric}\left[g_{\varepsilon}\right], \operatorname{Ric}\left[g_{\varepsilon}\right]-\operatorname{Ric}\left[\check{g}_{\varepsilon}\right] \rightarrow 0$ loc. unif.

$$
\begin{align*}
& \text { Friedrichs Lemma for } \Gamma \text {-terms in Ric }\left(\Gamma \sim g^{-1} \partial g\right) \\
& \partial g \in C^{0}, g_{\varepsilon}^{-1}, g_{\varepsilon}^{-1} \in C^{1} \text { with }\left|g_{\varepsilon}^{-1}-g^{-1}\right|_{\infty, K} \leq C \varepsilon \tag{Lem.1!}\\
& \text { Then } g_{\varepsilon}^{-1}\left(\partial g \star \rho_{\varepsilon}\right)-\left(g^{-1} \partial g\right) \star \rho_{\varepsilon} \rightarrow 0 \text { in } C^{1} \text {. }
\end{align*}
$$

C^{1}-focusing: The rough guide (2)
(3) Derive (SEC), $R\left[\check{g}_{z}\right](t)>\operatorname{diag}(c,-C, \ldots,-C)(\mathrm{SGC})$.
(3) Still show advanced focusing for \check{g}_{ε}.
(9) Show that geodesics of g stop maximising.

C^{1}-focusing: The rough guide (2)

(3) Derive (SEC), $R\left[\check{g}_{\ell}\right](t)>\operatorname{diag}(c,-C, \ldots,-C)(\mathrm{SGC})$.

- Still show advanced focusing for \breve{g}_{ε}.
- Show that geodesics of g stop maximising.
- Proposition 1 (Advanced smooth focusing under (SEC) \& (SGC)) There is $\delta>0, T>0$ such that any causal geo. γ with (r suitable)
(i) $\operatorname{Ric}(\dot{\gamma}, \dot{\gamma}) \geq-\delta$ on $[-T, T]$
(ii) (SGC) holds on $[-r, r]$ possesses a pair of conjugate points on $[-T, T]$.

C^{1}-focusing: The rough guide (2)

(3) Derive (SEC), $R\left[\check{g}_{\ell}\right](t)>\operatorname{diag}(c,-C, \ldots,-C)(S G C)$.

- Still show advanced focusing for \breve{g}_{ε}.
- Show that geodesics of g stop maximising.
- Proposition 1 (Advanced smooth focusing under (SEC) \& (SGC)) There is $\delta>0, T>0$ such that any causal geo. γ with (r suitable)
(i) $\operatorname{Ric}(\dot{\gamma}, \dot{\gamma}) \geq-\delta$ on $[-T, T]$
(ii) (SGC) holds on $[-r, r]$ possesses a pair of conjugate points on $[-T, T]$.
Riccati comparison of $B:=\dot{A} A^{-1}$ with $A(-T)=0, A(0)=$ id to solution \tilde{B} of

$$
\dot{B}+B^{2}+\tilde{R}=0 \quad \text { with } \quad \tilde{R}(t):=\operatorname{diag}(c,-C, \ldots,-C) \leq R(t)
$$

C^{1}-focusing: The rough guide (2)

(2) Derive (SEC), $R\left[\check{g}_{\varepsilon}\right](t)>\operatorname{diag}(c,-C, \ldots,-C)(S G C)$.
(3) Still show advanced focusing for \breve{g}_{ε}.
(9) Show that geodesics of g stop maximising.
(3) Proposition 1 (Advanced smooth focusing under (SEC) \& (SGC)) There is $\delta>0, T>0$ such that any causal geo. γ with (r suitable)
(i) $\operatorname{Ric}(\dot{\gamma}, \dot{\gamma}) \geq-\delta$ on $[-T, T]$
(ii) (SGC) holds on $[-r, r]$ possesses a pair of conjugate points on $[-T, T]$.
Riccati comparison of $B:=\dot{A} A^{-1}$ with $A(-T)=0, A(0)=$ id to solution \tilde{B} of

$$
\dot{B}+B^{2}+\tilde{R}=0 \quad \text { with } \quad \tilde{R}(t):=\operatorname{diag}(c,-C, \ldots,-C) \leq R(t)
$$

Trick: Assume no conjugate point $\leadsto|\theta| \leq C$
\leadsto initial condition $\tilde{B}\left(t_{1}\right)=\tilde{\beta}\left(t_{1}\right)$ id, with $\tilde{\beta}\left(t_{1}\right) \geq$ largest eigenvalue of $B\left(t_{1}\right)$

$$
\Longrightarrow B \leq \tilde{B} \text { on }\left[t_{1}, r\right] \quad[\text { Eschenburg \& Heintze, 1990] }
$$

Equation for \tilde{B} diagonal \leadsto explicit solution with $B>\tilde{B}\{$

C^{1}-focusing: The rough guide (2)

(2) Derive (SEC), $R\left[\check{g}_{\varepsilon}\right](t)>\operatorname{diag}(c,-C, \ldots,-C)(S G C)$.
(3) Still show advanced focusing for \breve{g}_{ε}.
(9) Show that geodesics of g stop maximising.
(3) Proposition 1 (Advanced smooth focusing under (SEC) \& (SGC)) There is $\delta>0, T>0$ such that any causal geo. γ with (r suitable)
(i) $\operatorname{Ric}(\dot{\gamma}, \dot{\gamma}) \geq-\delta$ on $[-T, T]$
(ii) (SGC) holds on $[-r, r]$ possesses a pair of conjugate points on $[-T, T]$.
Riccati comparison of $B:=\dot{A} A^{-1}$ with $A(-T)=0, A(0)=$ id to solution \tilde{B} of

$$
\dot{B}+B^{2}+\tilde{R}=0 \quad \text { with } \quad \tilde{R}(t):=\operatorname{diag}(c,-C, \ldots,-C) \leq R(t)
$$

Trick: Assume no conjugate point $\leadsto|\theta| \leq C$
\leadsto initial condition $\tilde{B}\left(t_{1}\right)=\tilde{\beta}\left(t_{1}\right)$ id, with $\tilde{\beta}\left(t_{1}\right) \geq$ largest eigenvalue of $B\left(t_{1}\right)$

$$
\Longrightarrow B \leq \tilde{B} \text { on }\left[t_{1}, r\right] \quad[\text { Eschenburg \& Heintze, 1990] }
$$

Equation for \tilde{B} diagonal \leadsto explicit solution with $B>\tilde{B}\{$
C^{1}-focusing: The rough guide (3)
(3) Still show advanced focusing for \breve{g}_{ε}.
(0) Show that geodesics of g stop maximising.
C^{1}-focusing: The rough guide (3)
(3) Still show advanced focusing for \check{g}_{ε}.
(9) Show that geodesics of g stop maximising.

Stragtegy: Ass. γ glob. g-maximiser

- approximate γ by \check{g}_{ε}-geos. γ_{ε}

$$
\Rightarrow \gamma_{\varepsilon} \text { are } \check{g}_{\varepsilon} \text {-maximisers }
$$

- on cp. ngbhd. of γ turn
(DSEC) \& (DGC) into (i), (ii)
- Prop. 1 for δ small, T large

$$
\Rightarrow \gamma_{\varepsilon} \text { has conj. pts. } \Rightarrow \xi
$$

Problem: How to approximate non-unique sols. of g-geo. eq. by solutions to smooth \check{g}_{ε} geo. eq. ???

Solution: Geodesic non-branching assumption

- well motivated from metric geometry
- adds novel aspect to interpretation of HE \& GL sing. thms.

The Hawking-Penrose theorem

Theorem

Let (M, g) be a spacetime such that
(E) (SEC) \& (GC) hold
(C) it is chronological.

Moreover, assume it contains at least one of the following:
(I1) a compact achronal set without edge,
(I2) a closed future trapped surface P,
(I3) a future trapped point
Then M is causal geodesically incomplete.
(cosmological case)
(grav. collapse)

The C^{1}-Hawking-Penrose theorem

Theorem

Let (M, g) be a C^{1}-spacetime such that
(E) (DSEC) \& (DGC) hold
(C) it is causal.

Moreover, assume it contains at least one of the following:
(I1) a compact achronal set without edge,
(I2) a closed future trapped surface P,
(cosmological case)
(I3) a future trapped point all in the sense of support manifolds
Then M is causal geodesically incomplete.

Literature

- M. Graf, J. Grant, M. Kunzinger, R. Steinbauer, The HawkingPenrose Singularity Theorem for $C^{1,1}$-Lorentzian Metrics. Commun. Math. Phys., 360(3):1009-1042, 2018.
- M. Graf, Singularity theorems for C^{1}-Lorentzian metrics. Commun. Math. Phys., 378(2):1417-1450, 2020.
- B. Schinnerl, R. Steinbauer, A note on the Gannon-Lee theorem. Lett. Math. Phys., 111(6): 142, 2021.
- M. Kunzinger, A. Ohanyan, B. Schinnerl, R. Steinbauer, The Hawking- Penrose Singularity Theorem for C^{1}-Lorentzian Metrics. Commun. Math. Phys., 391:1143-1179, 2022.

Happy Birthday Nenad

