Distributional curvature and the focusing of geodesics

Roland Steinbauer

Faculty of Mathematics, University of Vienna

NADu22, Dubrovnik, June 2022

Focusing of geodesics is the

main analytical ingredient in the singularity thms. of GR

∃ ► < ∃ ►

Focusing of geodesics is the

main analytical ingredient in the singularity thms. of GR

What are the singularity theorems of GR?

- rigorous results in Lorentzian differential geometry
- physically resonsable assumptions lead to singularities of spacetime
- ullet singularity \sim incomplete causal geodesic

Focusing of geodesics is the

main analytical ingredient in the singularity thms. of GR

What are the singularity theorems of GR?

- rigorous results in Lorentzian differential geometry
- physically resonsable assumptions lead to singularities of spacetime
- ullet singularity \sim incomplete causal geodesic

Why should you care?

- Roger Penrose's 2020 Nobel Prize in Physics
- recent extensions to non-smooth spacetimes

Focusing of geodesics is the

main analytical ingredient in the singularity thms. of GR

What are the singularity theorems of GR?

- rigorous results in Lorentzian differential geometry
- physically resonsable assumptions lead to singularities of spacetime
- ullet singularity \sim incomplete causal geodesic

Why should you care?

- Roger Penrose's 2020 Nobel Prize in Physics
- recent extensions to non-smooth spacetimes

Here: bring out the analysis underneath the geometry

- classical: analysis of Riccati equation, comparison results
- low regularity: distributional curvature, regularsiation, focusing

The structure of the singularity theorems

The structure of the singularity theorems

The structure of the singularity theorems

Geodesics, maximisers & Jacobi tensors

• Geodesics:
$$\gamma : I \to M$$
 with $\nabla_{\dot{\gamma}} \dot{\gamma} = 0$
 $\ddot{\gamma}^{i}(s) = \Gamma^{i}_{jk}(\gamma(s)) \dot{\gamma}^{j}(s) \dot{\gamma}^{k}(s)$ with $\Gamma \sim g^{-1} \partial g$

• For data $p \in M$, $v \in T_pM$ unique max. extended sol.

• Locally causal geodesics $(g(\dot{\gamma},\dot{\gamma}) \leq 0)$ maximise Lor. distance

Geodesics, maximisers & Jacobi tensors

• Geodesics:
$$\gamma : I \to M$$
 with $\nabla_{\dot{\gamma}} \dot{\gamma} = 0$
 $\ddot{\gamma}^{i}(s) = \Gamma^{i}_{jk}(\gamma(s)) \dot{\gamma}^{j}(s) \dot{\gamma}^{k}(s)$ with $\Gamma \sim g^{-1} \partial g$

• For data $p \in M$, $v \in T_pM$ unique max. extended sol.

- Locally causal geodesics $(g(\dot{\gamma},\dot{\gamma})\leq 0)$ maximise Lor. distance
- Stop maximising after first conjuagte point, i.e. γ(a) such that exists Jacobi tensor A(s): γ[⊥](s) → γ[⊥](s), i.e. unique sol. of

 $\ddot{A} + RA = 0$, with tidal force op. $R: v \mapsto \operatorname{Riem}(v, \dot{\gamma})\dot{\gamma}$

with
$$A(0) = 0$$
, $\dot{A}(0) = \mathrm{id}$ satisfies $\ker A(a) \neq \{0\}$

• Key idea: estimates on curvature say when geos stop maximising

Geodesic focusing

• Raychaudhuri eq. for expansion $\theta := tr(\dot{A}A^{-1}) = (\det A)^{-1} (\det A)^{-1}$

$$\dot{ heta} = -\mathsf{Ric}(\dot{\gamma},\dot{\gamma}) - \mathrm{tr}(\sigma^2) - rac{ heta^2}{d}$$

(SEC) Ric $(\dot{\gamma}, \dot{\gamma}) \ge 0$ "generates" conjugate points: $\theta(0) < 0$ then $\theta \to -\infty$ for $t \in [0, -d/\theta(0))$.

Geodesic focusing

• Raychaudhuri eq. for expansion $\theta := tr(\dot{A}A^{-1}) = (\det A)^{-1} (\det A)^{-1}$

$$\dot{ heta} = - ext{Ric}(\dot{\gamma},\dot{\gamma}) - ext{tr}(\sigma^2) - rac{ heta^2}{d}$$
 simple focusing

(SEC) Ric $(\dot{\gamma}, \dot{\gamma}) \ge 0$ "generates" conjugate points: $\theta(0) < 0$ then $\theta \to -\infty$ for $t \in [0, -d/\theta(0))$.

Geodesic focusing

• Raychaudhuri eq. for expansion $\theta := tr(\dot{A}A^{-1}) = (\det A)^{-1} (\det A)^{-1}$

$$\dot{ heta} = - {
m Ric}(\dot{\gamma},\dot{\gamma}) - {
m tr}(\sigma^2) - rac{ heta^2}{d}$$
 simple focusing

(SEC) Ric $(\dot{\gamma}, \dot{\gamma}) \ge 0$ "generates" conjugate points: $\theta(0) < 0$ then $\theta \to -\infty$ for $t \in [0, -d/\theta(0))$.

Advanced focusing

All Lagrange¹Jacobi tensors with [A(0)] = id and $\theta(0) \le 0$ become singular for some t > 0.

• Needs analysis of full matrix Riccati eq. for $B = \dot{A}A^{-1}$:

$$\dot{B} + B^2 + R = 0$$

• Needs (SEC) and genericity condition:

tidal force operator R nontrivial at some $\gamma(t)$ (GC)

$$^{1}W(A,A) := \dot{A}^{\dagger}A - A^{\dagger}\dot{A} = 0$$

The Hawking-Penrose theorem

Theorem Let (M, g) be a spacetime such that (E) (SEC) holds, i.e., $\operatorname{Ric}(X, X) \ge 0$ for all X timelike, and (GC) holds along any causal geodesic γ (C) it is chronological. Moreover, assume it contains at least one of the following: (1) a compact achronal set without edge, (cosmological case) (12) a closed future trapped surface P, (grav. collapse) (13) a future trapped point Then M is causal geodesically incomplete.

• Why: nature of "singularities", physical models, analysis of i.v.p.

- Why: nature of "singularities", physical models, analysis of i.v.p.
- Results for $g \in C^{1,1}$: all three classical thms. \checkmark

- Why: nature of "singularities", physical models, analysis of i.v.p.
- Results for $g \in C^{1,1}$: all three classical thms. \checkmark
- Issues for $g \in C^1$:
 - (A) Curvature merely a distribution of order one
 - (B) Normal neighbourhoods & exponential map not available
 - (C) Geodesic equation fails to be uniquely solvable

- Why: nature of "singularities", physical models, analysis of i.v.p.
- Results for $g \in C^{1,1}$: all three classical thms. \checkmark
- Issues for $g \in C^1$:
 - (A) Curvature merely a distribution of order one
 - (B) Normal neighbourhoods & exponential map not available
 - (C) Geodesic equation fails to be uniquely solvable
- Basis: chartwise regularisation by convolution

$$g_{\varepsilon}(\mathsf{x}) := g \star_{M} \rho_{\varepsilon}(\mathsf{x}) := \sum \chi_{i}(\mathsf{x}) \psi_{i}^{*} \Big(\big(\psi_{i*}(\zeta_{i} \cdot g)\big) * \rho_{\varepsilon} \Big)(\mathsf{x}).$$

- Why: nature of "singularities", physical models, analysis of i.v.p.
- Results for $g \in C^{1,1}$: all three classical thms. \checkmark
- Issues for $g \in C^1$:
 - (A) Curvature merely a distribution of order one
 - (B) Normal neighbourhoods & exponential map not available
 - (C) Geodesic equation fails to be uniquely solvable
- Basis: chartwise regularisation by convolution

$$g_{\varepsilon}(x) := g \star_{M} \rho_{\varepsilon}(x) := \sum \chi_{i}(x) \psi_{i}^{*} \Big(\big(\psi_{i} * (\zeta_{i} \cdot g) \big) * \rho_{\varepsilon} \Big)(x) .$$

Lemma 1 (Reg. and conv. for $g \in C^1$)

There are smooth $\check{g}_{\varepsilon}\prec g\prec \hat{g}_{\varepsilon}$ with $\check{g}_{\varepsilon},\ \hat{g}_{\varepsilon}\rightarrow g$ in C^{1} , and

 $\|g - g_{\varepsilon}\|_{\infty, K} \leq c_K \varepsilon$ and $\|\check{g}_{\varepsilon} - g_{\varepsilon}\|_{\infty, K} \leq c_K \varepsilon.$

Analogously for \hat{g}_{ε} and inverses g^{-1} , g_{ε}^{-1} , $(\check{g}_{\varepsilon})^{-1}$, and $(\hat{g}_{\varepsilon})^{-1}$.

- Formulate suitable (E) for $g \in C^1$
- 2 Derive surrogate (E) for \check{g}_{ε} : Ric $[\check{g}_{\varepsilon}](X,X) > -\delta$ (on K cp.)
- **③** still show advanced focusing for \check{g}_{ε}
- show that geodesics of g stop maximising.

- Formulate suitable (E) for $g \in C^1$
- 3 Derive surrogate (E) for \check{g}_{ε} : Ric $[\check{g}_{\varepsilon}](X,X) > -\delta$ (on K cp.)
- **③** still show advanced focusing for \check{g}_{ε}
- show that geodesics of g stop maximising.
- easy for (SEC): Ric(X, X) ≥ 0 in D' for all timelike fields X more delicate for (GC): need to build in C¹-stability

- Formulate suitable (E) for $g \in C^1$ \checkmark
- 2 Derive surrogate (E) for \check{g}_{ε} : Ric $[\check{g}_{\varepsilon}](X,X) > -\delta$ (on K cp.)
- **③** still show advanced focusing for \check{g}_{ε}
- show that geodesics of g stop maximising.
- easy for (SEC): Ric(X, X) ≥ 0 in D' for all timelike fields X more delicate for (GC): need to build in C¹-stability
- **Problem:** Ric[ğ_ε] → Ric[g] only distributionally
 → cannot carry Ric[g](X, X) ≥ 0 through construction

Solution: $\operatorname{Ric}[g] \star_M \rho_{\varepsilon} - \operatorname{Ric}[g_{\varepsilon}], \operatorname{Ric}[g_{\varepsilon}] - \operatorname{Ric}[\check{g}_{\varepsilon}] \to 0$ loc. unif.

- $\bullet \quad \text{Formulate suitable (E) for } g \in C^1 \quad \checkmark$
- 2 Derive surrogate (E) for \check{g}_{ε} : $\operatorname{Ric}[\check{g}_{\varepsilon}](X,X) > -\delta$ (on K cp.)
- **③** still show advanced focusing for \check{g}_{ε}
- show that geodesics of g stop maximising.
- easy for (SEC): Ric(X, X) ≥ 0 in D' for all timelike fields X more delicate for (GC): need to build in C¹-stability
- **Problem:** Ric[ğ_ε] → Ric[g] only distributionally
 → cannot carry Ric[g](X, X) ≥ 0 through construction

Solution: $\operatorname{Ric}[g] \star_M \rho_{\varepsilon} - \operatorname{Ric}[g_{\varepsilon}], \operatorname{Ric}[g_{\varepsilon}] - \operatorname{Ric}[\check{g}_{\varepsilon}] \to 0$ loc. unif.

Friedrichs Lemma for
$$\Gamma$$
-terms in Ric $(\Gamma \sim g^{-1} \partial g)$
 $\partial g \in C^0, g_{\varepsilon}^{-1}, g_{\varepsilon}^{-1} \in C^1$ with $|g_{\varepsilon}^{-1} - g^{-1}|_{\infty,K} \leq C\varepsilon$ (Lem. 1!)
Then $g_{\varepsilon}^{-1}(\partial g \star \rho_{\varepsilon}) - (g^{-1}\partial g) \star \rho_{\varepsilon} \to 0$ in C^1 .

- $\bullet \quad \text{Formulate suitable (E) for } g \in C^1 \quad \checkmark$
- 2 Derive surrogate (E) for \check{g}_{ε} : Ric $[\check{g}_{\varepsilon}](X,X) > -\delta$ (on K cp.) \checkmark
- **③** still show advanced focusing for \check{g}_{ε}
- show that geodesics of g stop maximising.
- easy for (SEC): Ric(X, X) ≥ 0 in D' for all timelike fields X more delicate for (GC): need to build in C¹-stability
- **Problem:** Ric[ğ_ε] → Ric[g] only distributionally
 → cannot carry Ric[g](X, X) ≥ 0 through construction

Solution: $\operatorname{Ric}[g] \star_M \rho_{\varepsilon} - \operatorname{Ric}[g_{\varepsilon}], \operatorname{Ric}[g_{\varepsilon}] - \operatorname{Ric}[\check{g}_{\varepsilon}] \to 0$ loc. unif.

Friedrichs Lemma for
$$\Gamma$$
-terms in Ric $(\Gamma \sim g^{-1} \partial g)$
 $\partial g \in C^0, g_{\varepsilon}^{-1}, g_{\varepsilon}^{-1} \in C^1$ with $|g_{\varepsilon}^{-1} - g^{-1}|_{\infty,K} \leq C\varepsilon$ (Lem. 1!)
Then $g_{\varepsilon}^{-1}(\partial g \star \rho_{\varepsilon}) - (g^{-1}\partial g) \star \rho_{\varepsilon} \to 0$ in C^1 .

- 2 Derive (SEC), $R[\check{g}_{\varepsilon}](t) > \operatorname{diag}(c, -C, \ldots, -C)$ (SGC). \checkmark
- Still show advanced focusing for \check{g}_{ε} .
- Show that geodesics of g stop maximising.

- 2 Derive (SEC), $R[\check{g}_{\varepsilon}](t) > \operatorname{diag}(c, -C, \ldots, -C)$ (SGC). \checkmark
- Still show advanced focusing for \check{g}_{ε} .
- Show that geodesics of g stop maximising.

• **Proposition 1** (Advanced smooth focusing under (SEC) & (SGC)) There is $\delta > 0$, T > 0 such that any causal geo. γ with (r suitable)

(i) $\operatorname{Ric}(\dot{\gamma},\dot{\gamma})\geq-\delta$ on [-T,T] (ii) (SGC) holds on [-r,r]

possesses a pair of conjugate points on [-T, T].

- 2 Derive (SEC), $R[\check{g}_{\varepsilon}](t) > \operatorname{diag}(c, -C, \ldots, -C)$ (SGC). \checkmark
- Still show advanced focusing for \check{g}_{ε} .
- Show that geodesics of g stop maximising.

Proposition 1 (Advanced smooth focusing under (SEC) & (SGC)) There is δ > 0, T > 0 such that any causal geo. γ with (r suitable)

(i)
$$\operatorname{Ric}(\dot{\gamma},\dot{\gamma}) \geq -\delta$$
 on $[-T,T]$ (ii) (SGC) holds on $[-r,r]$

possesses a pair of conjugate points on [-T, T].

Riccati comparison of $B := \dot{A}A^{-1}$ with A(-T) = 0, $A(0) = \mathrm{id}$ to solution \tilde{B} of

$$\dot{B}+B^2+ ilde{R}=0$$
 with $ilde{R}(t):= ext{diag}(c,-C,\dots,-C)\leq R(t)$

- 2 Derive (SEC), $R[\check{g}_{\varepsilon}](t) > \operatorname{diag}(c, -C, \ldots, -C)$ (SGC). \checkmark
- Still show advanced focusing for \check{g}_{ε} .
- Show that geodesics of g stop maximising.

• Proposition 1 (Advanced smooth focusing under (SEC) & (SGC)) There is $\delta > 0$, T > 0 such that any causal geo. γ with (r suitable)

(i)
$$\operatorname{Ric}(\dot{\gamma},\dot{\gamma}) \geq -\delta$$
 on $[-T,T]$ (ii) (SGC) holds on $[-r,r]$

possesses a pair of conjugate points on [-T, T].

Riccati comparison of $B := \dot{A}A^{-1}$ with A(-T) = 0, $A(0) = \mathrm{id}$ to solution \tilde{B} of

$$\dot{B}+B^2+ ilde{R}=0$$
 with $ilde{R}(t):= ext{diag}(c,-C,\ldots,-C)\leq R(t)$

Trick: Assume no conjugate point $\rightsquigarrow |\theta| \leq C$ \rightsquigarrow initial condition $\tilde{B}(t_1) = \tilde{\beta}(t_1)$ id, with $\tilde{\beta}(t_1) \geq$ largest eigenvalue of $B(t_1)$ $\implies B \leq \tilde{B}$ on $[t_1, r]$ [Eschenburg & Heintze, 1990] Equation for \tilde{B} diagonal \rightsquigarrow explicit solution with $B > \tilde{B}$ *f*

- 2 Derive (SEC), $R[\check{g}_{\varepsilon}](t) > \operatorname{diag}(c, -C, \ldots, -C)$ (SGC). \checkmark
- Still show advanced focusing for \check{g}_{ε} . \checkmark
- Show that geodesics of g stop maximising.

• Proposition 1 (Advanced smooth focusing under (SEC) & (SGC)) There is $\delta > 0$, T > 0 such that any causal geo. γ with (r suitable)

(i)
$$\operatorname{Ric}(\dot{\gamma},\dot{\gamma}) \geq -\delta$$
 on $[-T,T]$ (ii) (SGC) holds on $[-r,r]$

possesses a pair of conjugate points on [-T, T].

Riccati comparison of $B := \dot{A}A^{-1}$ with A(-T) = 0, $A(0) = \mathrm{id}$ to solution \tilde{B} of

$$\dot{B}+B^2+ ilde{R}=0$$
 with $ilde{R}(t):= ext{diag}(c,-C,\ldots,-C)\leq R(t)$

Trick: Assume no conjugate point $\rightsquigarrow |\theta| \leq C$ \rightsquigarrow initial condition $\tilde{B}(t_1) = \tilde{\beta}(t_1)$ id, with $\tilde{\beta}(t_1) \geq$ largest eigenvalue of $B(t_1)$ $\implies B \leq \tilde{B}$ on $[t_1, r]$ [Eschenburg & Heintze, 1990] Equation for \tilde{B} diagonal \rightsquigarrow explicit solution with $B > \tilde{B}$ *f*

- Still show advanced focusing for \check{g}_{ε} . \checkmark
- Show that geodesics of g stop maximising.

Solution: Geodesic non-branching assumption

- well motivated from metric geometry
- adds novel aspect to interpretation of HE & GL sing. thms.

The Hawking-Penrose theorem

Theorem[Hawking & Penrose, 1970]Let (M, g) be a spacetime such that(E) (SEC) & (GC) hold(C) it is chronological.Moreover, assume it contains at least one of the following:(11) a compact achronal set without edge,(12) a closed future trapped surface P,(13) a future trapped pointThen M is causal geodesically incomplete.

The C^1 -Hawking-Penrose theorem

Theorem

Let (M, g) be a C^1 -spacetime such that (E) (DSEC) & (DGC) hold (C) it is causal. Moreover, assume it contains at least one of the following: (11) a compact achronal set without edge, (cosmological case) (12) a closed future trapped surface P, (grav. collapse) (13) a future trapped point all in the sense of support manifolds Then M is causal geodesically incomplete.

Literature

- M. Graf, J. Grant, M. Kunzinger, R. Steinbauer, The Hawking-Penrose Singularity Theorem for C^{1,1}-Lorentzian Metrics. *Commun. Math. Phys.*, 360(3):1009–1042, 2018.
- M. Graf, Singularity theorems for C¹-Lorentzian metrics. *Commun. Math. Phys.*, 378(2):1417–1450, 2020.
- B. Schinnerl, R. Steinbauer, A note on the Gannon-Lee theorem. *Lett. Math. Phys.*, 111(6): 142, 2021.
- M. Kunzinger, A. Ohanyan, B. Schinnerl, R. Steinbauer, The Hawking- Penrose Singularity Theorem for C¹-Lorentzian Metrics. *Commun. Math. Phys.*, 391:1143–1179, 2022.

Happy Birthday Nenad

