Introduction

The Singularity Theorems in Low Regularity

Roland Steinbauer

Faculty of Mathematics, University of Vienna

GELOMA 2016, September 2016

Long-term project on

Lorentzian geometry and general relativity

with metrics of low regularity

jointly with

- 'theoretical branch' (Vienna & U.K.): Melanie Graf, James Grant, Günther Hörmann, Mike Kunzinger, Clemens Sämann, James Vickers
- 'exact solutions branch' (Vienna & Prague): Jiří Podolský, Clemens Sämann, Robert Švarc

Proofs

Outlook

- **2** The $C^{1,1}$ -singularity theorems
- **3** Key issues of the $C^{1,1}$ -proofs

Proofs

Outlook

Table of Contents

- **2** The $\mathcal{C}^{1,1}$ -singularity theorems
- **3** Key issues of the $\mathcal{C}^{1,1}$ -proofs

Outlook

Remarks on low Regularity

Why low regularity?

- $\textbf{0} Physics: Realistic matter models \rightsquigarrow \textbf{g} \in \mathcal{C}^{1,1} \text{ (derivs. loc. Lip.)}$
- 2 Analysis: ivp $\mathbf{g} \in H^{5/2}(M), C^1(\Sigma)$, recent big improvements

The challenge

Physics and Analysis vs. want/need low regularity

Lorentzian geometry needs high regularity

Regularity matters

[Hartman&Wintner, 1951]

$$\mathbf{g}_{ij}(x,y) = egin{pmatrix} 1 & 0 \ 0 & 1-|x|^\lambda \end{pmatrix} \quad 1 < \lambda < 2, \,\, \mathbf{g} \in \mathcal{C}^{1,\lambda-1}$$

- minimising curves not unique, even locally
- geodesics that are non-minimising between any of its points

The Lorentzian character matters

Riemannian case (added regularity of geodesics)

• $\mathbf{g} \in \mathcal{C}^{0} \implies$ shortest (Lipschitz) curves exist [Hilbert, 1899] • $\mathbf{g} \in \mathcal{C}^{0,\alpha} \implies$ all shortest curves are $\mathcal{C}^{1,\beta}$ with $\beta = \frac{\alpha}{2-\alpha}$ (optimal) [Calabi, Hartman, 70], [Lytchak, Yaman, 06] in particular $\alpha = 1 = \beta$ and $\ddot{\gamma} = 0$ a.e.

Lorentzian case

- $\bullet\,$ no length structure \rightsquigarrow use geodesic equation.
- $\mathbf{g} \in \mathcal{C}^{0,1} \implies$ geodesics in the sense of Fillipov are $\mathcal{C}^{1,1}$ [S., 2014]
- Is there an analogue of the Lytchak-Yaman result?
- causality goes severely wrong,

light cones "bubble up" below $\mathcal{C}^{0,1}$ [CG,12]

Proofs

Outlook

Table of Contents

- **2** The $C^{1,1}$ -singularity theorems
 - **3** Key issues of the $\mathcal{C}^{1,1}$ -proofs

[Senovilla, 98]

Regularity for the singularity theorems of GR

Pattern singularity theorem

In a C^2 -spacetime the following are incompatible

- (i) Energy condition (iii) Initial or boundary condition
- (ii) Causality condition (iv) Causal geodesic completeness

Theorem allows (i)–(iv) and $g \in C^{1,1}$. But $C^{1,1}$ -spacetimes

- are physically reasonable models
- are not *really* singular (curvature bounded)
- ullet still allow unique solutions of geodesic eq. \rightsquigarrow formulation sensible

Moreover below $\mathcal{C}^{1,1}$ we have

 $\bullet\,$ unbded curv., non-unique geos, no convexity \sim 'really singular'

Hence $\mathcal{C}^{1,1}$ is the natural regularity class for singularity theorems!

The classical Theorems

Theorem

[Hawking, 1967]

A $\mathcal{C}^2\,$ -spacetime is future timelike geodesically incomplete, if

- (i) $\operatorname{Ric}(X, X) \ge 0$ for every timelike vector X
- (ii) There exists a compact space-like hypersurface S in M

(iii) The unit normals to S are everywhere converging

Theorem

[Penrose, 1965]

- A $\mathcal{C}^2\,$ -spacetime is future null geodesically incomplete, if
 - (i) $\operatorname{Ric}(X, X) \ge 0$ for every null vector X
- (ii) There exists a non-compact Cauchy hypersurface S in M
- (iii) There exists a trapped surface \mathcal{T} (cp. achronal spacelike 2-srf. w. past-pt. timelike mean curvature)

The $\mathcal{C}^{1,1}$ -Theorems

Theorem

[Kunzinger, S., Stojković, Vickers, 2015]

A $\mathcal{C}^{1,1}$ -spacetime is future timelike geodesically incomplete, if

(i) $\operatorname{Ric}(X, X) \ge 0$ for every smooth timelike local vector field X

(ii) There exists a compact space-like hypersurface S in M

(iii) The unit normals to S are everywhere converging

Theorem

[Kunzinger, S., Vickers, 2015]

- A $C^{1,1}$ -spacetime is future null geodesically incomplete, if
 - (i) $\operatorname{Ric}(X, X) \ge 0$ for every Lip-cont. local null vector field X
 - (ii) There exists a non-compact Cauchy hypersurface S in M
- (iii) There exists a trapped surface *T* (cp. achronal spacelike 2-srf. w. past-pt. timelike mean curvature)

Obstacles in the $C^{1,1}$ **-case**

- No appropriate version of calculus of variations available (second variation, maximizing curves, focal points, index form, ...)
- C²-causality theory rests on local equivalence with Minkowski space. This requires good properties of exponential map.
- $\rightsquigarrow\,$ big parts of causality theory have to be redone
 - Ricci tensors is only L^{∞}
- $\rightsquigarrow\,$ problems with energy conditions

strategy:

- Proof that the exponential map is a bi-Lipschitz homeo
- Re-build causality theory for C^{1,1}-metrics regularisation adapted to causal structure replacing calculus of var.
- use surrogate energy condition

 $\mathcal{C}^{1,1}\text{-singularity thms.}$

Outlook

Table of Contents

- **2** The $C^{1,1}$ -singularity theorems
- **3** Key issues of the $C^{1,1}$ -proofs

4 Outlook

The exponential map in low regularity

Optimal regularity

- $\mathbf{g} \in \mathcal{C}^{1,1} \Rightarrow exp_p$ local homeo [Whitehead, 1932]
- $\mathbf{g} \in \mathcal{C}^{1,1} \Rightarrow exp_p$ local bi-Lipschitz homeo
- [KSS,14]: regularisation & comparison methods [LeFloch&Chen,08]
- [Minguzzi,15]: Picard-Lindelöf approx. & Lip. inv. funct. thm.

Consequences in $\mathcal{C}^{1,1}$

- convexity is okay (remember [HW, 51]!)
- Gauss lemma holds
- \rightsquigarrow bulk of causality theory remains true

[CG,12, KSSV,14, Ming.,15]

Proofs

Chrusciel-Grant regularization of the metric

Regularisation adapted to the causal structure [CG,12], [KSSV, 14]

Sandwich null cones of **g** between null cones of two approximating families of smooth metrics so that

$$\check{\mathbf{g}}_{\varepsilon} \prec \mathbf{g} \prec \hat{\mathbf{g}}_{\varepsilon}.$$

- applies to continuous metrics
- local convolution plus small shift

Properties of the approximations for $\mathbf{g} \in \mathcal{C}^{1,1}$

(i)
$$\check{\mathbf{g}}_{\varepsilon},\, \hat{\mathbf{g}}_{\varepsilon}
ightarrow \mathbf{g}$$
 locally in C^1

(ii) $D^2\check{\mathbf{g}}_{\varepsilon}$, $D^2\check{\mathbf{g}}_{\varepsilon}$ locally uniformly bded. in ε , but $\operatorname{Ric}[\mathbf{g}_{\varepsilon}] \not\to \operatorname{Ric}[\mathbf{g}]$

Surrogate energy condition (Hawking case)

Lemma

[KSSV, 15]

Let (M, \mathbf{g}) be a $\mathcal{C}^{1,1}$ -spacetime satisfying the energy condition

 $\operatorname{Ric}[\mathbf{g}](X,X) \geq 0$ for all timelike local \mathcal{C}^{∞} -vector fields X.

Then for all $K \subset M \quad \forall C > 0 \quad \forall \delta > 0 \quad \forall \kappa < 0 \quad \forall \varepsilon \text{ small}$

 $\operatorname{\mathsf{Ric}}\,[\check{\mathbf{g}}_{\varepsilon}](X,X)>-\delta\quad\forall X\in\!TM|_{K}:\;\check{\mathbf{g}}_{\varepsilon}(X,X)\leq\kappa,\;\|X\|_{h}\leq C.$

Proof.

- $\check{g}_{\varepsilon} g * \rho_{\varepsilon} \rightarrow 0$ in $\mathcal{C}^2 \rightsquigarrow$ only consider $g_{\varepsilon} := g * \rho_{\varepsilon}$
 - $R_{jk} = R^i_{jki} = \partial_{x^i} \Gamma^i_{kj} \partial_{x^k} \Gamma^i_{ij} + \Gamma^i_{im} \Gamma^m_{kj} \Gamma^i_{km} \Gamma^m_{ij}$
 - Blue terms $|_{\varepsilon}$ converge uniformly
 - For red terms use variant of Friedrich's Lemma:

$$egin{aligned} &
ho_arepsilon \geq 0 \implies ig(\mathsf{Ric}[\mathbf{g}](X,X) ig) *
ho_arepsilon \geq 0 \ & ig(\mathsf{Ric}[\mathbf{g}](X,X) ig) *
ho_arepsilon - \mathsf{Ric}[\mathbf{g}_arepsilon](X,X) o 0 \ \mathsf{unif.} \end{aligned}$$

2^{1,1}-singularity thms

Outlook

The $C^{1,1}$ -proof (Hawking case)

• Limiting argument $\Rightarrow \exists$ maximising **g**-geodesic γ for all $p \in D^+(S)$ and $\gamma = \lim \gamma_{\mathbf{g}_{\varepsilon}}$ in C^1

• Surrogate energy condition for $\check{\mathbf{g}}_{\varepsilon}$ and Raychaudhury equation $\Rightarrow D^+(S)$ relatively compact otherwise $\exists \check{\mathbf{g}}_{\varepsilon}$ -focal pt. too early $\Rightarrow H^+(S) \subseteq \overline{D^+(S)}$ compact

• Derive a contradiction as in the \mathcal{C}^∞ -case using $\mathcal{C}^{1,1}$ -causality

Outlo

Surrogate energy condition (Penrose case)

Lemma

[KSV, 15]

(Proofs)

Let (M, \mathbf{g}) be a $\mathcal{C}^{1,1}$ -spacetime satisfying the energy condition Ric $[\mathbf{g}](X, X) \ge 0$ for every local Lip. null vector field X. Then for all $K \subset \subset M \quad \forall C > 0 \quad \forall \delta > 0 \quad \exists \eta > 0$ s.t. we have Ric $[\hat{\mathbf{g}}_{\varepsilon}](X, X) > -\delta$

for all $p \in K$ and all $X \in T_pM$ with $||X||_h \leq C$ which are close to a **g**-null vector in the sense that

 $\exists Y_0 \in TM|_{\mathcal{K}}$ g-null, $\|Y_0\|_h \leq C$, $d_h(X, Y_0) \leq \eta$.

Outlook

The $C^{1,1}$ -proof (Penrose case)

- Choose $\hat{\boldsymbol{g}}_{\varepsilon}$ globally hyperbolic (stability [NM,11], [S,15])
- Surrogate energy condition is strong enough to guarantee that

 $E^+_arepsilon(\mathcal{T})=J^+_arepsilon(\mathcal{T})\setminus I^+_arepsilon(\mathcal{T})$ is relatively compact

in case of null geodesic completeness

•
$$\hat{\mathbf{g}}_{arepsilon}$$
 globally hyperbolic \Rightarrow

 $E_{\varepsilon}^{+}(\mathcal{T}) = \partial J_{\varepsilon}^{+}(\mathcal{T})$ is a $\hat{\mathbf{g}}_{\varepsilon}$ -achronal, compact \mathcal{C}^{0} -hypersrf.

- $\mathbf{g} < \hat{\mathbf{g}}_{\varepsilon} \Rightarrow E_{\varepsilon}^+(\mathcal{T})$ is **g**-achronal
- derive usual (topological) contradiction

 $\mathcal{C}^{1,1}\text{-singularity thms.}$

Proofs

Table of Contents

- Remarks on low regularity
- **2** The $C^{1,1}$ -singularity theorems
- **3** Key issues of the $\mathcal{C}^{1,1}$ -proofs

Outlook

Current research

- Comparison approach to Penrose singularity theorem Evolve trapped surface along null geodesics, quantify area, should also give new proof in $C^{1,1}$.
- Mid term goal: Hawking & Penrose singularity theorem in C^{1,1}: Will require completely new methods.

Some related Literature

- [CG,12] P.T. Chrusćiel, J.D.E. Grant, On Lorentzian causality with continuous metrics. CQG 29 (2012)
- [G,16] M. Graf, Volume comparison for C^{1,1} metrics, Ann. Global Anal. Geom. 49, (2016)
- [GT,12] J.D.E. Grant, J.-H. Treude, Volume comparison for hypersurfaces in Lorentzian manifolds and singularity theorems. Ann. Global Anal. Geom. 43 (2013)
- [KSS,14] M. Kunzinger, R. Steinbauer, M. Stojković, The exponential map of a C^{1,1}-metric. Diff. Geo. Appl.34(2014)
- [KSSV,14] M. Kunzinger, R. Steinbauer, M. Stojković, J.A. Vickers, A regularisation approach to causality theory for C^{1,1}-Lorentzian metrics. GRG 46 (2014)
- [KSSV,15] M. Kunzinger, R. Steinbauer, M. Stojković, J.A. Vickers, Hawking's singularity theorem for C^{1,1}-metrics. CQG 32 (2015)
- [KSV,15] M. Kunzinger, R. Steinbauer, J.A. Vickers, The Penrose singularity theorem in C^{1,1}. CQG, 32 (2015)
- [LeFC,08] P. LeFloch, B. Chen, Injectivity Radius of Lorentzian Manifolds. CMP 278, (2008)
- [M,15] E. Minguzzi, Convex neighborhoods for Lipschitz connections and sprays. Monatsh. Math., 177 (2015)
- [Sä,16] C. Sämann, Global hyperbolicity for spacetimes with continuous metrics, Ann. Henri Poincare, 17 (2016)
- [Se,98] J. M. M. Senovilla, Singularity theorems and their consequences GRG 30, no. 5, (1998)
- [S,14] R. Steinbauer, Every Lipschitz metric has C¹-geodesics. CQG 31, 057001 (2014)

Thank you for your attention!

Lemma

[Hawking and Penrose, 1967]

In a causally complete \mathcal{C}^2 -spacetime, the following cannot all hold:

- Every inextendible causal geodesic has a pair of conjugate points
- 2 *M* contains no closed timelike curves and
- \bigcirc there is a future or past trapped achronal set S

Theorem

A C^2 -spacetime M is causally incomplete if Einstein's eqs. hold and

- M contains no closed timelike curves
- M satisfies an energy condition
- Genericity: nontrivial curvature at some pt. of any causal geodesic
- M contains either
 - a trapped surface
 - some p s.t. convergence of all null geodesics changes sign in the past
 - a compact spacelike hypersurface

 Back

Lemma

[Hawking and Penrose, 1967]

In a causally complete \mathcal{C}^2 -spacetime, the following cannot all hold:

- Every inextendible causal geodesic has a pair of conjugate points
- 2 M contains no closed timelike curves and
- \bigcirc there is a future or past trapped achronal set S

Theorem

A C^2 -spacetime M is causally incomplete if Einstein's eqs. hold and

- M contains no closed timelike curves
- \bigcirc *M* satisfies an energy condition
- Genericity: nontrivial curvature at some pt. of any causal geodesic
- M contains either
 - a trapped surface
 - some p s.t. convergence of all null geodesics changes sign in the past
 - a compact spacelike hypersurface

 Back

