News from low regularity GR

Roland Steinbauer

Faculty of Mathematics, University of Vienna

66. Jahrestagung der Österreichischen Physikalischen Gesellschaft September 2016, Wien

Long-term project on

Lorentzian geometry and general relativity

with metrics of low regularity

jointly with

- 'theoretical branch' (Vienna & U.K.): Melanie Graf, James Grant, Günther Hörmann, Mike Kunzinger, Clemens Sämann, James Vickers
- 'exact solutions branch' (Vienna & Prague): Jiří Podolský, Clemens Sämann, Robert Švarc

(Remarks on low regularity)

What can be done

Table of Contents

Low Regularity GR

What is is?

GR and Lorentzian geometry on spacetime manifolds (M, \mathbf{g}) , where M is smoot **but** g **is non-smooth** (below C^2)

Why is it needed?

- **(**) Physics: Realistic matter models $\rightsquigarrow \mathbf{g} \in \mathcal{C}^{1,1}$ (derivs. loc. Lip.)
- **2** Analysis: ivp $\mathbf{g} \in H^{5/2}(M), C^1(\Sigma)$, recent big improvements

VS.

Where is the problem?

Physics and Analysis want/need low regularity Lorentzian geometry needs high regularity

But isn't it just a game for silly mathematicians?

NO! Low regularity really changes the geometry!

Remarks on low regularity

(What can be done)

Table of Contents

What can be done

Completeness for impulsive gravit. waves

- exact models of violent but short pulses of gravitational radiation
- metric distributional or Lipschitz continuous
- various models, eg. gyratons [Frolov et al. 1995–]

 $ds^{2} = h_{ij}dx^{i}dx^{j} - 2dudr + H(x)\delta_{\alpha,\beta}(u)du^{2} + 2a_{i}(x)\vartheta_{L}(u)dudx^{i}$

Completeness for impulsive gravit. waves

- exact models of violent but short pulses of gravitational radiation
- metric distributional or Lipschitz continuous
- various models, eg. gyratons [Frolov et al. 1995–]

$$ds^{2} = h_{ij}dx^{i}dx^{j} - 2dudr + H(x)\delta_{\alpha,\beta}(u)du^{2} + 2a_{i}(x)\vartheta_{L}(u)dudx^{i}$$

How is ist done?

- distributional: regularisation techniques & fixed point arguments
- Lipschitz: Filippov's solution concept & use of specific geometry

Completeness for impulsive gravit. waves

- exact models of violent but short pulses of gravitational radiation
- metric distributional or Lipschitz continuous
- various models, eg. gyratons [Frolov et al. 1995–]

$$ds^{2} = h_{ij}dx^{i}dx^{j} - 2dudr + H(x)\delta_{\alpha,\beta}(u)du^{2} + 2a_{i}(x)\vartheta_{L}(u)dudx^{i}$$

Message

Analytically highly singular spacetimes are shown to be nevertheless physically non-singular hence good models.

Singularity Theorems in $\mathcal{C}^{1,1}$

Singularity thms: under suitable realistic conditions spacetimes develop singularities: **black holes** (Penrose), **big bang** (Hawking)

Theorem

[Penrose, 1965]

- A $\mathcal{C}^2\,$ -spacetime is future null geodesically incomplete, if
 - (i) $\operatorname{Ric}(X, X) \ge 0$ for every null vector X
 - (ii) There exists a non-compact Cauchy hypersurface S in M
- (iii) There exists a trapped surface ${\cal T}$

Singularity Theorems in $\mathcal{C}^{1,1}$

Singularity thms: under suitable realistic conditions spacetimes develop singularities: **black holes** (Penrose), **big bang** (Hawking)

Theorem

[Kunzinger, S., Vickers, 2015]

A $\mathcal{C}^{1,1}$ -spacetime is future null geodesically incomplete, if

- (i) $\operatorname{Ric}(X, X) \ge 0$ for every Lip-cont. local null vector field X
- (ii) There exists a non-compact Cauchy hypersurface S in M
- (iii) There exists a trapped surface ${\cal T}$

Singularity Theorems in $C^{1,1}$

Singularity thms: under suitable realistic conditions spacetimes develop singularities: **black holes** (Penrose), **big bang** (Hawking)

Theorem

A spacetime is future null geodesically incomplete, if

- (i) $\operatorname{Ric}(X, X) \ge 0$ for every
- (ii) There exists a non-compact Cauchy hypersurface S in M

(iii) There exists a trapped surface ${\cal T}$

Message: $C^{1,1}$ is the natural regularity class

- Failure of C^2 physically not **really** singular
- below $C^{1,1}$ unbounded curvature \sim really singular

News from low regularity GR

Singularity Theorems in $C^{1,1}$

Singularity thms: under suitable realistic conditions spacetimes develop singularities: **black holes** (Penrose), **big bang** (Hawking)

Theorem

A spacetime is future null geodesically incomplete, if

- (i) $\operatorname{Ric}(X, X) \ge 0$ for every
- (ii) There exists a non-compact Cauchy hypersurface S in M
- (iii) There exists a trapped surface ${\cal T}$

How is it done?

- exponential map [KSS, 2014] & causality [KSSV, 2014]
- Regularisation adapted to causal structure [CG, 2012]
- replacement energy conditions for regularised metric [KSSV, 2015]

Some related Literature

[CG,12] P.T. Chrusciel, J.D.E. Grant, On Lorentzian causality with continuous metrics. CQG 29 (2012)

[KSS,14] M. Kunzinger, R. Steinbauer, M. Stojković, The exponential map of a C^{1,1}-metric. Diff. Geo. Appl.34(2014)

- [KSSV,14] M. Kunzinger, R. Steinbauer, M. Stojković, J.A. Vickers, A regularisation approach to causality theory for C^{1,1}-Lorentzian metrics. GRG 46 (2014)
- [KSSV,15] M. Kunzinger, R. Steinbauer, M. Stojković, J.A. Vickers, Hawking's singularity theorem for C^{1,1}-metrics. CQG 32 (2015)
- [KSV,15] M. Kunzinger, R. Steinbauer, J.A. Vickers, The Penrose singularity theorem in C^{1,1}. CQG 32 (2015)
- [LSŠ,14] A. Lecke, R. Steinbauer, R. Švarc, The regularity of geodesics in impulsive pp-waves. GRG 46 (2014)
- [PSS,14] J. Podolský, R. Steinbauer, R. Švarc, Gyratonic pp-waves and their impulsive limit. PRD 90 (2014)
- [PSSŠ,15] J. Podolský, C. Sämann, R. Steinbauer, R. Švarc, The global existence, uniqueness and C¹-regularity of geodesics in nonexpanding impulsive gravitational waves. CQG 32 (2015)
- [PSSŠ,16] J. Podolský, C. Sämann, R. Steinbauer, R. Švarc, The global uniqueness and C¹-regularity of geodesics in expanding impulsive gravitational waves. arXiv:1602.05020, to appear in CQG
- [SS,12] C. Sämann, R. Steinbauer, On the completeness of impulsive gravitational wave spacetimes. CQG 29 (2012)

[SS,15] C. Sämann, R. Steinbauer, Geodesic completeness of generalized space-times. in Pseudo-differential operators and generalized functions. Pilipovic, S., Toft, J. (eds) Birkhäuser/Springer, 2015

- [SSLP,16] C. Sämann, R. Steinbauer, A. Lecke, J. Podolský, Geodesics in nonexpanding impulsive gravitational waves with Λ, part I, CQG 33 (2016)
- [SSŠ,16] C. Sämann, R. Steinbauer, R. Švarc, Completeness of general pp-wave spacetimes and their impulsive limit. arXiv:1607.01934, to appear in CQG
- [S,14] R. Steinbauer, Every Lipschitz metric has C¹-geodesics. CQG 31, 057001 (2014)

Vielen Dank fürs Zuhören!