The Singularity Theorems of General Relativity in Low Regularity

Roland Steinbauer

Faculty of Mathematics, University of Vienna

Mathematisches Kolloquium, Juni 2016

The Singularity Theorems of General Relativity in Low Regularity

1 / 29

Long-term project on

Lorentzian geometry and general relativity

with metrics of low regularity

Contents

- Intro: The basic setup of general relativity
- Why low regularity: Physics & analysis vs. geometry
- \bigcirc $\mathcal{C}^{0,1}$ -metrics and below:

completeness of impulsive gravitational waves

(4) $\mathcal{C}^{1,1}$ -metrics: causality theory and

the Penrose and Hawking singularity theorems

 $\mathcal{C}^{1,1}$ -singularity thms.

Table of Contents

1 Intro: The basic setup of general relativity

- 2 The quest for low regularity: Physics & analysis vs. geometry
- **3** $C^{0,1}$ and below: Completeness of impulsive gravitational waves

The basic physical setup of General Relativity

 Albert Einstein's theory of space, time and gravitation created 100 years ago

Low regularity

 current description of gravitation & universe at large

 $\mathcal{C}^{0,1}$ and below

The basic physical setup of General Relativity

 $C^{0,1}$ and below

- Albert Einstein's theory of space, time and gravitation created 100 years ago
- current description of gravitation & universe at large

• geometric theory

due to Galileo's principle of equivalence: all bodies fall the same in a gravitational field → gravitational field as property of the surrounding space

 Gravitational field influences how we measure lengths and angles
 → curvature of space and time

The basic mathematical setup of GR, 1

Lorentzian geometry (basic geometric setup)

- smooth 4-dimensional spacetime manifold M
- smooth spacetime metric g: symmetric, non-degenerate scalar product in any tangent space

The basic mathematical setup of GR, 1

Lorentzian geometry (basic geometric setup)

- smooth 4-dimensional spacetime manifold M
- smooth **spacetime metric g**: symmetric, non-degenerate scalar product in any tangent space

- lightcone in any T_pM: timelike, null (causal), spacelike vectors
- Particles travel on timelike curves *c* light travels on null curves
- chronological/causal future I⁺(p) / J⁺(p)
 → causality theory
- Free-falling particles/photons move on geodesics: $\ddot{\gamma}=0$

 $\mathcal{C}^{1,1}$ -singularity thms.

The basic mathematical setup of GR, 2

$$\mathbf{R}_{ij}[\mathbf{g}] - \frac{1}{2}\mathbf{R}[\mathbf{g}]\,\mathbf{g}_{ij} + \Lambda\,\mathbf{g}_{ij} = 8\pi\mathbf{T}_{ij}$$

spacetime curvature

matter

The basic mathematical setup of GR, 2

• Ricci-tensor R_{ij}, scalar curvature R built from Riemann tensor

$$R_{XY}Y = \nabla_{[X,Y]}Z - [\nabla_X, \nabla_Y]Z$$

• locally: $R^{m}_{ikp} = \partial_{k}\Gamma^{m}_{ip} - \partial_{p}\Gamma^{m}_{ik} + \Gamma^{a}_{ip}\Gamma^{m}_{ak} - \Gamma^{a}_{ik}\Gamma^{m}_{ap}$ and Christoffel symbols $\Gamma^{i}_{jk} = \mathbf{g}^{il}\Gamma_{ljk} = \frac{1}{2}\mathbf{g}^{il}(\partial_{k}\mathbf{g}_{lj} + \partial_{j}\mathbf{g}_{kl} - \partial_{l}\mathbf{g}_{jk})$

$$\implies \mathbf{R}_{ij}, \mathbf{R} ~\sim~ \partial^2 \mathbf{g} + (\partial \mathbf{g})^2$$

ullet coupled system of 10 quasi-linear PDEs of 2nd order for ullet

 $\mathcal{C}^{1,1}$ -singularity thms.

7 / 29

Table of Contents

2 The quest for low regularity: Physics & analysis vs. geometry

3 $\mathcal{C}^{0,1}$ and below: Completeness of impulsive gravitational waves

8 / 29

Why Low Regularity?

(1) Realistic matter—Physics

- want discontinuous matter configurations $\rightsquigarrow \bm{T} \not\in \mathcal{C}^0 \implies \bm{g} \not\in \mathcal{C}^2$
- finite jumps in $\mathbf{T} \rightsquigarrow \mathbf{g} \in \mathcal{C}^{1,1}$ (derivatives locally Lipschitz)
- more extreme situations (impulsive waves): g piecew. C^3 , globally C^0

Why Low Regularity?

(1) Realistic matter—Physics

- want discontinuous matter configurations $\rightsquigarrow T
 ot\in C^0 \implies g
 ot\in C^2$
- finite jumps in $\mathbf{T} \rightsquigarrow \mathbf{g} \in \mathcal{C}^{1,1}$ (derivatives locally Lipschitz)
- more extreme situations (impulsive waves): **g** piecew. C^3 , globally C^0

(2) Initial value problem—Analysis

Local existence and uniqueness Thms. for Einstein eqs. in terms of Sobolev spaces

- classical [CB,HKM]: $\mathbf{g} \in H^{5/2} \implies \mathcal{C}^1(\Sigma)$
- recent big improvements [K,R,M,S]: $\textbf{g} \in \mathcal{C}^0(\Sigma)$

9 / 29

Regularity matters

Riemannian counterexample [Hartman&Wintner, 51]

$$\mathbf{g}_{ij}(x,y) = egin{pmatrix} 1 & 0 \ 0 & 1-|x|^\lambda \end{pmatrix} \qquad ext{on } (-1,1) imes \mathbb{R} \subseteq \mathbb{R}^2$$

- $\lambda \in (1,2) \implies \mathbf{g} \in \mathcal{C}^{1,\lambda-1}$ Hölder, slightly below $\mathcal{C}^{1,1}$
- (nevertheless) geodesic equation uniquely solvable

Regularity matters

Riemannian counterexample [Hartman&Wintner, 51]

$$\mathbf{g}_{ij}(x,y) = egin{pmatrix} 1 & 0 \ 0 & 1-|x|^\lambda \end{pmatrix} \qquad ext{on } (-1,1) imes \mathbb{R} \subseteq \mathbb{R}^2$$

- $\bullet \ \lambda \in (1,2) \implies {\bf g} \in {\mathcal C}^{1,\lambda-1} \quad {\text{H\"older, slightly below }} {\mathcal C}^{1,1}$
- (nevertheless) geodesic equation uniquely solvable

BUT

- shortest curves from (0,0) to (0,y) are two symmetric arcs
 → minimising curves not unique, even locally
- the *y*-axis is a geodesic which is

non-minimising between any of its points

The Lorentzian character matters

Riemannian case (added regularity of geodesics)

g ∈ C⁰ ⇒ shortest (Lipschitz) curves exist [Hilbert, 1899]
g ∈ C^{0,α} ⇒ all shortest curves are C^{1,β} with β = α/(2-α) (optimal) [Calabi, Hartman, 70], [Lytchak, Yaman, 06] in particular α = 1 = β and ÿ = 0 a.e.
g ∈ C¹ ⇒ all shortes curves satisfy ÿ = 0 and γ ∈ C²

The Lorentzian character matters

Riemannian case (added regularity of geodesics)

- $\mathbf{g} \in \mathcal{C}^{0} \implies$ shortest (Lipschitz) curves exist [Hilbert, 1899] • $\mathbf{g} \in \mathcal{C}^{0,\alpha} \implies$ all shortest curves are $\mathcal{C}^{1,\beta}$ with $\beta = \frac{\alpha}{2-\alpha}$ (optimal) [Calabi, Hartman, 70], [Lytchak, Yaman, 06] in particular $\alpha = 1 = \beta$ and $\ddot{\gamma} = 0$ a.e.
- $\bullet \ {\bf g} \in {\mathcal C}^1 \qquad \Longrightarrow \ \text{all shortes curves satisfy} \ \ddot{\gamma} = 0 \ \text{and} \ \gamma \in {\mathcal C}^2$

Lorentzian case

- no length structure \rightsquigarrow use geodesic equation.
- $\mathbf{g} \in \mathcal{C}^{0,1} \implies$ geodesics in the sense of Fillipov are $\mathcal{C}^{1,1}$ [S., 2014]
- counterexample [Kunzinger, Sämann, very recent!]
 - $\mathbf{g}\in\mathcal{C}^{0,\frac{1}{2}}$ where $~\bullet$ no longest curve is $\mathcal{C}^{1},$ and
 - \exists longest curve which is not even piecewise C^1

GR and low regularity

The challenge

Physics and Analysis vs.

want/need low regularity

Lorentzian geometry needs high regularity to maintain standard results

GR and low regularity

The challenge

Physics and Analysis vs. want/need low regularity

Lorentzian geometry needs high regularity to maintain standard results

Lorentzian geometry and regularity

- \bullet classically $g\in \mathcal{C}^\infty,$ for all practical purposes $g\in \mathcal{C}^2$
- things go wrong below \mathcal{C}^2
 - convexity goes wrong for $\mathbf{g} \in \mathcal{C}^{1,lpha}$ (lpha < 1) [HW, 51]
 - $\bullet\,$ causality goes wrong, light cones "bubble up" for ${\bf g}\in \mathcal{C}^0$ [CG, 12]

 $\rightsquigarrow~{\bf g}\in {\cal C}^{1,1}$ believed to be ok, below that watch your step!

GR and low regularity

The challenge

Physics and Analysis vs. want/need low regularity

Lorentzian geometry needs high regularity to maintain standard results

Lorentzian geometry and regularity

- \bullet classically $g\in \mathcal{C}^\infty,$ for all practical purposes $g\in \mathcal{C}^2$
- things go wrong below \mathcal{C}^2
 - convexity goes wrong for $\mathbf{g} \in \mathcal{C}^{1,lpha}$ (lpha < 1) [HW, 51]
 - $\bullet\,$ causality goes wrong, light cones "bubble up" for ${\bf g}\in \mathcal{C}^0$ [CG, 12]

 $\rightsquigarrow~{\bf g}\in {\cal C}^{1,1}$ believed to be ok, below that watch your step!

 $\mathcal{C}^{1,1}$ -singularity thms.

Table of Contents

Intro: The basic setup of general relativity

2 The quest for low regularity: Physics & analysis vs. geometry

3 $C^{0,1}$ and below: Completeness of impulsive gravitational waves

C^{1,1}: Causality theory and the singularity theorems

Impulsive gravitational waves

- model short but strong pulses of gravitational radiation propagating in Minkowski or (anti-)de Sitter universes
- relevant models of ultrarelativistic particle

Impulsive gravitational waves

• model short but strong pulses of gravitational radiation propagating in Minkowski or (anti-)de Sitter universes

• relevant models of ultrarelativistic particle

Impulsive gravitational waves

- model short but strong pulses of gravitational radiation propagating in Minkowski or (anti-)de Sitter universes
- relevant models of ultrarelativistic particle

Impulsive gravitational waves

- model short but strong pulses of gravitational radiation propagating in Minkowski or (anti-)de Sitter universes
- relevant models of ultrarelativistic particle

propagating wave

Impulsive gravitational waves

- model short but strong pulses of gravitational radiation propagating in Minkowski or (anti-)de Sitter universes
- relevant models of ultrarelativistic particle

Impulsive gravitational waves

- model short but strong pulses of gravitational radiation propagating in Minkowski or (anti-)de Sitter universes
- relevant models of ultrarelativistic particle
- curvature concentrated on the null hypersurface $\{U = 0\}$
- \bullet continuous vs. distributional 'form'; here we focus on ${\bf g} \in {\cal C}^{0,1}$

Impulsive gravitational waves

- model short but strong pulses of gravitational radiation propagating in Minkowski or (anti-)de Sitter universes
- relevant models of ultrarelativistic particle
- curvature concentrated on the null hypersurface $\{U = 0\}$
- \bullet continuous vs. distributional 'form'; here we focus on $\mathbf{g} \in \mathcal{C}^{0,1}$

Metric e.g. in the non-expanding case (coords (U, V, Z, \overline{Z}))

$$ds^{2} = \frac{2 |dZ + U_{+}(H_{,Z\bar{Z}}dZ + H_{,\bar{Z}\bar{Z}}d\bar{Z})|^{2} - 2 dUdV}{[1 + \frac{1}{6}\Lambda(Z\bar{Z} - UV - U_{+}(H - ZH_{,Z} - \bar{Z}H_{,\bar{Z}}))]^{2}}$$

 $\ensuremath{\mathcal{C}}^1\textsc{-matching}$ of the geodesics in impulsive grav. waves

- Physicists match geodesics of background across wave-surface.
- $\bullet\,$ Only possible if geodesics are \mathcal{C}^1 across the wave-surface

— are unique

 $\ensuremath{\mathcal{C}}^1\textsc{-matching}$ of the geodesics in impulsive grav. waves

- Physicists match geodesics of background across wave-surface.
- Only possible if geodesics are C^1 across the wave-surface — are unique

Quest (Jiří Podolský): Prove C^1 -regularity and uniqueness!

 $\ensuremath{\mathcal{C}}^1\textsc{-matching}$ of the geodesics in impulsive grav. waves

- Physicists match geodesics of background across wave-surface.
- Only possible if geodesics are C^1 across the wave-surface — are unique

Quest (Jiří Podolský): **Prove** C^1 -regularity and uniqueness!

Regularity [S.,14]

The geodesic eq. in any $C^{0,1}$ -spacetime has solutions in the sense of Filippov with absolutely continuous velocities.

 $\ensuremath{\mathcal{C}}^1\textsc{-matching}$ of the geodesics in impulsive grav. waves

- Physicists match geodesics of background across wave-surface.
- Only possible if geodesics are C^1 across the wave-surface — are unique

Quest (Jiří Podolský): **Prove** C^1 -regularity and uniqueness!

Regularity [S.,14]

The geodesic eq. in any $C^{0,1}$ -spacetime has solutions in the sense of Filippov with absolutely continuous velocities.

Uniquenes criteria for Filippov solutions

plus explicit use of the respective geometry of the solutions.

Completeness results

Prague Relativity Group

Jiří Podolský

Robert Švarc

Clemens

Sämann

Alexander Lecke

- $\mathcal{C}^{0,1}$, $\Lambda = 0$, non-exp.
- $\mathcal{C}^{0,1}$, $\Lambda \neq 0$, non-exp.
- \mathcal{D}' , $\Lambda \neq 0$, non-exp.
- D', general non-flat wave-surface
- \mathcal{D}' , gyratons

```
[Lecke, S., Švarc, 14]
                                  [Podolský, Sämann, S., Švarc, 15]
                                  [Sämann, S., Lecke, Podolský, 16]
• C^{0,1}, \Lambda \neq 0, expanding [Podolský, Sämann, S., Švarc, 16]
                                                    [Sämann, S., 12, 15]
                                                [Podolský, S., Švarc, 14]
                                       [Podolský, Sämann, S., Švarc, 16]
```


Table of Contents

- Intro: The basic setup of general relativity
- 2 The quest for low regularity: Physics & analysis vs. geometry
- **3** $C^{0,1}$ and below: Completeness of impulsive gravitational waves
- **4** $C^{1,1}$: Causality theory and the singularity theorems

Singularities in GR

- singularities occur in exact solutions; high degree of symmetries
- singularities as obstruction to extend causal geodesics [Penrose 65]

Singularities in GR

- singularities occur in exact solutions; high degree of symmetries
- singularities as obstruction to extend causal geodesics [Penrose 65]

Theorem (Pattern singularity theorem [Senovilla, 97])

In a $\mathcal{C}^2\text{-spacetime the following are incompatible}$

- (i) Energy condition (iii) Initial or boundary condition
- (ii) Causality condition
- (iv) Causal geodesic completeness

Singularities in GR

- singularities occur in exact solutions; high degree of symmetries
- singularities as obstruction to extend causal geodesics [Penrose 65]

Theorem (Pattern singularity theorem [Senovilla, 97])In a C2-spacetime the following are incompatible(i) Energy condition(iii) Causality condition(iv) Causal geodesic completeness

- $\bullet~(\text{iii})$ initial condition \rightsquigarrow causal geodesics start focussing
- (i) energy condition \rightsquigarrow focussing goes on \rightsquigarrow focal point
- (ii) causality condition \rightsquigarrow no focal points
- way out: one causal geodesic has to be incomplete, i.e., \neg (iv)

18 / 29

The classical theorems

Theorem ([Penrose, 1965] Gravitational collapse)

A \mathcal{C}^2 -spacetime is future null geodesically incomplete, if

- (i) $Ric(X, X) \ge 0$ for every null vector X
- (ii) There exists a non-compact Cauchy hypersurface S in M
- (iii) There exists a trapped surface (cp. achronal spacelike 2-srf. w. past-pt. timelike mean curvature)

The classical theorems

Theorem ([Penrose, 1965] Gravitational collapse)

A \mathcal{C}^2 -spacetime is future null geodesically incomplete, if

- (i) $Ric(X, X) \ge 0$ for every null vector X
- (ii) There exists a non-compact Cauchy hypersurface S in M
- (iii) There exists a trapped surface (cp. achronal spacelike 2-srf. w. past-pt. timelike mean curvature)

Theorem ([Hawking, 1967] Big Bang)

A C^2 -spacetime is future timelike geodesically incomplete, if

- (i) $Ric(X, X) \ge 0$ for every timelike vector X
- (ii) There exists a compact space-like hypersurface S in M

(iii) The unit normals to S are everywhere converging, $\theta := -tr \mathbf{K} < 0$.

Hawking's Thm: proof strategy (C^2 -case)

• Analysis: θ evolves along the normal geodesic congruence of S by Raychaudhury's equation

$$\theta' + \frac{\theta^2}{3} + \operatorname{Ric}(\dot{\gamma}, \dot{\gamma}) + \operatorname{tr}(\sigma^2) = 0$$

- (i) $\implies \theta' + (1/3)\theta^2 \le 0 \implies (\theta^{-1})' \ge 1/3$
- (iii) $\implies \theta(0) < 0 \implies \theta \to \infty$ in finite time \implies focal point
- Causality theory: ∃ longest curves in the Cauchy development
 ⇒ no focal points in the Cauchy development
- completeness $\implies \overline{D^+(S)} \subseteq exp([0, T] \cdot \mathbf{n}_S)...$ compact \implies horizon $H^+(M)$ compact, \rightsquigarrow 2 possibilities
 - (1) $H^+(M) = \emptyset$. Then $I^+(S) \subseteq D^+(S) \implies$ timlike incomplete $\frac{4}{2}$
 - (2) H⁺(M) ≠ Ø compact ⇒ p ↦ d(S, p) has min on H⁺(S) But from every point in H⁺(M) there starts a past null generator γ

(inextendible past directed null geodesic contained in $H^+(S)$) and $p \mapsto d(S, p)$ strictly decreasing along $\gamma \implies$ unbounded $\frac{1}{2}$

Why go to $C^{1,1}$?

Recall:

Theorem (Pattern singularity theorem [Senovilla, 97])

In a C^2 -spacetime the following are incompatible

(i) Energy condition

- (iii) Initial or boundary condition
- (ii) Causality condition

(iv) Causal geodesic completeness

Why go to $C^{1,1}$?

Recall:

Theorem (Pattern singularity theorem [Senovilla, 97])

- In a C^2 -spacetime the following are incompatible
 - (i) Energy condition (iii) Initial or boundary condition
 - (ii) Causality condition

(iv) Causal geodesic completeness

Theorem allows (i)–(iv) and $g \in C^{1,1}$. But $C^{1,1}$ -spacetimes

- are physically reasonable models
- are not *really* singular (curvature bounded)
- $\bullet\,$ still allow unique solutions of geodesic eq. \rightsquigarrow formulation sensible

Why go to $\mathcal{C}^{1,1}$?

Recall:

Theorem (Pattern singularity theorem [Senovilla, 97])

- In a C^2 -spacetime the following are incompatible
 - (i) Energy condition (iii) Initial or boundary condition

(ii) Causality condition (iv) Causal geodesic completeness

Theorem allows (i)–(iv) and $g \in C^{1,1}$. But $C^{1,1}$ -spacetimes

- are physically reasonable models
- are not really singular (curvature bounded)
- still allow unique solutions of geodesic eq. ~> formulation sensible

Moreover below $C^{1,1}$ we have

• unbounded curvature, non-unique geodesics \sim 'really singular'

Why go to $C^{1,1}$?

Recall:

Theorem (Pattern singularity theorem [Senovilla, 97])

- In a C^2 -spacetime the following are incompatible
 - (i) Energy condition (iii) Initial or boundary condition
- (ii) Causality condition

(iv) Causal geodesic completeness

Theorem allows (i)–(iv) and $g \in C^{1,1}$. But $C^{1,1}$ -spacetimes

- are physically reasonable models
- are not *really* singular (curvature bounded)
- ullet still allow unique solutions of geodesic eq. \rightsquigarrow formulation sensible

Moreover below $\mathcal{C}^{1,1}$ we have

 $\bullet\,$ unbounded curvature, non-unique geodesics $\rightsquigarrow\,$ 'really singular'

Hence $\mathcal{C}^{1,1}$ is the natural regularity class for singularity theorems!

Obstacles in the $C^{1,1}$ **-case**

- No appropriate version of calculus of variations available (second variation, maximizing curves, focal points, index form, ...)
- C²-causality theory rests on local equivalence with Minkowski space. This requires good properties of exponential map.
- \rightsquigarrow big parts of causality theory have to be redone
 - Ricci tensors is only L^{∞}
- \rightsquigarrow problems with energy conditions

Obstacles in the $C^{1,1}$ **-case**

- No appropriate version of calculus of variations available (second variation, maximizing curves, focal points, index form, ...)
- C²-causality theory rests on local equivalence with Minkowski space. This requires good properties of exponential map.
- \rightsquigarrow big parts of causality theory have to be redone
 - Ricci tensors is only L^{∞}
- \rightsquigarrow problems with energy conditions

strategy:

- Employ regularisation adapted to causal structure
- Avoid calculus of variations
- \bullet Re-build causality theory for $\mathcal{C}^{1,1}\text{-metrics}$

Chrusciel-Grant regularization of the metric

Regularisations of the metric adapted to the causal structure

 $\mathbf{g} \prec \mathbf{h} :\Leftrightarrow$ $\mathbf{g}(X,X) \leq 0 \Rightarrow \mathbf{h}(X,X) < 0$

The exponential map in low regularity

• exp_p : $T_pM \ni v \mapsto \gamma_v(1) \in M$, where γ_v is the (unique) geodesic starting at p in direction of v

•
$$\mathbf{g} \in \mathcal{C}^2 \; \Rightarrow exp_p$$
 local diffeo

• $\mathbf{g} \in \mathcal{C}^{1,1} \Rightarrow exp_p$ loc. homeo [W,32]

Optimal regularity

$$\mathbf{g} \in \mathcal{C}^{1,1} \Rightarrow \textit{exp}_p$$
 bi-Lipschitz homeo

- [KSS,14]: regularisation & comparison geometry
- [Minguzzi,15]: refined ODE methods
- \rightsquigarrow bulk of causality theory remains true in $\mathcal{C}^{1,1}$ [CG,12, KSSV,14, Ming.,15]

Surrogate energy condition

Lemma (Regularising Ricci-curvature [KSSV, 15]) Let (M, \mathbf{g}) be a $C^{1,1}$ -spacetime satisfying the energy condition $Ric[\mathbf{g}](X, X) \ge 0$ for every timelike Lipschitz vector field X. Then for all $K \subset C M \quad \forall C > 0 \quad \forall \delta > 0 \quad \forall \kappa < 0 \quad \forall \varepsilon$ small $Ric[\check{\mathbf{g}}_{\varepsilon}](X, X) > -\delta \quad \forall X \in TM|_{K} : \check{\mathbf{g}}_{\varepsilon}(X, X) \le \kappa, ||X||_{h} \le C.$

Surrogate energy condition

Lemma (Regularising Ricci-curvature [KSSV, 15]) Let (M, \mathbf{g}) be a $C^{1,1}$ -spacetime satisfying the energy condition $Ric[\mathbf{g}](X, X) \ge 0$ for every timelike Lipschitz vector field X. Then for all $K \subset C M \quad \forall C > 0 \quad \forall \delta > 0 \quad \forall \kappa < 0 \quad \forall \varepsilon$ small $Ric[\check{\mathbf{g}}_{\varepsilon}](X, X) > -\delta \quad \forall X \in TM|_{\mathcal{K}} : \check{\mathbf{g}}_{\varepsilon}(X, X) \le \kappa, ||X||_{h} \le C.$

Proof.

- $\check{g}_{\varepsilon} g * \rho_{\varepsilon} \rightarrow 0$ in $\mathcal{C}^2 \rightsquigarrow$ only consider $g_{\varepsilon} := g * \rho_{\varepsilon}$
 - $R_{jk} = R^i_{jki} = \partial_{x^i} \Gamma^i_{kj} \partial_{x^k} \Gamma^i_{ij} + \Gamma^i_{im} \Gamma^m_{kj} \Gamma^i_{km} \Gamma^m_{ij}$
 - Blue terms $|_{\varepsilon}$ converge uniformly
 - For red terms use variant of Friedrich's Lemma:

$$\begin{split} \rho_{\varepsilon} &\geq 0 \implies \left(\mathsf{Ric}[\mathbf{g}](X,X) \right) * \rho_{\varepsilon} \geq 0 \\ \left(\mathsf{Ric}[\mathbf{g}](X,X) \right) * \rho_{\varepsilon} - \mathsf{Ric}[\mathbf{g}_{\varepsilon}](X,X) \to 0 \text{ uniformly} \end{split}$$

 $\mathcal{C}^{0,1}$ and below

Intro

The $C^{1,1}$ -proof

- Limiting argument $\Rightarrow \exists$ maximising **g**-geodesic γ for all $p \in D^+(S)$ and $\gamma = \lim \gamma_{\check{\mathbf{g}}_{\varepsilon}}$ in \mathcal{C}^1
- Surrogate energy condition for $\check{\mathbf{g}}_{\varepsilon}$ and Raychaudhury equation $\Rightarrow D^+(S)$ relatively compact otherwise $\exists \check{\mathbf{g}}_{\varepsilon}$ -focal pt. too early $\Rightarrow H^+(S) \subseteq \overline{D^+(S)}$ compact
- $\bullet\,$ Derive a contradiction as in the $\mathcal{C}^\infty\text{-}\mathsf{case}$ using $\mathcal{C}^{1,1}\text{-}\mathsf{causality}$

The $\mathcal{C}^{1,1}$ -theorems

Theorem ([Hawking, 1967] Big Bang)

A \mathcal{C}^2 -spacetime is future timelike geodesically incomplete, if

(i) $Ric(X, X) \ge 0$ for every timelike vector X

(ii) There exists a compact space-like hypersurface S in M

(iii) The unit normals to S are everywhere converging

The Singularity Theorems of General Relativity in Low Regularity

26 / 29

The $\mathcal{C}^{1,1}$ -theorems

Theorem ([Kunzinger, S., Stojković, Vickers, 2015])

A $\mathcal{C}^{1,1}$ -spacetime is future timelike geodesically incomplete, if

(i) $Ric(X, X) \ge 0$ for every smooth timelike local vector field X

(ii) There exists a compact space-like hypersurface S in M

(iii) The unit normals to S are everywhere converging

The Singularity Theorems of General Relativity in Low Regularity

26 / 29

 $\mathcal{C}^{0,1}$ and below

The $\mathcal{C}^{1,1}$ -theorems

Theorem ([Kunzinger, S., Stojković, Vickers, 2015])

A $C^{1,1}$ -spacetime is future timelike geodesically incomplete, if

(i) $Ric(X, X) \ge 0$ for every smooth timelike local vector field X

(ii) There exists a compact space-like hypersurface S in M

(iii) The unit normals to S are everywhere converging

Theorem ([Penrose, 1965] Gravitational collapse)

- A C^2 -spacetime is future null geodesically incomplete, if
 - (i) $Ric(X, X) \ge 0$ for every null vector X
 - (ii) There exists a non-compact Cauchy hypersurface S in M
- (iii) There exists a trapped surface (cp. achronal spacelike 2-srf. w. past-pt. timelike mean curvature)

 $\mathcal{C}^{0,1}$ and below

The $\mathcal{C}^{1,1}$ -theorems

Theorem ([Kunzinger, S., Stojković, Vickers, 2015])

A $C^{1,1}$ -spacetime is future timelike geodesically incomplete, if

(i) $Ric(X, X) \ge 0$ for every smooth timelike local vector field X

(ii) There exists a compact space-like hypersurface S in M

(iii) The unit normals to S are everywhere converging

Theorem ([Kunzinger, S., Vickers, 2015])

A $C^{1,1}$ -spacetime is future null geodesically incomplete, if

- (i) $Ric(X, X) \ge 0$ for every Lip-cont. local null vector field X
- (ii) There exists a non-compact Cauchy hypersurface S in M
- (iii) There exists a trapped surface (cp. achronal spacelike 2-srf. w. past-pt. timelike mean curvature)

The Hawking & Penrose Singularity Theorem

Lemma [Hawking and Penrose, 1967]

In a causally complete C^2 -spacetime, the following cannot all hold:

- Every inextendible causal geodesic has a pair of conjugate points
- Ø M contains no closed timelike curves and
- \bigcirc there is a future or past trapped achronal set S

Theorem

A C^2 -spacetime M is causally incomplete if Einstein's eqs. hold

- M contains no closed timelike curves
- M satisfies an energy condition
- Genericity: nontrivial curvature at some pt. of any causal geodesic

M contains either

- a trapped surface
- some p s.t. convergence of all null geodesics changes sign in the past
- a compact spacelike hypersurface

The Hawking & Penrose Singularity Theorem

 $C^{0,1}$ and below

Lemma [Hawking and Penrose, 1967]

In a causally complete C^2 -spacetime, the following cannot all hold:

- Every inextendible causal geodesic has a pair of conjugate points
- Ø M contains no closed timelike curves and
- \bigcirc there is a future or past trapped achronal set S

Theorem

A C^2 -spacetime M is causally incomplete if Einstein's eqs. hold

- M contains no closed timelike curves
- M satisfies an energy condition
- Genericity: nontrivial curvature at some pt. of any causal geodesic

M contains either

- a trapped surface
- some p s.t. convergence of all null geodesics changes sign in the past
- a compact spacelike hypersurface

 $(\mathcal{C}^{1,1}$ -singularity thms.)

The Singularity Theorems of General Relativity in Low Regularity

28 / 29

Outlook

Lorentzian comparison geometry

volume comparison with (warped product) model spacetimes
 → comparison geometry proof of Hawking's theorem in C[∞]
 [Grant, Treude, 2013]

- comparison geometry proof of $C^{1,1}$ -Hawking theorem [Graf, 2016]
- volume estimates for nullcones

[Grant, 2011]

• Comparison approach to Penrose's theorem

28 / 29

[Grant, 2011]

Outlook

Lorentzian comparison geometry

volume comparison with (warped product) model spacetimes
 → comparison geometry proof of Hawking's theorem in C[∞]
 [Grant, Treude, 2013]

- comparison geometry proof of $C^{1,1}$ -Hawking theorem [Graf, 2016]
- volume estimates for nullcones
- Comparison approach to Penrose's theorem

Synthetic geometry

- Metric geometry: Length spaces, Alexandrov spaces (synthetic curvature bounds), but only few analogs for Lorentzian setting
- Hope: synthetic description of conjugate points and genericity condition

Thank you for your attention!

Some related Literature

- [CG,12] P.T. Chrusćiel, J.D.E. Grant, On Lorentzian causality with continuous metrics. CQG 29 (2012)
- [G,16] M. Graf, Volume comparison for C^{1,1} metrics, Ann. Global Anal. Geom. 49, (2016)
- [GT,12] J.D.E. Grant, J.-H. Treude, Volume comparison for hypersurfaces in Lorentzian manifolds and singularity theorems. Ann. Global Anal. Geom. 43 (2013)
- [KSS,14] M. Kunzinger, R. Steinbauer, M. Stojković, The exponential map of a C^{1,1}-metric. Diff. Geo. Appl.34(2014)
- [KSSV,14] M. Kunzinger, R. Steinbauer, M. Stojković, J.A. Vickers, A regularisation approach to causality theory for C^{1,1}-Lorentzian metrics. GRG 46 (2014)
- [KSSV,15] M. Kunzinger, R. Steinbauer, M. Stojković, J.A. Vickers, Hawking's singularity theorem for C^{1,1}-metrics. CQG 32 (2015)
- [KSV,15] M. Kunzinger, R. Steinbauer, J.A. Vickers, The Penrose singularity theorem in C^{1,1}. CQG, 32 (2015)
- [LSS,14] A. Lecke, R. Steinbauer, R. Švarc, The regularity of geodesics in impulsive pp-waves. GRG 46 (2014)
- [LeFC,08] P. LeFloch, B. Chen, Injectivity Radius of Lorentzian Manifolds. CMP 278, (2008)
- [M,15] E. Minguzzi, Convex neighborhoods for Lipschitz connections and sprays. Monatsh. Math., 177 (2015)
- [PSS,14] J. Podolský, R. Steinbauer, R. Švarc, Gyratonic pp-waves and their impulsive limit. PRD 90 (2014)
- [PSSŠ,15] J. Podolský, C. Sämann, R. Steinbauer, R. Švarc, The global existence, uniqueness and C¹-regularity of geodesics in nonexpanding impulsive gravitational waves. CQG 32 (2015)
- [Sä,16] C. Sämann, Global hyperbolicity for spacetimes with continuous metrics, Ann. Henri Poincare, 17 (2016)
- [SSLP,16] C. Sämann, R. Steinbauer, A. Lecke, J. Podolský, Geodesics in nonexpanding impulsive gravitational waves with Λ, part I, CQG 33 (2016)
- [Se,97] J. M. M. Senovilla, Singularity theorems and their consequences GRG 29, no. 5, 29:701 (1997)
- [S,14] R. Steinbauer, Every Lipschitz metric has C¹-geodesics. CQG 31, 057001 (2014)

Tomas Eller, Expendic G-02, Sculpture, Aluminium (2009) he Singularity Theorems of General Relativity in Low Regularity