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Low regularity C%! and below Cl‘l-singularity thms.

The basic physical setup of General Relativity

@ Albert Einstein's theory of
space, time and gravitation

created 100 years ago

@ current description of

gravitation & universe at large
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Low regularity C%! and below (71‘1—singularity thms.

The basic physical setup of General Relativity

@ Albert Einstein's theory of
space, time and gravitation
created 100 years ago

@ current description of

gravitation & universe at large

@ geometric theory
due to Galileo’s principle of equivalence:
all bodies fall the same in a gravitational field
~» gravitational field as property
of the surrounding space

@ Gravitational field influences how we measure
lengths and angles
~» curvature of space and time

29



Low regularity C%! and below Cl‘l-singularity thms.

The basic mathematical setup of GR, 1

Lorentzian geometry (basic geometric setup)

@ smooth 4-dimensional spacetime manifold M

@ smooth spacetime metric g:
symmetric, non-degenerate scalar product in any tangent space
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The basic mathematical setup of GR, 1

Lorentzian geometry (basic geometric setup)

@ smooth 4-dimensional spacetime manifold M

@ smooth spacetime metric g:
symmetric, non-degenerate scalar product in any tangent space

@ lightcone in any T,M:
/ timelike, null (causal), spacelike vectors
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@ Particles travel on timelike curves ¢
light travels on null curves
S s .
e @ chronological/causal future I7(p) / J*(p)
N ~+ causality theory

OBSERVER —— =
7
5pACE 4
P

. Aistuger cone ) )
¢ @ Free-falling particles/photons move on

geodesics: v =0
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Low regularity ¢%?! and below Cl’l»singularity thms.

The basic mathematical setup of GR, 2

Field equations (basic physical/analytical setup)

{

¢

1
Rilg] - ER[g] gij+Agj=8n1T
~ v ——

spacetime curvature matter

4
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The basic mathematical setup of GR, 2

Field equations (basic physical/analytical setup)

1
Rilg] - ER[g] gij+Agj=8n1T
~ ——

spacetime curvature matter

@ Ricci-tensor Rj;, scalar curvature R built from Riemann tensor

RxyY = Vix,vZ - [Vx,Vy]Z

@ locally: R™y = Okl™, — 0 rmk +re, rm —ra,rm
and Christoffel symbols FJ’k =g F,Jk (3kg/J + 0ig8K — 0igjk)

= R;,R ~ &g+ (9g)?

@ coupled system of 10 quasi-linear PDEs of 2nd order for g

/ 29
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Intro C%! and below Cl‘l—singularity thms.
Why Low Regularity?

(1) Realistic matter—Physics

@ want discontinuous matter configurations ~ T ¢ C° = g & C?
o finite jumps in T ~» g € C1! (derivatives locally Lipschitz)
@ more extreme situations (impulsive waves): g piecew. C3, globally C°
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Intro C%! and below Cl‘l—singularity thms.
Why Low Regularity?

(1) Realistic matter—Physics

@ want discontinuous matter configurations ~ T ¢ C° = g & C?
@ finite jumps in T ~» g € C1! (derivatives locally Lipschitz)

@ more extreme situations (impulsive waves): g piecew. C3, globally C°

(2) Initial value problem—Analysis

Local existence and uniqueness Thms.
for Einstein egs. in terms of Sobolev spaces

@ classical [CB,HKM]: g € H*/? — C}(%)

@ recent big improvements [K,R,M,S]: g € C°(X)

29



Intro Low regularity C%! and below Cl‘l—singularity thms.

Regularity matters

Riemannian counterexample [Hartman&Wintner, 51]

1 0
gij(X,Y): (O 1—’X‘)‘) on (_171)XR§R2

@ \c (1,2) = ge 1 Holder, slightly below C'!
@ (nevertheless) geodesic equation uniquely solvable
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Low regularity C%! and below Cl‘l—singularity thms.

Regularity matters

Riemannian counterexample [Hartman&Wintner, 51]

1 0
gij(X,Y): (O 1—’X‘)‘> on (_171)XRQR2

@ A€ (1,2) = geCh 1 Hoalder, slightly below C1'?
@ (nevertheless) geodesic equation uniquely solvable

BUT

@ shortest curves from (0,0) to (0,y) are two symmetric arcs

~» minimising curves not unique, even locally

@ the y-axis is a geodesic which is

non-minimising between any of its points

/ 29
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Low regularity C%! and below Cl‘l—singularity thms.

The Lorentzian character matters

Riemannian case (added regularity of geodesics)

@ gc(C® = shortest (Lipschitz) curves exist [Hilbert, 1899]

@ g€C% = all shortest curves are C1# with 8 = ;% (optimal)
[Calabi, Hartman, 70], [Lytchak, Yaman, 06]
in particular a =1 = and ¥ =0 a.e.

@ gcC! = all shortes curves satisfy 4 = 0 and v € C?

10/ 29



Intro

Low regularity C%! and below Cl‘]—singularity thms.

The Lorentzian character matters

Riemannian case (added regularity of geodesics)

@ gc(C® = shortest (Lipschitz) curves exist [Hilbert, 1899]

@ g% = all shortest curves are C*# with 3 = 52~ (optimal)
[Calabi, Hartman, 70], [Lytchak, Yaman, 06]
in particular a =1 = and ¥ =0 a.e.

@ gcC! = all shortes curves satisfy 4 = 0 and v € C?

Lorentzian case

@ no length structure ~» use geodesic equation.
@ g€ (C% = geodesics in the sense of Fillipov are C1'! [S., 2014]
@ counterexample [Kunzinger, Sdmann, very recent!]

1 o
g € C%2 where e no longest curve is C!, and
e J longest curve which is not even piecewise C!

v

10 / 29



Intro ¢%?! and below ¢! Lsingularity thms.
GR and low regularity

The challenge

Physics and Analysis VS. Lorentzian geometry
want/need low regularity needs high regularity
to maintain standard results
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GR and low regularity

The challenge

Physics and Analysis vs. Lorentzian geometry
want/need low regularity needs high regularity
to maintain standard results

Lorentzian geometry and regularity

@ classically g € C>, for all practical purposes g € C?
@ things go wrong below C?

@ convexity goes wrong for g € C1* (a < 1) [HW, 51]
o causality goes wrong, light cones “bubble up” for g € C° [CG, 12]

~+ g € C11! believed to be ok, below that watch your step!
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Intro Low regularity Cc%T and below Cl‘l—singularity thms.

C%! and below: Impulsive gravitational waves

Impulsive gravitational waves

@ model short but strong pulses of gravitational radiation
propagating in Minkowski or (anti-)de Sitter universes

@ relevant models of ultrarelativistic particle
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Cl

C%! and below: Impulsive gravitational waves

Impulsive gravitational waves

@ model short but strong pulses of gravitational radiation
propagating in Minkowski or (anti-)de Sitter universes

@ relevant models of ultrarelativistic particle

—] [
/

“ 4
L 2
3

.
.
.
.
.

|~

ultrarelativistic particle  spacetime diagr. (A = 0)
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C%!' and below: Impulsive gravitational waves

Impulsive gravitational waves

@ model short but strong pulses of gravitational radiation
propagating in Minkowski or (anti-)de Sitter universes

@ relevant models of ultrarelativistic particle

de Sitter universe propagating wave

The Sineiiarnty I heorems of (eneral Kaelati
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C%! and below: Impulsive gravitational waves

Impulsive gravitational waves

@ model short but strong pulses of gravitational radiation
propagating in Minkowski or (anti-)de Sitter universes

@ relevant models of ultrarelativistic particle
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Intro Low regularity Cl‘l—singularity thms.
C%! and below: Impulsive gravitational waves

Impulsive gravitational waves
@ model short but strong pulses of gravitational radiation
propagating in Minkowski or (anti-)de Sitter universes
@ relevant models of ultrarelativistic particle
@ curvature concentrated on the null hypersurface {U = 0}

@ continuous vs. distributional ‘form’; here we focus on g € C%!

13
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Intro Low regularity ©
C%! and below: Impulsive gravitational waves

Impulsive gravitational waves
@ model short but strong pulses of gravitational radiation
propagating in Minkowski or (anti-)de Sitter universes
@ relevant models of ultrarelativistic particle
@ curvature concentrated on the null hypersurface {U = 0}

@ continuous vs. distributional ‘form’; here we focus on g € C%!

Metric e.g. in the non-expanding case (coords (U, V, Z, Z))

2[dZ + U (H z3dZ + H 33dZ)|? — 2 dUdV
(14 3NZZ - UV = Up(H—ZHz — ZH3)) ]

2
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Low regularity C%I and below Cl‘l-singularity thms.

Geodesics: regularity, matching, completeness

C'-matching of the geodesics in impulsive grav. waves

@ Physicists match geodesics of background across wave-surface.

@ Only possible if geodesics — are C! across the wave-surface
— are unique

14/
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Geodesics: regularity, matching, completeness

C'-matching of the geodesics in impulsive grav. waves

@ Physicists match geodesics of background across wave-surface.

@ Only possible if geodesics — are C! across the wave-surface
— are unique

Quest (Jifi Podolsky): Prove C!-regularity and uniqueness!
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C'-matching of the geodesics in impulsive grav. waves

@ Physicists match geodesics of background across wave-surface.

@ Only possible if geodesics — are C! across the wave-surface
— are unique

Quest (Jifi Podolsky): Prove C!-regularity and uniqueness!

Regularity [S.,14]

The geodesic eq. in any C%!-spacetime has solutions in the sense
of Filippov with absolutely continuous velocities.

14 / 29



Intro Low regularity @" ‘1—singularity thms.
Geodesics: regularity, matching, completeness

C'-matching of the geodesics in impulsive grav. waves

@ Physicists match geodesics of background across wave-surface.

@ Only possible if geodesics — are C! across the wave-surface
— are unique

Quest (Jifi Podolsky): Prove C!-regularity and uniqueness!

Regularity [S.,14]

The geodesic eq. in any C%!-spacetime has solutions in the sense
of Filippov with absolutely continuous velocities.

Uniquenes criteria for Filippov solutions

plus explicit use of the respective geometry of the solutions.

v
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Intro Low regularity Cl‘l—singularity thms.
Completeness results

Prague Relativity Group Diana Vienna

Clemens
Ji¥i Podolsky Robert Svarc Samann Alexander Lecke
e (%, A=0, non-exp. [Lecke, S., Svare, 14]
o (%, A#0, non-exp. [Podolsky, Samann, S., Svarc, 15]
e D, A #0, non-exp. [Sdmann, S., Lecke, Podolsky, 16]
e (%, A#0, expanding [Podolsky, Simann, S., Svare, 16]
e D', general non-flat wave-surface [Sdmann, S., 12, 15]
e 7D/, gyratons [Podolsky, S., Svare, 14]

[Podolsky, Samann, S., Svarc, 16]
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o Intro: The basic setup of general relativity

Q The quest for low regularity: Physics & analysis vs. geometry
0 C%! and below: Completeness of impulsive gravitational waves

@ C'!: Causality theory and the singularity theorems

The Singularity Theorems of General Relativity in Low Regularity




Intro

Low regularity C%! and below
Singularities in GR

@ singularities occur in exact solutions; high degree of symmetries

@ singularities as obstruction to extend causal geodesics [Penrose 65]

17/
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Low regularity €% and below C*>*-singularity thms.

Singularities in GR

@ singularities occur in exact solutions; high degree of symmetries

@ singularities as obstruction to extend causal geodesics [Penrose 65]

Theorem (Pattern singularity theorem [Senovilla, 97])

In a C?-spacetime the following are incompatible
(i) Energy condition (i) Initial or boundary condition

(i) Causality condition (iv) Causal geodesic completeness
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Intro

Low regularity C%! and below C*>*-singularity thms.

Singularities in GR

@ singularities occur in exact solutions; high degree of symmetries

@ singularities as obstruction to extend causal geodesics [Penrose 65]

Theorem (Pattern singularity theorem [Senovilla, 97])

In a C?-spacetime the following are incompatible
(i) Energy condition (i) Initial or boundary condition

(i) Causality condition (iv) Causal geodesic completeness

(iii) initial condition ~» causal geodesics start focussing
(i) energy condition ~» focussing goes on ~» focal point

(ii) causality condition ~» no focal points

way out: one causal geodesic has to be incomplete, i.e., = (iv)

17

29
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Low regularity €% and below C*>*-singularity thms.

The classical theorems

Theorem ([Penrose, 1965] Gravitational collapse)

A C?-spacetime is future null geodesically incomplete, if
(i) Ric(X,X) >0 for every null vector X

(i) There exists a non-compact Cauchy hypersurface S in M

(iii) There exists a trapped surface
(cp. achronal spacelike 2-srf. w. past-pt. timelike mean curvature)

18 / 29



Intro

Low regularity @

The classical theorems

Theorem ([Penrose, 1965] Gravitational collapse)

A C2?-spacetime is future null geodesically incomplete, if
(i) Ric(X,X) >0 for every null vector X

(i) There exists a non-compact Cauchy hypersurface S in M

(iii) There exists a trapped surface
(cp. achronal spacelike 2-srf. w. past-pt. timelike mean curvature)

20,1 and below C*>"-singularity thms.

Theorem ([Hawking, 1967] Big Bang)
A C2-spacetime is future timelike geodesically incomplete, if
(i) Ric(X,X) >0 for every timelike vector X

(ii) There exists a compact space-like hypersurface S in M

(iii) The unit normals to S are everywhere converging, 0 := —trK < 0.

18 / 29
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Low regularity C%! and below C*>"-singularity thms.

Hawking’s Thm: proof strategy (C>-case)

@ Analysis: 0 evolves along the normal geodesic congruence of S by
Raychaudhury’s equation
2

0
0 + 3+ Ric(¥,%) + tr(o?) = 0

o (i) = 0 +(1/3)9° <0 = (67') >1/3
o (iii) = 6(0) <0 = 6 — oo in finite time = focal point

@ Causality theory: 3 longest curves in the Cauchy development
= no focal points in the Cauchy development

@ completeness —> D*(S) C exp([0, T] - ng)...compact
= horizon H*(M) compact, ~» 2 possibilities
(1) H*(M)=10. Then I"(S) C D*(S) = timlike incomplete 4
(2) H*(M) # 0 compact = p+ d(S, p) has min on H*(S)
But from every point in H*(M) there starts a past null generator v
(inextendible past directed null geodesic contained in H(S))
and p — d(S, p) strictly decreasing along v = unbounded 4

19 /29



Intro Low regularity C%! and below
Why go to C117?
Recall:
Theorem (Pattern singularity theorem [Senovilla, 97])

In a C?-spacetime the following are incompatible
(i) Energy condition (i) [Initial or boundary condition

(i) Causality condition (iv) Causal geodesic completeness
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Low regularity C%! and below C*>*-singularity thms.

Why go to C117?
Recall:
Theorem (Pattern singularity theorem [Senovilla, 97])

In a C?-spacetime the following are incompatible
(i) Energy condition (iii) Initial or boundary condition

(i) Causality condition (iv) Causal geodesic completeness

Theorem allows (i)—(iv) and g € C''. But C1''-spacetimes

@ are physically reasonable models
@ are not really singular (curvature bounded)

@ still allow unique solutions of geodesic eq. ~» formulation sensible
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@ unbounded curvature, non-unique geodesics ~ ‘really singular’
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Low regularity C%! and below C*>*-singularity thms.

Why go to C117?
Recall:
Theorem (Pattern singularity theorem [Senovilla, 97])

In a C?-spacetime the following are incompatible
(i) Energy condition (iii) Initial or boundary condition

(i) Causality condition (iv) Causal geodesic completeness

Theorem allows (i)—(iv) and g € C''. But C1''-spacetimes

@ are physically reasonable models

@ are not really singular (curvature bounded)

@ still allow unique solutions of geodesic eq. ~» formulation sensible
Moreover below C1'! we have

@ unbounded curvature, non-unique geodesics ~ ‘really singular’

Hence C1! is the natural regularity class for singularity theorems!

20
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Intro Low regularity C%! and below
Obstacles in the Cl'-case

@ No appropriate version of calculus of variations available
(second variation, maximizing curves, focal points, index form, ...)

@ (C?-causality theory rests on local equivalence with Minkowski space.
This requires good properties of exponential map.

~» big parts of causality theory have to be redone
@ Ricci tensors is only L™

~» problems with energy conditions

21



Intro

Low regularity C%! and below
Obstacles in the C}!-case

@ No appropriate version of calculus of variations available
(second variation, maximizing curves, focal points, index form, ...)

@ (C?-causality theory rests on local equivalence with Minkowski space.
This requires good properties of exponential map.

~» big parts of causality theory have to be redone
@ Ricci tensors is only L™

~» problems with energy conditions

strategy:
@ Employ regularisation adapted to causal structure
@ Avoid calculus of variations

@ Re-build causality theory for C1'1-metrics

29
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Low regularity C%! and below C*>"-singularity thms.

Chrusciel-Grant regularization of the metric

Regularisations of the metric adapted to the causal structure
[Chrusciel, Grant, 12], [KSSV, 14]

geC% Ve >0 3g., g cC=:
g <g <8,

dh(gaag) + dh(gfs,g) <e

g € C11, g, one of the above,

(i) g —gin ct
g<h & (i) D?g. loc. unif. bded. in ¢
g(X, X) < 0=h(X,X) <0 (iii) but Ric[g.] /4 Ric[g]

22 /29



C*>*-singularity thms.

€% and below

Low regularity

The exponential map in low regularity

Intro

@ exp,: ToM>ve—=~,(1)eM,
where 7, is the (unique) geodesic
starting at p in direction of v Y
@ gcC?® = exp, local diffeo /
£
@ geCh! = exp, loc. homeo [W,32] Ve
.

Optimal regularity
g € CH! = exp, bi-Lipschitz homeo

@ [KSS,14]: regularisation &
comparison geometry

@ [Minguzzi,15]: refined ODE methods

~» bulk of causality theory remains true
in CH1 [CG,12, KSSV,14, Ming.,15]
23 /29



Intro Low regularity %1 and below
Surrogate energy condition
Lemma (Regularising Ricci-curvature [KSSV, 15])
Let (M, g) be a CY}-spacetime satisfying the energy condition
Ric[g] (X, X) > 0 for every timelike Lipschitz vector field X.

Then for all K cCc M VC >0 V6 >0 Vk <0 Ve small
Ric[g:](X,X) > =0 VX eTM|k: 8-(X,X) <k, [|[X]ln < C.

24 /29
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Low regularity C%! and below C*>"-singularity thms.

Surrogate energy condition

Lemma (Regularising Ricci-curvature [KSSV, 15])
Let (M,g) be a C'-spacetime satisfying the energy condition

Ric[g] (X, X) > 0 for every timelike Lipschitz vector field X.

Then for all K cCc M VC >0 V6 >0 Vk <0 Ve small

Ric[g](X,X) > -0 ¥X eTM|x : 8.(X,X) <, |X|ln < C.

Proof. 0 5 —gx pE — 0in C? ~ only consider g. := g * p
® Ry = Riy = 0Ty = 0T 4 Tl = T

@ Blue terms|. converge uniformly

@ For red terms use variant of Friedrich’s Lemma:
pe >0 = (Riclg](X, X)) *p: >0
(Ric[g](X, X)) * p — Ric[g:](X, X) — 0 uniformly

24 /29



Intro Low regularity ¢%?! and below
11
The C*-proof

+ + .
e DT(S) C Dy (sy:

Limiting argument = 3 maximising g-geodesic ~y for all p € D(S)
and v = limvg_ in C*

Surrogate energy condition for g§. and Raychaudhury equation
= D7(S) relatively compact
otherwise 3 g.-focal pt. too early

= H*(S) C D*(S) compact

Derive a contradiction as in the C*-case using C1'!-causality

25 / 29
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Low regularity €% and below C*>*-singularity thms.

The C'1-theorems

Theorem ([Hawking, 1967] Big Bang)

A C? -spacetime is future timelike geodesically incomplete, if
(i) Ric(X,X) > 0 for every timelike vector X

(i) There exists a compact space-like hypersurface S in M

(iii) The unit normals to S are everywhere converging
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Low regularity €% and below C*>*-singularity thms.

The C'1-theorems

Theorem ([Kunzinger, S., Stojkovi¢, Vickers, 2015])

A CH'-spacetime is future timelike geodesically incomplete, if
(i) Ric(X,X) > 0 for every smooth timelike local vector field X
(i) There exists a compact space-like hypersurface S in M

(iii) The unit normals to S are everywhere converging
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Low regularity @

The C'1-theorems

Theorem ([Kunzinger, S., Stojkovi¢, Vickers, 2015])

A CYl-spacetime is future timelike geodesically incomplete, if
(i) Ric(X,X) > 0 for every smooth timelike local vector field X
(i) There exists a compact space-like hypersurface S in M

(iii) The unit normals to S are everywhere converging

Theorem ([Penrose, 1965] Gravitational collapse)

A C? -spacetime is future null geodesically incomplete, if
(i) Ric(X,X) >0 for every null vector X

(ii) There exists a non-compact Cauchy hypersurface S in M

(iii) There exists a trapped surface
(cp. achronal spacelike 2-srf. w. past-pt. timelike mean curvature)

20,1 and below C*>"-singularity thms.

v
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Low regularity @

The C'1-theorems

Theorem ([Kunzinger, S., Stojkovi¢, Vickers, 2015])

A CYl-spacetime is future timelike geodesically incomplete, if
(i) Ric(X,X) > 0 for every smooth timelike local vector field X
(i) There exists a compact space-like hypersurface S in M

(iii) The unit normals to S are everywhere converging

Theorem ([Kunzinger, S., Vickers, 2015])

A CH'-spacetime is future null geodesically incomplete, if
(i) Ric(X,X) > 0 for every Lip-cont. local null vector field X
(ii) There exists a non-compact Cauchy hypersurface S in M

(iii) There exists a trapped surface
(cp. achronal spacelike 2-srf. w. past-pt. timelike mean curvature)

20,1 and below C*>"-singularity thms.

v
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Intro

Low regularity co

The Hawking & Penrose Singularity Theorem

Lemma [Hawking and Penrose, 1967]

In a causally complete C2-spacetime, the following cannot all hold:
© Every inextendible causal geodesic has a pair of conjugate points
@ M contains no closed timelike curves and

© there is a future or past trapped achronal set S

Theorem

A C?-spacetime M is causally incomplete if Einstein's eqgs. hold
@ M contains no closed timelike curves
@ M satisfies an energy condition
© Genericity: nontrivial curvature at some pt. of any causal geodesic
© M contains either

@ a trapped surface

@ some p s.t. convergence of all null geodesics changes sign in the past
@ a compact spacelike hypersurface

L and below C* " -singularity thms.
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Low regularity C%! and below C*>"-singularity thms.

The Hawking & Penrose Singularity Theorem

Lemma [Hawking and Penrose, 1967]

In a causally complete C2-spacetime, the following cannot all hold:
© Every inextendible causal geodesic has a pair of conjugate points
@ M contains no closed timelike curves and

© there is a future or past trapped achronal set S

Theorem

A C?-spacetime M is causally incomplete if Einstein's egs. hold

@ M contains no closed timelike curves
@ M satisfies an energy condition

© Genericity: nontrivial curvature at some pt. of any causal geodesic
© M contains either
@ a trapped surface

@ some p s.t. convergence of all null geodesics changes sign in the past
@ a compact spacelike hypersurface

27
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Intro

Low regularity C%! and below

Outlook

Lorentzian comparison geometry

C*>*-singularity thms.

volume comparison with (warped product) model spacetimes
~» comparison geometry proof of Hawking's theorem in C*°

[Grant, Treude, 2013]

comparison geometry proof of C1:'-Hawking theorem  [Graf, 2016]

volume estimates for nullcones

Comparison approach to Penrose's theorem

[Grant, 2011]

28

29



Intro

Low regularity C

Outlook

Lorentzian comparison geometry

@ volume comparison with (warped product) model spacetimes
~» comparison geometry proof of Hawking's theorem in C*°
[Grant, Treude, 2013]

@ comparison geometry proof of C1''-Hawking theorem  [Graf, 2016]
@ volume estimates for nullcones [Grant, 2011]

@ Comparison approach to Penrose's theorem ... ...

Synthetic geometry

@ Metric geometry: Length spaces, Alexandrov spaces (synthetic
curvature bounds), but only few analogs for Lorentzian setting

@ Hope: synthetic description of conjugate points and genericity
condition

20,1 and below C*>"-singularity thms.
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Thank you for your attention!
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