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Overview

Long-term project on

Lorentzian geometry and general relativity

with metrics of low regularity
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The basic physical setup of General Relativity

Albert Einstein’s theory of

space, time and gravitation

created 100 years ago

current description of

gravitation & universe at large

geometric theory
due to Galileo’s principle of equivalence:
all bodies fall the same in a gravitational field

; gravitational field as property
of the surrounding space

Gravitational field influences how we measure
lengths and angles

; curvature of space and time
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The basic mathematical setup of GR, 1

Lorentzian geometry (basic geometric setup)

smooth 4-dimensional spacetime manifold M

smooth spacetime metric g:
symmetric, non-degenerate scalar product in any tangent space

lightcone in any TpM:
timelike, null (causal), spacelike vectors

Particles travel on timelike curves c
light travels on null curves

chronological/causal future I +(p) / J+(p)
; causality theory

Free-falling particles/photons move on
geodesics: γ̈ = 0
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The basic mathematical setup of GR, 2

Field equations (basic physical/analytical setup)

Rij [g]− 1

2
R[g] gij + Λ gij︸ ︷︷ ︸

spacetime curvature

= 8πTij︸ ︷︷ ︸
matter

Ricci-tensor Rij , scalar curvature R built from Riemann tensor

RXY Y = ∇[X ,Y ]Z − [∇X ,∇Y ]Z

locally: Rm
ikp = ∂kΓm

ip − ∂pΓm
ik + Γa

ipΓm
ak − Γa

ikΓm
ap

and Christoffel symbols Γi
jk = gilΓljk = 1

2 gil(∂kglj + ∂jgkl − ∂lgjk)

=⇒ Rij ,R ∼ ∂2g + (∂g)2

coupled system of 10 quasi-linear PDEs of 2nd order for g
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Why Low Regularity?

(1) Realistic matter—Physics

want discontinuous matter configurations ; T 6∈ C0 =⇒ g 6∈ C2

finite jumps in T ; g ∈ C1,1 (derivatives locally Lipschitz)

more extreme situations (impulsive waves): g piecew. C3, globally C0

(2) Initial value problem—Analysis

Local existence and uniqueness Thms.
for Einstein eqs. in terms of Sobolev spaces

classical [CB,HKM]: g ∈ H5/2 =⇒ C1(Σ)

recent big improvements [K,R,M,S]: g ∈ C0(Σ)
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Regularity matters

Riemannian counterexample [Hartman&Wintner, 51]

gij(x , y) =

(
1 0
0 1− |x |λ

)
on (−1, 1)× R ⊆ R2

λ ∈ (1, 2) =⇒ g ∈ C1,λ−1 Hölder, slightly below C1,1

(nevertheless) geodesic equation uniquely solvable

BUT

shortest curves from (0,0) to (0,y) are two symmetric arcs

; minimising curves not unique, even locally

the y -axis is a geodesic which is

non-minimising between any of its points
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The Lorentzian character matters

Riemannian case (added regularity of geodesics)

g ∈ C0 =⇒ shortest (Lipschitz) curves exist [Hilbert, 1899]

g ∈ C0,α =⇒ all shortest curves are C1,β with β = α
2−α (optimal)

[Calabi, Hartman, 70], [Lytchak, Yaman, 06]
in particular α = 1 = β and γ̈ = 0 a.e.

g ∈ C1 =⇒ all shortes curves satisfy γ̈ = 0 and γ ∈ C2

Lorentzian case

no length structure ; use geodesic equation.

g ∈ C0,1 =⇒ geodesics in the sense of Fillipov are C1,1 [S., 2014]

counterexample [Kunzinger, Sämann, very recent!]

g ∈ C0, 1
2 where • no longest curve is C1, and

• ∃ longest curve which is not even piecewise C1
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GR and low regularity

The challenge

Physics and Analysis vs.
want/need low regularity

Lorentzian geometry
needs high regularity
to maintain standard results

Lorentzian geometry and regularity

classically g ∈ C∞, for all practical purposes g ∈ C2

things go wrong below C2

convexity goes wrong for g ∈ C1,α (α < 1) [HW, 51]
causality goes wrong, light cones “bubble up” for g ∈ C0 [CG, 12]

; g ∈ C1,1 believed to be ok, below that watch your step!
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C0,1 and below: Impulsive gravitational waves

Impulsive gravitational waves

model short but strong pulses of gravitational radiation
propagating in Minkowski or (anti-)de Sitter universes

relevant models of ultrarelativistic particle

curvature concentrated on the null hypersurface {U = 0}
continuous vs. distributional ‘form’; here we focus on g ∈ C0,1

Metric e.g. in the non-expanding case (coords (U,V ,Z , Z̄ ))

ds2 =
2 |dZ + U+(H,ZZ̄dZ + H,Z̄ Z̄dZ̄ )|2 − 2 dUdV

[ 1 + 1
6 Λ(Z Z̄ − UV − U+(H − ZH,Z − Z̄ H,Z̄ )) ]2
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Geodesics: regularity, matching, completeness

C1-matching of the geodesics in impulsive grav. waves

Physicists match geodesics of background across wave-surface.

Only possible if geodesics — are C1 across the wave-surface
— are unique

Quest (Jǐŕı Podolský): Prove C1-regularity and uniqueness!

Regularity [S.,14]

The geodesic eq. in any C0,1-spacetime has solutions in the sense
of Filippov with absolutely continuous velocities.

Uniquenes criteria for Filippov solutions

plus explicit use of the respective geometry of the solutions.
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Completeness results

Prague Relativity Group Diana Vienna

Jǐŕı Podolský Robert Švarc

Clemens

Sämann Alexander Lecke

• C0,1, Λ = 0, non-exp. [Lecke, S., Švarc, 14]
• C0,1, Λ 6= 0, non-exp. [Podolský, Sämann, S., Švarc, 15]
• D′, Λ 6= 0, non-exp. [Sämann, S., Lecke, Podolský, 16]
• C0,1, Λ 6= 0, expanding [Podolský, Sämann, S., Švarc, 16]
• D′, general non-flat wave-surface [Sämann, S., 12, 15]
• D′, gyratons [Podolský, S., Švarc, 14]

[Podolský, Sämann, S., Švarc, 16]
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Singularities in GR

singularities occur in exact solutions; high degree of symmetries

singularities as obstruction to extend causal geodesics [Penrose 65]

Theorem (Pattern singularity theorem [Senovilla, 97])

In a C2-spacetime the following are incompatible

(i) Energy condition

(ii) Causality condition

(iii) Initial or boundary condition

(iv) Causal geodesic completeness

(iii) initial condition ; causal geodesics start focussing

(i) energy condition ; focussing goes on ; focal point

(ii) causality condition ; no focal points

way out: one causal geodesic has to be incomplete, i.e., ¬ (iv)
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The classical theorems

Theorem ([Penrose, 1965] Gravitational collapse)

A C2-spacetime is future null geodesically incomplete, if

(i) Ric (X ,X ) ≥ 0 for every null vector X

(ii) There exists a non-compact Cauchy hypersurface S in M

(iii) There exists a trapped surface
(cp. achronal spacelike 2-srf. w. past-pt. timelike mean curvature)

Theorem ([Hawking, 1967] Big Bang)

A C2-spacetime is future timelike geodesically incomplete, if

(i) Ric (X ,X ) ≥ 0 for every timelike vector X

(ii) There exists a compact space-like hypersurface S in M

(iii) The unit normals to S are everywhere converging, θ := −tr K < 0.
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Hawking’s Thm: proof strategy (C2-case)

Analysis: θ evolves along the normal geodesic congruence of S by
Raychaudhury’s equation

θ′ +
θ2

3
+ Ric(γ̇, γ̇) + tr(σ2) = 0

(i) =⇒ θ′ + (1/3)θ2 ≤ 0 =⇒ (θ−1)′ ≥ 1/3

(iii) =⇒ θ(0) < 0 =⇒ θ →∞ in finite time =⇒ focal point

Causality theory: ∃ longest curves in the Cauchy development
=⇒ no focal points in the Cauchy development

completeness =⇒ D+(S) ⊆ exp([0,T ] · nS). . . compact
=⇒ horizon H+(M) compact, ; 2 possibilities

(1) H+(M) = ∅. Then I+(S) ⊆ D+(S) =⇒ timlike incomplete  
(2) H+(M) 6= ∅ compact =⇒ p 7→ d(S , p) has min on H+(S)

But from every point in H+(M) there starts a past null generator γ
(inextendible past directed null geodesic contained in H+(S))

and p 7→ d(S , p) strictly decreasing along γ =⇒ unbounded  
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Intro Low regularity C0,1 and below C1,1-singularity thms.

Why go to C1,1?

Recall:

Theorem (Pattern singularity theorem [Senovilla, 97])

In a C2-spacetime the following are incompatible

(i) Energy condition

(ii) Causality condition

(iii) Initial or boundary condition

(iv) Causal geodesic completeness

Theorem allows (i)–(iv) and g ∈ C1,1. But C1,1-spacetimes

are physically reasonable models

are not really singular (curvature bounded)

still allow unique solutions of geodesic eq. ; formulation sensible

Moreover below C1,1 we have

unbounded curvature, non-unique geodesics ; ‘really singular’

Hence C1,1 is the natural regularity class for singularity theorems!
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Intro Low regularity C0,1 and below C1,1-singularity thms.

Obstacles in the C1,1-case

No appropriate version of calculus of variations available
(second variation, maximizing curves, focal points, index form, . . . )

C2-causality theory rests on local equivalence with Minkowski space.
This requires good properties of exponential map.

; big parts of causality theory have to be redone

Ricci tensors is only L∞

; problems with energy conditions

strategy:

Employ regularisation adapted to causal structure

Avoid calculus of variations

Re-build causality theory for C1,1-metrics
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Intro Low regularity C0,1 and below C1,1-singularity thms.

Chrusciel-Grant regularization of the metric

Regularisations of the metric adapted to the causal structure
[Chrusciel, Grant, 12], [KSSV, 14]

g ≺ h :⇔
g(X ,X ) ≤ 0⇒h(X ,X ) < 0

g ∈ C0: ∀ε > 0 ∃ǧε, ĝε ∈ C∞:

ǧε ≺ g ≺ ĝε,

dh(ǧε, g) + dh(ĝε, g) < ε

g ∈ C1,1, gε one of the above,

(i) gε → g in C1

(ii) D2gε loc. unif. bded. in ε

(iii) but Ric[gε] 6→ Ric[g]
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Intro Low regularity C0,1 and below C1,1-singularity thms.

The exponential map in low regularity

expp : TpM 3 v 7→ γv (1) ∈ M,
where γv is the (unique) geodesic
starting at p in direction of v

g ∈ C2 ⇒ expp local diffeo

g ∈ C1,1 ⇒ expp loc. homeo [W,32]

Optimal regularity

g ∈ C1,1 ⇒ expp bi-Lipschitz homeo

[KSS,14]: regularisation &
comparison geometry

[Minguzzi,15]: refined ODE methods

; bulk of causality theory remains true
in C1,1 [CG,12, KSSV,14, Ming.,15]
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Intro Low regularity C0,1 and below C1,1-singularity thms.

Surrogate energy condition

Lemma (Regularising Ricci-curvature [KSSV, 15])

Let (M, g) be a C1,1-spacetime satisfying the energy condition

Ric [g] (X ,X ) ≥ 0 for every timelike Lipschitz vector field X .

Then for all K ⊂⊂ M ∀C > 0 ∀δ > 0 ∀κ < 0 ∀ε small

Ric [ǧε](X ,X ) > −δ ∀X ∈TM|K : ǧε(X ,X ) ≤ κ, ‖X‖h ≤ C .

Proof. ǧε − g ∗ ρε → 0 in C2 ; only consider gε := g ∗ ρε
Rjk = R i

jki = ∂x i Γi
kj − ∂xk Γi

ij + Γi
imΓm

kj − Γi
kmΓm

ij

Blue terms|ε converge uniformly

For red terms use variant of Friedrich’s Lemma:

ρε ≥ 0 =⇒
(
Ric[g](X ,X )

)
∗ ρε ≥ 0(

Ric[g](X ,X )
)
∗ ρε − Ric[gε](X ,X )→ 0 uniformly
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Intro Low regularity C0,1 and below C1,1-singularity thms.

The C1,1-proof

D+(S) ⊆ D+
ǧε(S):

S

p

D   (S)gεˆ

D (S)

J  (p)-

+

+

Limiting argument ⇒ ∃ maximising g-geodesic γ for all p ∈ D+(S)
and γ = lim γǧε

in C1

Surrogate energy condition for ǧε and Raychaudhury equation
⇒ D+(S) relatively compact

otherwise ∃ ǧε-focal pt. too early

⇒ H+(S) ⊆ D+(S) compact

Derive a contradiction as in the C∞-case using C1,1-causality
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Intro Low regularity C0,1 and below C1,1-singularity thms.

The C1,1-theorems

Theorem ([Hawking, 1967] Big Bang)

A C2 -spacetime is future timelike geodesically incomplete, if

(i) Ric (X ,X ) ≥ 0 for every timelike vector X

(ii) There exists a compact space-like hypersurface S in M

(iii) The unit normals to S are everywhere converging

Theorem ()

A spacetime is future null geodesically incomplete, if

(i) Ric (X ,X ) ≥ 0 for every

(ii) There exists a non-compact Cauchy hypersurface S in M

(iii) There exists a trapped surface
(cp. achronal spacelike 2-srf. w. past-pt. timelike mean curvature)
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Intro Low regularity C0,1 and below C1,1-singularity thms.
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Theorem ([Kunzinger, S., Vickers, 2015])

A C1,1-spacetime is future null geodesically incomplete, if

(i) Ric (X ,X ) ≥ 0 for every Lip-cont. local null vector field X

(ii) There exists a non-compact Cauchy hypersurface S in M

(iii) There exists a trapped surface
(cp. achronal spacelike 2-srf. w. past-pt. timelike mean curvature)
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Intro Low regularity C0,1 and below C1,1-singularity thms.

The Hawking & Penrose Singularity Theorem

Lemma [Hawking and Penrose, 1967]

In a causally complete C2-spacetime, the following cannot all hold:
1 Every inextendible causal geodesic has a pair of conjugate points

2 M contains no closed timelike curves and

3 there is a future or past trapped achronal set S

Theorem

A C2-spacetime M is causally incomplete if Einstein’s eqs. hold

1 M contains no closed timelike curves

2 M satisfies an energy condition

3 Genericity: nontrivial curvature at some pt. of any causal geodesic
4 M contains either

a trapped surface
some p s.t. convergence of all null geodesics changes sign in the past
a compact spacelike hypersurface
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Intro Low regularity C0,1 and below C1,1-singularity thms.

Outlook

Lorentzian comparison geometry

volume comparison with (warped product) model spacetimes
; comparison geometry proof of Hawking’s theorem in C∞

[Grant,Treude, 2013]

comparison geometry proof of C1,1-Hawking theorem [Graf, 2016]

volume estimates for nullcones [Grant, 2011]

Comparison approach to Penrose’s theorem . . . . . .

Synthetic geometry

Metric geometry: Length spaces, Alexandrov spaces (synthetic
curvature bounds), but only few analogs for Lorentzian setting

Hope: synthetic description of conjugate points and genericity
condition
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Intro Low regularity C0,1 and below C1,1-singularity thms.

Thank you for your attention!
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[KSS,14] M. Kunzinger, R. Steinbauer, M. Stojković, The exponential map of a C1,1-metric. Diff. Geo. Appl.34(2014)
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