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Singularity Theorems in GR

singularities occur in exact solutions; high degree of symmetries

singularities as obstruction to extend causal geodesics [Penrose, 65]

Theorem (Pattern singularity theorem [Senovilla 98])

A spacetime is causal geodesically incomplete if we have

(i) Energy/curvature condition

(ii) Causality condition (iii) Initial or boundary condition

(iii) initial condition ; causal geodesics start focussing

(i) energy condition ; focussing goes on ; focal point

(ii) causality condition ; no focal points

way out: one causal geodesic has to be incomplete
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The issue of regularity

Theorem (Pattern singularity theorem [Senovilla 98])

A C 2-spacetime 1 is causal geodesically incomplete if we have

(i) Energy/curvature condition

(ii) Causality condition (iii) Initial or boundary condition

C 2 is too much to ask: Realistic models (stars, matched
spacetimes) involve jumps in matter variables ; g ∈ C 1,1.

Theorem allows (i)–(iii) plus completeness for C 1,1.

But C 1,1-spacetimes are not ‘singular’ (curvature bd., geodesics ok).

Below C 1,1: unbounded curvature, non-unique geodesics: singular.

Hence C 1,1 is the natural threshold for singularity theorems.

1(M, g) with M smooth g ∈ C 2
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Low (= C1,1) regularity: Problems & Solutions

Problems:

Curvature tensor only L∞ ; no Jacobi fields, conjugate/focal points

No second variation of arclength

expp not a local diffeomorphism.

However:

expp bi-Lipschitz homeomorphism and ∃ convex neighbourhoods,
Gauss Lemma holds [Minguzzi 14], [Kunzinger, S, Stojković 14]

Bulk of causality theory remains valid [Chruściel, Grant 12]
[Minguzzi 14] [Kunzinger, S, Stojković, Vickers 14], [Sämann 16]

The Hawking singularity theorem (big bang) holds in C 1,1

[Kunzinger, S, Stojković, Vickers 15]

The Penrose singularity theorem (black hole) holds in C 1,1

[Kunzinger, S, Vickers 15]
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The Hawking singularity theorem (big bang) holds in C 1,1

[Kunzinger, S, Stojković, Vickers 15]

The Penrose singularity theorem (black hole) holds in C 1,1

[Kunzinger, S, Vickers 15]

6 / 20

The Hawking-Penrose singularity theorem for C1,1-Lorentzian metrics



Intro Hawking-Penrose theorem: classical to C1,1 Causal geodesics stop maximising The result

Strategies in low regularity

(1) CG-regularization of the metric adapted to causal structure

Sandwich null cones of g ∈ C 0 between
null cones of two approximating families
of smooth metrics: ǧε ≺ g ≺ ĝε

[Chruściel, Grant 12]
(2) Use replacement for strong energy condition

Lemma (timelike case) [Kunzinger, S, Stojković, Vickers 15]

Let (M, g) be a C1,1-spacetime satisfying the energy condition

Ric [g] (X ,X ) ≥ 0 for all timelike local C∞-vector fields X .

Then for all K ⊂⊂ M ∀C > 0 ∀δ > 0 ∀κ < 0 ∀ε small

Ric [ǧε](X ,X ) > −δ ∀X ∈TM|K : ǧε(X ,X ) ≤ κ, ‖X‖h ≤ C .
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The Hawking-Penrose Theorem

Theorem [Hawking, Penrose 1970]

A C 2-spacetime (M, g) is causally incomplete if

(i a) (SEC) Ric(X ,X ) ≥ 0 for every causal vector X

(i b) (Genericity) On every (inext.) causal geodesic γ, the tidal force
operator is nontrivial at least at a point γ(t0)

[R(t0)] : [γ̇(t0)]⊥ → [γ̇(t0)]⊥ , v 7→ R(v , γ̇(t0))γ̇(t0) 6≡ 0

(ii) (M, g) is chronological (no closed timelike curves)

(iii) M contains one of the following

(a) a compact achronal set A without edge (cf. Hawking’s thm. but...)
(b) a trapped surface S (cf. Penrose’s thm. but...)
(c) a trapped point: the expansion θ becomes negative for any f.d. null

geodesic starting at p
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Comments on the classical proof

Proof rests on

The Hawking-Penrose Lemma [Hawking, Penrose 1970]

A C 2-spacetime (M, g) is causally incomplete if

(L1) M is chronological

(L2) Every complete causal geodesic contains a pair of conjugate points

(L3) There is a trapped set (S achronal, E+(S) := J+(S) \ I+(S) cp.)

Good news: The H-P Lemma continues to hold in C 1,1 (causality)

Main objective: Show that

appropriate version of the initial conditions ⇒ (L3) (causality)

appropriate version of genericity and SEC ⇒ (L2) (analysis, here!)
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The C1,1- genericity condition

Definition (C 1,1-genericity condition)

Genericity holds along a causal geodesic γ of a C1,1-metric g if
near some γ(t0) there are continuous vector fields X , V with
X (γ(t)) = γ̇(t), V (γ(t)) ∈ γ̇(t)⊥ such that

〈R(V ,X )X ,V 〉 > c .

Equivalent to the usual condition for g ∈ C 2

Survives approximation process (Friedrichs lemma): If γε → γ in C 1

R[gε](t) > diag(c ,−C , . . . ,−C ) on [t0 − r , t0 + r ] (1)

where R[gε](t) := R[gε](. , γ̇ε(t))γ̇ε(t) : γ̇ε(t)⊥ → γ̇ε(t)⊥

to be fed into a matrix Riccati comparison argument later on...

12 / 20
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Raychaudhuri argument (timelike cae)

γ tl. geodesic in approximating C∞-spacetime, no conjugate pts.

A (unique) Jacobi tensor with A(−T ) = 0 and A(t0 = 0) = id

B := A′ A−1, expansion θ = tr(B) satisfies Raychaudhuri eq.:

θ̇ = −Ric(γ̇, γ̇)− tr(σ2)− (1/d) θ2

‘old’ (direct) argument: SEC ⇒ θ̇ ≤ δ− 1
d θ

2; i.c. ⇒ θ(0) < b < 0
⇒ upper bd. on first conj. pt in terms of b (scalar Riccati comp.)

‘reverse’ Raychaudhuri: no conj. pts. ⇒ |θ| small initially

Boxing lemma

For T > 0 there is δ(T ) > 0: If γ is w.o. conj. pts. on [−T ,T ]

then supt∈[−T
2
,T

2
] |θ(t)| ≤ 4d/T

provided that Ric(γ̇, γ̇) ≥ −δ on [−T ,T ].
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Matrix Riccati comparison argument

B := A′ A−1 satisfies a matrix Riccati eq.: Ḃ + B2 + R = 0

Comparison result [Eschenburg, Heintze 90]:

˙̃B + B̃2 + R̃ = 0 and
R ≥ R̃ on I

B(0) ≤ B̃(0)
⇒ B ≤ B̃ on I ∩ [0,∞)

Choosing R̃ and B̃(t0)

(1) suggests R̃ := diag(c,−C , . . . ,−C), I = [−r , r ]
reasonably B̃(0) := f (T , δ, r) · id

=⇒ B̃ = 1
d diag(Hc,f , . . . ,H−C ,f ) (diagonal & explicit)

=⇒ eigenvalue βmin(t) ≤ Hc,f (t) < Hc,f ( r
2 ) < 0 on [ r2 , r ]

Feed into the shear term tr(σ2) in the Raychaudhuri eq.:
Integrating from r

2 to r contradicts boxing lemma for T > T0(r , c)
and δ < δ0(r , c) ⇒ conjugate points in [−T ,T ].

The bound T0 depends only on c , r not on gε!
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Comparison result [Eschenburg, Heintze 90]:

˙̃B + B̃2 + R̃ = 0 and
R ≥ R̃ on I

B(0) ≤ B̃(0)
⇒ B ≤ B̃ on I ∩ [0,∞)

Choosing R̃ and B̃(t0)

(1) suggests R̃ := diag(c,−C , . . . ,−C), I = [−r , r ]
reasonably B̃(0) := f (T , δ, r) · id

=⇒ B̃ = 1
d diag(Hc,f , . . . ,H−C ,f ) (diagonal & explicit)

=⇒ eigenvalue βmin(t) ≤ Hc,f (t) < Hc,f ( r
2 ) < 0 on [ r2 , r ]

Feed into the shear term tr(σ2) in the Raychaudhuri eq.:
Integrating from r

2 to r contradicts boxing lemma for T > T0(r , c)
and δ < δ0(r , c) ⇒ conjugate points in [−T ,T ].

The bound T0 depends only on c , r not on gε!

14 / 20

The Hawking-Penrose singularity theorem for C1,1-Lorentzian metrics



Intro Hawking-Penrose theorem: classical to C1,1 Causal geodesics stop maximising The result

Matrix Riccati comparison argument

B := A′ A−1 satisfies a matrix Riccati eq.: Ḃ + B2 + R = 0
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Going back to g ∈ C 1,1

Shown so far:

ǧε ∈ C∞ close to g ∈ C 1,1 which satisfies genericity and SEC

γε causal ǧε-geodesics close to γ causal g -geodesic

⇒ γε have conj. pts. if too long (longer than bd. uniform in ε)

Want to show: γ is not g -maximizing

Theorem (timelike case) [Graf, Grant, Kunzinger, S 17]

Let g ∈ C 1,1 be a globally hyperbolic Lorentzian metric on M
satisfying genericity and SEC.
Then any timelike geodesic γ is not globally maximising.

15 / 20
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Proof

p = γ(−T )

q = γ(T )

γ

γε

Proof by contradiction, assume
γ : R→ M is maximizing and
satisfies genericity at t = 0

Choose T > T0(c , r), set
p := γ(−T ), q := γ(T )

g glob. hyp. ⇒ ǧε glob. hyp.

∃ ǧε-maximizing geodesics
γε : Iε → M from p to q

Extract a convergent subsequence

Limit must equal γ (else two
distinct g -maximizing curves)

But then Iε → [−T ,T ],
contradicting γε being
ǧε-maximizing

16 / 20
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contradicting γε being
ǧε-maximizing
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Further issues (mainly swept under the carpet)

The null case of the previous theorem

We cannot use global hyperbolicity

To produce long approximating null geodesics we need to rule out
that they are closed null geodesics for g by hand

; in the theorem we have to suppose the spacetime to be causal
rather than chronological (as in the classical case)

The initial conditions:

(a) the hypersurface case simply rests on C 1,1-causality

(b) We extend the trapped (2D-)surface case to C 0-submanifolds of
arbitrary codimensions generalising a condition by [Galloway,
Senovilla 2010] using it in the support sense.

(c) The trapped point condition also needs to be formulated in the
support sense using (b).
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The Hawking–Penrose singularity theorem for
C 1,1-metrics

Theorem [Hawking, Penrose 1970]

A C 2 -spacetime (M, g) is causally incomplete if

(i a) (SEC) Ric(X ,X ) ≥ 0 for every causal vector X

(i b) genericity holds

(ii) (M, g) is chronological

(iii) M contains one of the following

(a) a compact achronal set A without edge
(b) a trapped surface S
(c) a trapped point
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The Hawking–Penrose singularity theorem for
C 1,1-metrics

Theorem [Graf, Grant, Kunzinger, S. 2017]

A C 1,1-spacetime (M, g) is causally incomplete if

(i a) (SEC) Ric(X ,X ) ≥ 0 for every causal Lip. local vector field X

(i b) C 1,1-genericity holds

(ii) (M, g) is causal

(iii) M contains one of the following

(a) a compact achronal set A without edge
(b) a trapped C 0-surface S in the support sense
(c) a trapped point in the support sense
(d) a trapped C 0-submanifold of co-dimension 2 < m < n

satisfying the Galloway-Senovilla condition in the support sense
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P.T. Chrusćiel, J.D.E. Grant, On Lorentzian causality with continuous metrics
Classical Quantum Gravity 29 (2012), no. 14, 145001, 32 pp.

G.J. Galloway, J.M.M. Senovilla, Singularity theorems based on trapped submanifolds of arbitrary co-dimension
Classical Quantum Gravity 27 (2010), no. 15, 152002.

M. Graf, Volume comparison for C1,1 metrics Ann. Glob. Anal. Geom. 50 (2016), no. 3, 209–235.

M. Graf, J.D.E. Grant, M. Kunzinger, R. Steinbauer, The Hawking-Penrose singularity theorem for C1,1-Lorentzian
metrics.
arXiv:1706.08426.

J.D.E. Grant, J.-H. Treude, Volume comparison for hypersurfaces in Lorentzian manifolds and singularity theorems
Ann. Global Anal. Geom. 43 (2013), no. 3, 233–251.

S.W. Hawking, R. Penrose, The singularities of gravitational collapse and cosmology
Proc. Roy. Soc. London Ser. A 314, 1970, 529–548.
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