The classical singularity theorems of GR under optimal regularity conditions

(joint work with Melanie Graf, James D.E. Grant, Michael Kunzinger)

Roland Steinbauer

Department of Mathematics, University of Vienna

June 20, 2018

IX International Meeting on Lorentzian Geometry, Warsaw

Introduction: The singularity theorems of GR & regularity issues

2 The Hawking-Penrose Theorem: From classical to $C^{1,1}$

3 C^{1,1}-genericity & SEC force causal geodesics to stop maximising

1 Introduction: The singularity theorems of GR & regularity issues

2 The Hawking-Penrose Theorem: From classical to $C^{1,1}$

3 C^{1,1}-genericity & SEC force causal geodesics to stop maximising

Singularity Theorems in GR

- singularities occur in exact solutions; high degree of symmetries
- singularities as obstruction to extend causal geodesics [Penrose, 65]

Theorem (Pattern singularity theorem [Senovilla 98])

A spacetime is causal geodesically incomplete if we have (i) an energy/curvature condition, (iii) an initial or boundary (ii) a causality condition, and condition

- (iii) initial condition \rightsquigarrow causal geodesics start focussing
- (i) energy condition \rightsquigarrow focusing goes on \rightsquigarrow focal point
- (ii) causality condition \rightsquigarrow no focal points
- way out: one causal geodesic has to be incomplete

The issue of regularity

Theorem (Pattern singularity theorem [Senovilla 98])

A C²-spacetime ¹ is causal geodesically incomplete if we have
(i) an energy/curvature condition, (iii) an initial or boundary

(ii) a causality condition, and

condition

- C² is too much to ask for: Realistic models (stars, matched spacetimes) involve jumps in matter variables → g ∈ C^{1,1}.
- Theorem allows (i)–(iii) plus completeness for $C^{1,1}$.
- But $C^{1,1}$ -spacetimes are not 'singular' (curvature bd., geodesics ok).
- Below $C^{1,1}$: unbounded curvature, non-unique geodesics: singular.

Hence $C^{1,1}$ is the natural regularity for the singularity theorems.

 $^{1}(M,g)$ with M smooth $g \in C^{2}$

Low $(=C^{1,1})$ regularity: Problems & Solutions

Problems:

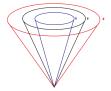
- Curvature tensor only $L^\infty \rightsquigarrow$ no Jacobi fields, conjugate/focal points
- No second variation of arclength
- exp_p not a local diffeomorphism.

However:

- exp_p bi-Lipschitz homeomorphism and ∃ convex neighbourhoods, Gauss Lemma holds [Minguzzi 14], [Kunzinger, S, Stojković 14]
- Bulk of causality theory remains valid [Chruściel, Grant 12] [Minguzzi 15] [Kunzinger, S, Stojković, Vickers 14], [Sämann 16]
- The Hawking singularity theorem (big bang) holds in C^{1,1} [Kunzinger, S, Stojković, Vickers 15]
- The Penrose singularity theorem (black hole) holds in C^{1,1} [Kunzinger, S, Vickers 15]

Strategies in low regularity

(1) CG-regularization of the metric adapted to causal structure



Sandwich null cones of $g \in C^0$ between null cones of two approximating families of smooth metrics: $\check{\mathbf{g}}_{\varepsilon} \prec \mathbf{g} \prec \hat{\mathbf{g}}_{\varepsilon}$

[Chruściel, Grant 12]

(2) Use replacement for strong energy condition

Lemma (timelike case)

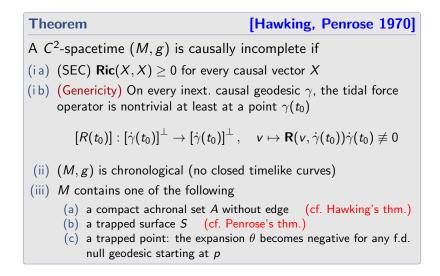
Let (M, \mathbf{g}) be a $\mathcal{C}^{1,1}$ -spacetime satisfying the energy condition Ric $[\mathbf{g}](X, X) \ge 0$ a.e. for all timelike local \mathcal{C}^{∞} -vector fields X. Then for all $K \subset \subset M \quad \forall C > 0 \quad \forall \delta > 0 \quad \forall \kappa < 0 \quad \forall \varepsilon$ small Ric $[\check{\mathbf{g}}_{\varepsilon}](X, X) > -\delta \quad \forall X \in TM|_{\mathcal{K}} : \check{\mathbf{g}}_{\varepsilon}(X, X) \le \kappa, \quad ||X||_{h} \le C.$

Introduction: The singularity theorems of GR & regularity issues

2 The Hawking-Penrose Theorem: From classical to $C^{1,1}$

C^{1,1}-genericity & SEC force causal geodesics to stop maximising

The Hawking-Penrose Theorem



Comments on the classical proof

Proof rests on

The Hawking-Penrose Lemma [Hawking, Penrose 1970] [Graf 2016]

A $C^2C^{1,1}$ -spacetime (M,g) is causally incomplete if

(L1) M is chronological

(L2) Every complete causal geodesic contains a pair of conjugate ptsis not (globally) maximising

(L3) There is a trapped set (S achronal, $E^+(S) := J^+(S) \setminus I^+(S)$ cp.)

Good news: The H-P Lemma continues to hold in $C^{1,1}$ (causality) Left to do: Show that

- appropriate version of the initial conditions \Rightarrow (L3) (causality)
- appropriate version of genericity and SEC \Rightarrow (L2) (analysis, here!)

Introduction: The singularity theorems of GR & regularity issues

2 The Hawking-Penrose Theorem: From classical to $C^{1,1}$

3 $C^{1,1}$ -genericity & SEC force causal geodesics to stop maximising

The $\mathcal{C}^{1,1}$ -genericity condition

 $\begin{array}{l} \hline \textbf{Definition} \ (\mathcal{C}^{1,1}\text{-genericity condition}) \\ \hline \textbf{Genericity holds along a causal geodesic } \gamma \text{ of a } \mathcal{C}^{1,1}\text{-metric } g \text{ if} \\ \textbf{near some } \gamma(t_0) \text{ there are continuous vector fields } X, V \text{ with} \\ X(\gamma(t)) = \dot{\gamma}(t), V(\gamma(t)) \in \dot{\gamma}(t)^{\perp} \text{ such that} \\ & \langle \textbf{R}(V,X)X,V \rangle > c. \end{array}$

- Equivalent to the usual condition for $g \in C^2$
- Survives approximation process (Friedrichs lemma): If $\gamma_{arepsilon} o \gamma$ in \mathcal{C}^1

$$R[g_{\varepsilon}](t) > \operatorname{diag}(c, -C, \dots, -C) \text{ on } [t_0 - r, t_0 + r]$$
(1)

where $R[g_{\varepsilon}](t) := R[g_{\varepsilon}](.,\dot{\gamma}_{\varepsilon}(t))\dot{\gamma}_{\varepsilon}(t): \dot{\gamma}_{\varepsilon}(t)^{\perp}
ightarrow \dot{\gamma}_{\varepsilon}(t)^{\perp}$

• to be fed into a matrix Riccati comparison argument later on...

Raychaudhuri argument (timelike case)

- γ tl. geodesic in approximating C^{∞} -spacetime, no conjugate pts.
- A (unique) Jacobi tensor with A(-T) = 0 and $A(t_0 = 0) = id$
- $B := A' A^{-1}$, expansion $\theta = tr(B)$ satisfies **Raychaudhuri eq.**:

 $\dot{\theta} = -\operatorname{Ric}(\dot{\gamma}, \dot{\gamma}) - \operatorname{tr}(\sigma^2) - (1/d) \theta^2$

- 'old' (direct) argument: SEC $\Rightarrow \dot{\theta} \leq \delta \frac{1}{d}\dot{\theta}^2$; i.c. $\Rightarrow \theta(0) < b < 0$ \Rightarrow upper bd. on first conj. pt in terms of *b* (scalar Riccati comp.)
- 'reverse' Raychaudhuri: no conj. pts. \Rightarrow $|\theta|$ small initially

Boxing lemma

For T > 0 there is $\delta(T) > 0$ such that: If γ is has no conjugate points on [-T, T] then $\sup_{t \to 0} |\theta(t)| < \frac{4d}{2t}$

$$t \in \left[-\frac{T}{2}, \frac{T}{2}\right] \quad |t| \in \left[-\frac{T}{2}, \frac{T}{2}\right]$$

provided that $\operatorname{Ric}(\dot{\gamma},\dot{\gamma}) \geq -\delta$ on [-T, T].

Matrix Riccati comparison argument

- $B := A' A^{-1}$ satisfies a matrix Riccati eq.: $\dot{B} + B^2 + R = 0$
- Comparison result [Eschenburg, Heintze 90]:

$$\dot{\tilde{B}} + \tilde{B}^2 + \tilde{R} = 0$$
 and $\begin{array}{c} R \geq \tilde{R} ext{ on } I \\ B(0) \leq \tilde{B}(0) \end{array} \Rightarrow B \leq \tilde{B} ext{ on } I \cap [0,\infty) \end{array}$

• Choosing \tilde{R} and $\tilde{B}(t_0)$

• (1) suggests
$$\tilde{R} := \operatorname{diag}(c, -C, \ldots, -C), I = [-r, r]$$

• reasonably
$$B(0) := f(T, \delta, r) \cdot id$$

$$\implies \tilde{B} = \frac{1}{d} \operatorname{diag}(H_{c,f}, \dots, H_{-C,f}) \text{ (diagonal & explicit)}$$
$$\implies \operatorname{eigenvalue} \beta_{\min}(t) \le H_{c,f}(t) < H_{c,f}(\frac{r}{2}) < 0 \text{ on } [\frac{r}{2}, r]$$

• Feed into the shear term $\operatorname{tr}(\sigma^2)$ in the Raychaudhuri eq.: Integrating from $\frac{r}{2}$ to r contradicts boxing lemma for $T > T_0(r, c)$ and $\delta < \delta_0(r, c) \Rightarrow$ conjugate points in [-T, T].

The bound T_0 depends only on c, r not on g_{ε} !

Going back to $g \in C^{1,1}$

Shown so far:

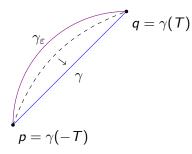
- $\check{g}_{arepsilon}\in C^{\infty}$ close to $g\in C^{1,1}$ which satisfies genericity and SEC
- γ_{ε} causal \check{g}_{ε} -geodesics close to γ causal g-geodesic
- $\Rightarrow \gamma_{\varepsilon}$ have conj. pts. if too long (longer than bd. uniform in ε)

Want to show: γ is not g-maximizing

Theorem (timelike case)

Let $g \in C^{1,1}$ be a globally hyperbolic Lorentzian metric on M satisfying genericity and SEC. Then any timelike geodesic γ is not globally maximising.

Proof



- Proof by contradiction, assume $\gamma : \mathbb{R} \to M$ is maximizing and satisfies genericity at t = 0
- Choose T > T₀(c, r), set
 p := γ(−T), q := γ(T)
- g glob. hyp. $\Rightarrow \check{g}_{\varepsilon}$ glob. hyp.
- $\exists \check{g}_{\varepsilon}$ -maximizing geodesics $\gamma_{\epsilon}: I_{\varepsilon} \to M$ from p to q
- Extract a convergent subsequence
- Limit must equal γ (else two distinct g-maximizing curves)
- But then $I_{\varepsilon} \rightarrow [-T, T]$, contradicting γ_{ϵ} being \check{g}_{ε} -maximizing

Introduction: The singularity theorems of GR & regularity issues

2 The Hawking-Penrose Theorem: From classical to $C^{1,1}$

3 C^{1,1}-genericity & SEC force causal geodesics to stop maximising

Further issues (mainly swept under the carpet)

The null case of the previous theorem

- We cannot use global hyperbolicity
- To produce long approximating null geodesics we need to rule out that they are closed null geodesics for g by hand
- \rightsquigarrow in the theorem we have to suppose the spacetime to be causal rather than chronological (as in the classical case)
- The initial conditions:
- (a) the hypersurface case simply rests on $C^{1,1}$ -causality
- (b) We extend the trapped (2D-)surface case to C⁰-submanifolds of arbitrary codimensions generalising a condition by [Galloway, Senovilla 2010] using it in the support sense.
- (c) The trapped point condition also needs to be formulated in the support sense using (b).

The Hawking–Penrose theorem in $C^{1,1}$

Theorem[Hawking, Penrose 1970] [Graf, Grant,Kunzinger, S. 2017]

- A C^2 $C^{1,1}$ -spacetime (M,g) is causally incomplete if
- (i a) (SEC) $\operatorname{Ric}(X, X) \ge 0$ a.e. for every causal vector XLip. local vector field X
- (i b) $C^{1,1}$ -genericity holds
 - (ii) (M, g) is chronological causal
- (iii) *M* contains one of the following
 - (a) a compact achronal set A without edge
 - (b) a trapped C^0 -surface S in the support sense
 - (c) a trapped point in the support sense

(d) a trapped C^0 -submanifold of co-dimension 2 < m < nsatisfying the Galloway-Senovilla condition in the support sense

Some References

P.T. Chrusćiel, J.D.E. Grant, *On Lorentzian causality with continuous metrics.* CQG 29 (2012).

G.J. Galloway, J.M.M. Senovilla, *Singularity theorems based on trapped submanifolds of arbitrary co-dimension*. CQG 27 (2010).

M. Graf, J.D.E. Grant, M. Kunzinger, R. Steinbauer, *The Hawking-Penrose singularity theorem for* $C^{1,1}$ -Lorentzian metrics. CMP 360 (2018).

J.D.E. Grant, J.-H. Treude, *Volume comparison for hypersurfaces in Lorentzian manifolds and singularity theorems*. Ann. Global Anal. Geom. 43 (2013).

S.W. Hawking, R. Penrose, *The singularities of gravitational collapse and cosmology.* Proc. Roy. Soc. London Ser. A 314 (1970).

M. Kunzinger, R. Steinbauer, M. Stojković, *The exponential map of a* $C^{1,1}$ *-metric*. Differential Geom. Appl. 34 (2014).

M. Kunzinger, R. Steinbauer, M. Stojković, J.A. Vickers, *Hawking's singularity* theorem for $C^{1,1}$ -metrics. CQG 32 (2015).

M. Kunzinger, R. Steinbauer, J.A. Vickers. The Penrose singularity theorem in regularity $C^{1,1}$. CQG 32 (2015).

E. Minguzzi, *Convex neighborhoods for Lipschitz connections and sprays*. Monatsh. Math. 177 (2015).

C. Sämann, *Global hyperbolicity for spacetimes with continuous metrics*. Annales Henri Poincaré, 17 (2016).

Thanks for your attention