The wave equation on space-times of low regularity

Roland Steinbauer

Faculty of Mathematics University of Vienna

Relativity Seminar Department of Theoretical Physics Charles University Prague May 31, 2011

The wave equation on space-times of low regularity

Roland Steinbauer

Faculty of Mathematics University of Vienna

joint work with

Günther Hörmann

Relativity Seminar Department of Theoretical Physics Charles University Prague May 31, 2011

Michael Kunzinger

Intro, motivation & aims

2 The classical existence theory

- Normally hyperbolic operators
- Local existence theory
- Global existence theory

3 Interlude:

Yet another intro to nonlinear distributional geometry

The case of low regularity metrics

- A local existence and uniqueness result
- A global existence and uniqueness result
- Comments and outlook

Outline

Intro, motivation & aims

- 2 The classical existence theory
 - Normally hyperbolic operators
 - Local existence theory
 - Global existence theory

3 Interlude:

Yet another intro to nonlinear distributional geometry

- 4 The case of low regularity metrics
 - A local existence and uniqueness result
 - A global existence and uniqueness result
 - Comments and outlook

The theme

Solving the Cauchy problem for wave(-type) operators on Lorentzian manifolds with a metric of low regularity.

The ingredients

- *M* a smooth manifold with a weakly regular Lorentzian metric *g*
- \Box the wave operator of g, i.e.,

$$\Box \,=\, g^{ij}
abla_i
abla_j \,=\, |\det g|^{-rac{1}{2}} \,\, \partial_i \, (|\det g|^{rac{1}{2}} \,\, g^{ij} \, \partial_j)$$

This is a (scalar) PDE on *M* with coefficients of low regularity.

The model (Generalised metrics [Kunzinger,S., 02])

A generalized L-metric is a symmetric section

$$g \in \mathcal{G}_2^0(M) \cong \mathcal{G}(M) \otimes_{\mathcal{C}^\infty(M)} \mathcal{T}_2^0(M)$$

(special Colombeau algebra) with

- a representative $(g_{\varepsilon})_{\varepsilon}$ consisting of smooth L-metrics, and
- det(g) invertible in G(M)

Results (Local Existence and uniqueness)

Local existence and uniqueness theorems for the Cauchy problem for the wave operator of weakly singular Lorentzian metrics in the Colombeau algebra.

- conical space times [J. Vickers & J. Wilson, 2000]
- generalisation to essentially locally bounded metrics
 [J. Grant, E. Mayerhofer & R.S., 2009]
- generalisation to tensors, refined regularity [C. Hanel, 2011]

Project (Global Existence and uniqueness)

Global existence and uniqueness for the Cauchy problem for

- normally hyperbolic operators in
- globally hyperbolic space-times

with metrics in the Colombeau algebra.

work in progress, jointly with G. Hörmann and M. Kunzinger

Outline

- 2 The classical existence theory
 - Normally hyperbolic operators
 - Local existence theory
 - Global existence theory

3 Interlude:

Yet another intro to nonlinear distributional geometry

- 4 The case of low regularity metrics
 - A local existence and uniqueness result
 - A global existence and uniqueness result
 - Comments and outlook

Normally hyperbolic operators (1)

Definition

A 2nd order differential operator $P : C^{\infty}(M, E) \to C^{\infty}(M, E)$ acting on sections of a vector bundle (E, π, M) is called normally hyperbolic if its principal symbol is given by a Lorentzian metric g on M, i.e.,

$$\sigma(\boldsymbol{P})(\boldsymbol{x},\xi) = -\boldsymbol{g}_{\boldsymbol{x}}(\xi,\xi) \operatorname{Id}_{\boldsymbol{E}} \qquad (\boldsymbol{x} \in \boldsymbol{M}, \ \xi \in \boldsymbol{T}_{\boldsymbol{x}}^* \boldsymbol{M} \setminus \{\boldsymbol{0}\})$$

Locally:
$$P = -g^{ij}(x)\partial_i\partial_j + A^i(x)\partial_i + B(x)$$

Examples

- wave operator or metric d'Alembertian □
- connection d'Alembertian: $\Box^{\nabla} := -\text{tr}_g \otimes \text{Id}_E(\nabla^{T^*M \otimes E} \circ \nabla)$
- Yamabe operator, squares of Dirac operators

Normally hyperbolic operators (2)

Facts

 Weitzenböck formula: For every normally hyperbolic operator P there exists a unique connection ∇ on E and a unique homomorphism field B_P ∈ Γ(Hom(E, E)) such that

$$P=\Box^{\nabla}+B_{P}.$$

- Huygens operators: subclass with sharp wave propagation
 - P. Günther, Hygens' principle and Hyperbolic Equations, Academic Press, Boston, 1988.
 - H. Baum, I. Kath, Ann. Glob. Anal. Geom, 14, 315-371, 1996.
- Local existence on small domains using Riesz distributions and Hadamard's construction.
- Global existence and well-posedness on globally hyperbolic space-times.

The wave equation on Minkowski space

On *n*-dimensional Minkowski space set $\gamma(x) := -x_{\mu}x^{\mu}$ Definition (Riesz distributions)

For $\alpha \in \mathbb{C}$ with $\Re(\alpha) > n$ we define the continuous functions

$$\mathcal{R}_{\pm}(lpha)(x) := \left\{egin{array}{c} rac{2^{1-lpha}\pi^{(2-n)/2}}{(lpha/2-1)!((lpha-n)/2)!}\,\gamma(x)^{(lpha-n)/2} & x\in J_{\pm}(0)\ 0 & ext{else.} \end{array}
ight.$$

Theorem (Properties of the Riesz distributions)

(i)
$$\Box R_{\pm}(\alpha + 2) = R_{\pm}(\alpha)$$
 ($\Re(\alpha) < n + 2$) (1)

(ii) $\alpha \mapsto R_{\pm}(\alpha)$ extends to a holomorphic family of distributions on \mathbb{C}

(iii) $\operatorname{supp}(R_{\pm}(\alpha)) \subseteq J_{\pm}(0)$ sing supp $(R_{\pm}(\alpha)) \subseteq C_{\pm}(0)$

(iv) $R_{\pm}(0) = \delta$

So $R_{\pm}(2)$ is a fundamental solution of \Box and we can solve the Cauchy problem.

Local existence on Lorentzian manifolds (1)

Let Ω be a normal neighbourhood of $x \in M$.

• Transport the Riesz distributions to Ω with the exponential map:

$$R^{\Omega}_{\pm}(\alpha, \mathbf{x}) := \sqrt{|\det g_{\mathbf{x}}|} (\exp_{\mathbf{x}})_* R_{\pm}(\alpha) \quad \in \mathcal{D}'(\Omega)$$

We have analogous properties but (1) translates into

$$\Box R^{\Omega}_{\pm}(\alpha+2,x) = \left(\frac{1}{2\alpha}(\Box(\gamma \circ \exp_x) - 2n) + 1\right) R^{\Omega}_{\pm}(\alpha,x)$$

which makes it harder to find a fundamental solution.

We make a formal ansatz

$$\mathcal{R}_{\pm}(x) := \sum_{k=0}^{\infty} V_x^k R_{\pm}^{\Omega}(2+2k,x)$$
 (2)

with the Hadamard coefficients V_x^k to be found.

Local existence on Lorentzian manifolds (2)

- Determine the Hadamard coefficients by differentiating (2) and demanding that R_±(x) is a fundamental solution of P at X. (Have to solve certain transport equations.)
- Introduce factors σ_j into (2) that enforce convergence to obtain an approximate fundamental solution *R*̃:

$$P(.,D)\,\tilde{\mathcal{R}}_{\pm}(x) = \delta_x + K_{\pm}(x,.)$$

•
$$\mathcal{K}_{\pm} \in \mathcal{C}^{\infty}(!)$$
 define $(\mathcal{K}_{\pm}u)(x) := \int_{\bar{\Omega}} \mathcal{K}_{\pm}(x, y) u(y) \sqrt{|\det g|} dy$.

• For Ω small, $\textit{id} + \mathcal{K}_{\pm}$ is an isomorphism with bounded inverse given by the Neumann series $_{\infty}$

$$(id + \mathcal{K}_{\pm})^{-1} = \sum_{j=0}^{\infty} (-\mathcal{K}_{\pm})^j.$$

Finally

$$F^{\Omega}_{\pm}(x) := (\mathit{id} + \mathcal{K}_{\pm})^{-1} \circ \tilde{\mathcal{R}}_{\pm}(x)$$

is a fundamental solution of *P* at *x*; asymptotic expansion $\tilde{\mathcal{R}}_{\pm}(x)$.

Local existence on Lorentzian manifolds (3)

Theorem (Local existence)

Let \bullet (*M*, *g*) be a time oriented Lorentzian manifold

P be normally hyperbolic acting on sections in E

Then each point $x \in M$ possesses a relatively compact, causal neighborhood Ω such that for all (right hand sides) $v \in \mathcal{D}(\Omega, E)$ the distributions u_{\pm} defined by

$$\langle u_{\pm}, \varphi \rangle := \int_{\Omega} \langle F_{\pm}^{\Omega}(x), \varphi \rangle \, v(x) \, \sqrt{|\det g|} dx$$

is actually smooth and solves the PDE

$$P u_{\pm} = v.$$

Moreover, we have

$$\operatorname{supp}(u_{\pm}) \subseteq J_{\pm}^{\Omega}(\operatorname{supp}(v)).$$

Global Hyperbolicity

Pasting local solutions together needs good causality of *M*: geometric key notion allowing to formulate Cauchy problems

Theorem (Characterising global hyperbolicity)

For a space-time (M, g) the following are equivalent:

(i) M is globally hyperbolic, i.e.,

- M is (strongly) causal (no (almost) closed causal curves)
- and the causal diamonds J_−(p) ∩ J₊(q) are all compact.

(ii) *M* has a Cauchy hypersurface *S*. (Every inextendible timelike curve meets *S* exactly once.)

(iii) *M* is isometric to $\mathbb{R} \times S$ with metric

[Bernal, Sánchez, 05]

 $-\beta(t,x) dt^2 + h_t(x)$ where

- β is a smooth and positive function, and
- *h_t* is a smooth one-parameter family of Riemannian metrics on *S*.

Note: Each $\{t\} \times S$ is a spacelike Cauchy hypersurface in M.

Global existence theory (1)

Lemma (Uniqueness of fundamental solutions)

Let M be a connected, time oriented L-manifold such that

- (i) the causality condition holds
- (ii) the relation \leq is closed
- (iii) the time separation function is finite and continuous.

Then for each point x in M there is at most one fundamental solution for P at x with past (future) compact support.

Now use this global uniqueness to patch together local fundamental solutions on RCCSV-domains to obtain global well posedness.

Global existence theory (2)

Theorem (Global well-posedness [Bär, Ginoux, Pfäffle, 07])

- Let (M, g) be globally hyperbolic,
 - S be a spacelike Cauchy hypersurface with future directed timelike unit nomal vector field n,
- P be normally hyperbolic acting on sections in E. Then

(i) The Cauchy problem

$$Pu = f,$$
 $u|_{\mathcal{S}} = u_0,$ $\nabla_n u|_{\mathcal{S}} = u_1.$

has a unique solution $u \in C^{\infty}(M, E)$ for each $u_0, u_1 \in D(S, E)$ and each $f \in D(M, E)$.

(ii) In addition, $\operatorname{supp}(u) \subseteq J(\operatorname{supp}(u_0) \cup \operatorname{supp}(u_1) \cup \operatorname{supp}(f))$.

(iii) The mapping

 $\mathcal{D}(S,E)\times\mathcal{D}(S,E)\times\mathcal{D}(M,E)\ni (u_0,u_1,f)\ \mapsto\ u\in\mathcal{C}^\infty(M,E)$

is linear and continuous.

Distributional Data

Theorem (Global existence and uniqueness– \mathcal{D}' -data)

- Let (M, g) be globally hyperbolic,
 - S be a spacelike Cauchy hypersurface with future directed timelike unit normal vector field n,
 - P be normally hyperbolic acting on sections in E.

Then

(i) The Cauchy problem

$$Pu = f,$$
 $u|_{\mathcal{S}} = u_0,$ $\nabla_n u|_{\mathcal{S}} = u_1.$

has a unique solution $u \in C^{\infty}(\mathbb{R}; D'(S, E))$ for each $u_0, u_1 \in \mathcal{E}'(S, E)$ and each $f \in C^{\infty}(\mathbb{R}; \mathcal{E}'(S, E))$. (ii) In addition, $\operatorname{supp}(u) \subseteq J(\operatorname{supp}(u_0) \cup \operatorname{supp}(u_1) \cup \operatorname{supp}(f))$.

Key ideas: $M \cong \mathbb{R} \times S \rightsquigarrow Pu = f \in \mathcal{C}^{\infty}(\mathbb{R}; \mathcal{D}'(S, E))$ possible \rightsquigarrow wave front set of *f* hence *u* avoids normal direction to *S* $\rightsquigarrow u \in \mathcal{C}^{\infty}(\mathbb{R}; \mathcal{D}'(S, E))$

Outline

- 2 The classical existence theory
 - Normally hyperbolic operators
 - Local existence theory
 - Global existence theory

Interlude:

Yet another intro to nonlinear distributional geometry

- The case of low regularity metrics
 - A local existence and uniqueness result
 - A global existence and uniqueness result
 - Comments and outlook

Colombeau Algebras

Algebras of generalised functions in the sense of J.F. Colombeau [Colombeau 1984, 1985] are differential algebras

- that contain the vector space of distributions and
- display maximal consistency with classical analysis (in the light of L. Schwartz' impossibility result). In particular the construction preserves
 - the product of C[∞]-functions
 - (Lie) derivatives of distributions.

Main ideas of the construction are

- regularisation of distributions by nets of \mathcal{C}^{∞} -functions
- asymptotic estimates in terms of a regularisation parameter (quotient construction)

The (special) algebra on manifolds

• scalars:
$$\mathcal{G}(M) := \mathcal{E}_M(M)/\mathcal{N}(M)$$

 $\mathcal{E}_M(M) := \{(u_{\varepsilon})_{\varepsilon} \in \mathcal{C}^{\infty(0,1]} : \forall K \forall P \exists I : \sup_{x \in K} |Pu_{\varepsilon}(x)| = O(\varepsilon^{-1})\}$
 $\mathcal{N}(M) := \{(u_{\varepsilon})_{\varepsilon} \in \mathcal{E}_M(M) : \forall K \quad \forall m : \sup_{x \in K} |u_{\varepsilon}(x)| = O(\varepsilon^m)\}$

notation: $\mathcal{G} \ni u = [(u_{\varepsilon})_{\varepsilon}]$ fine sheaf of differential algebras w.r.t. $L_X u := [(L_X u_{\varepsilon})_{\varepsilon}]$

• tensor fields: $\mathcal{G}_{s}^{r}(M) := \mathcal{E}_{M_{s}^{r}}(M) / \mathcal{N}_{s}^{r}(M)$ $\mathcal{G}_{s}^{r}(M) \cong \mathcal{G}(M) \otimes_{\mathcal{G}} \mathcal{T}_{s}^{r}(M) \cong L_{\mathcal{C}^{\infty}(M)}(\Omega^{1}(M)^{r}, \mathfrak{X}(M)^{s}; \mathcal{G}(M))$ $\cong L_{\mathcal{G}(M)}(\mathcal{G}_{1}^{0}(M)^{r}, \mathcal{G}_{0}^{1}(M)^{s}; \mathcal{G}(M))$

fine sheaf of finitely generated and projective $\mathcal{G}(M)$ -modules

• Embeddings: ∃ injective sheaf morphisms (basically convolution)

$$\iota: \mathcal{T}^r_s(_) \hookrightarrow {\mathcal{D}'}^r_s(_) \hookrightarrow \mathcal{G}^r_s(_).$$

Generalised setting for GR

• generalised metric: (technicalities on the index skipped) $g \in \mathcal{G}_2^0(M)$ symmetric and det(g) invertible in \mathcal{G} , i.e.,

$$\forall \mathsf{K} \text{ comp. } \exists m : \inf_{p \in \mathsf{K}} |\det(g_{\varepsilon}(p))| \ge \varepsilon^m \qquad (\mathsf{N}_{\varepsilon})$$

- for all generalised points $g(\tilde{x})$ is non-degenerate as map $\tilde{\mathbb{R}}^n \times \tilde{\mathbb{R}}^n \to \tilde{\mathbb{R}}$ (pointwise generalised non-degeneracy)
- there exists a representative g_ε consisting of smooth metrics and det(g) invertible in G (idea of smoothing)
- g induces an isomorphism $\mathcal{G}_0^1(M) \ni X \mapsto X^\flat := g(X, \, . \,) \in \mathcal{G}_1^0(M)$
- ∃! generalised Levi-Civita connection for g
- generalised curvature Riem[g], Ric[g], W[g], R[g].
 defined via usual coordinate formulas for fixed ε
- basic C²-compatibility: g_ε → g in C², g a vacuum solution of Einstein's equation ⇒ Ric[g_ε] → 0 in D'¹₃.

(The case of low regularity)

22/33

Outline

- 2 The classical existence theory
 - Normally hyperbolic operators
 - Local existence theory
 - Global existence theory

3 Interlude:

Yet another intro to nonlinear distributional geometry

- The case of low regularity metrics
 - A local existence and uniqueness result
 - A global existence and uniqueness result
 - Comments and outlook

How to solve a PDE in ${\mathcal G}$

To prove existence and uniqueness of solutions $u = [(u_{\varepsilon})_{\varepsilon}] \in \mathcal{G}$ of a PDE

$$P u = \sum_{|\alpha| \le m} a^{\alpha} \partial^{\alpha} u = f \qquad (a^{\alpha} = [(a^{\alpha}_{\varepsilon})_{\varepsilon}], \ f = [(f_{\varepsilon})_{\varepsilon}] \in \mathcal{G})$$

proceed as follows:

- (1) Solve $P_{\varepsilon}u_{\varepsilon} = f_{\varepsilon}$ in \mathcal{C}^{∞} for fixed ε on some common domain obtaining a solution candidate $(u_{\varepsilon})_{\varepsilon}$
- (2) Show that (*u*_ε)_ε is moderate obtaining existence of solutions *u* := [(*u*_ε)_ε] ∈ *G*
- (3) Show that disturbing (f_ε)_ε and (P_ε)_ε by elements of the ideal only changes (u_ε)_ε by an element of the ideal obtaining uniqueness of u ∈ G

Local result: 3 conditions on the metric

Pick $p \in U \subseteq M$ relatively compact

(all norms derived from some smooth R-metric)

(A) $\forall K \subset U \quad \forall k \quad \forall \eta_1, \ldots, \eta_k \in \mathfrak{X}(M)$

in particular g_{ε} , g_{ε}^{-1} locally uniformly bounded \Rightarrow existence of a hypersurface $S \ni p$, uniformly spacelike with unit normal vector $n = [(n_{\varepsilon})_{\varepsilon}]$

Hence we have an initial surface for the Cauchy problem.

(B)
$$\forall K \subset U : \sup_{K} ||\nabla_{g^{\varepsilon}} n_{\varepsilon}|| = O(1) \Rightarrow ||L_n g_{\varepsilon}||_{e_{\varepsilon}} = O(1)$$

(C) For each ε , *S* is a past compact, spacelike hypersurface and $\partial J_{\varepsilon}^+(S) = S$. Moreover, $\bigcap_{\varepsilon} J_{\varepsilon}^+(S)$ contains some non-empty open set *A*.

 \Rightarrow existence of classical solutions on common domain Hence we have a solution candidate.

The local result

Theorem ([Grant, Mayerhofer, S, 09])

Let g be a generalised metric such that (A)–(C) holds. Then there exists some open neighbourhood $V \subseteq U$ of p where the Cauchy problem

$$\Box_g u = 0, \qquad u|_{\mathcal{S}} = u_0, \quad L_n u|_{\mathcal{S}} = u_1$$

has a unique solution $u \in \mathcal{G}(V)$ for all $u_0, u_1 \in \mathcal{G}(S)$.

Key steps of the proof:

- (C) provides us with a solution candidate
- (A) & (B) allow to carry out higher order energy estimates which give existence and uniqueness in *G*.

Proof strategy: some details

key ingredient: higher order energy estimates

- use of ε-dependent Sobolev norms
- use of ε-dependent energy-momentum tensors
- switch back to sup-norms

step 1: existence of classical solutions u_{ε} for fixed ε (by (C)) \sim candidate for \mathcal{G} -solution

step 2: existence of \mathcal{G} -solutions: moderate data \rightsquigarrow moderate initial energies \rightsquigarrow mod. energies for all times $\rightsquigarrow (u_{\varepsilon})_{\varepsilon} \in \mathcal{E}_{\mathcal{M}}(V)$

step 3: uniqueness of *G*-solutions:

independence of the choice of the representatives of v, wnegligible data \rightsquigarrow [.....] $\rightsquigarrow (u_{\varepsilon})_{\varepsilon} \in \mathcal{N}(V)$

The energy momentum tensors

• From g_{ϵ} define a Riemannian metric:

$$e^{arepsilon}_{ab}:=g^{arepsilon}_{ab}+2n^{arepsilon}_{a}n^{arepsilon}_{b}$$

Define the Energy momentum tensors:

$$T^{ab,0}_{\varepsilon}(u) := -\frac{1}{2}g^{ab}_{\varepsilon}u^{2}$$

$$T^{ab,k}_{\varepsilon}(u) := (g^{ac}_{\varepsilon}g^{bd}_{\varepsilon} - \frac{1}{2}g^{ab}_{\varepsilon}g^{cd}_{\varepsilon})e^{p_{1}q_{1}}_{\varepsilon}\dots e^{p_{k-1}q_{k-1}}_{\varepsilon}$$

$$(\nabla^{\varepsilon}_{c}\nabla^{\varepsilon}_{p_{1}}\dots\nabla^{\varepsilon}_{p_{k-1}}u)(\nabla^{\varepsilon}_{d}\nabla^{\varepsilon}_{q_{1}}\dots\nabla^{\varepsilon}_{q_{k-1}}u)$$

• $T_{s}^{ab,k}(u)$ satisfies the dominant energy condition, i.e. $T_{\varepsilon}^{ab,k}(u) \eta_{a}^{\varepsilon} \eta_{b}^{\varepsilon} \geq 0$ for any η_{a}^{ε} timelike (w.r.t. g_{ε}) $T_{\varepsilon}^{ab,k}(u) \eta_{a}^{\varepsilon}$ is non spacelike (w.r.t. g_{ε})

Higher order energies and the basic estimate

- Higher order Energies: $E_{\tau,\varepsilon}^k(u) := \sum_{j=0}^k \int_{\Sigma_{\tau}} T_{\varepsilon}^{ab,j}(u) n_a^{\varepsilon} n_b^{\varepsilon} \mu_{\tau}^{\varepsilon}$
- The dominant energy condition gives:

$$\textit{\textit{E}}_{\tau,\varepsilon}^{\textit{k}}(\textit{\textit{u}}) \leq \textit{\textit{E}}_{\tau=0,\varepsilon}^{\textit{k}}(\textit{\textit{u}}) + \sum_{j=0}^{\textit{k}} \int_{\Omega_{\tau}} \left(\textit{\textit{n}}_{\textit{b}} \nabla_{\textit{a}}^{\varepsilon} \textit{\textit{T}}_{\varepsilon}^{\textit{ab},j}(\textit{u}) + \textit{\textit{T}}_{\varepsilon}^{\textit{ab},j}(\textit{u}) \nabla_{\textit{a}}^{\varepsilon} \textit{n}_{\textit{b}}\right) \mu_{\varepsilon}$$

Energy estimates

Lemma (Energy estimates for the solution candidate)

Let u_{ε} be a solution candidate. Then for all orders of energies k there are constants C'_k , C''_k such that for all times τ ($0 \le \tau \le \gamma$)

(i)
$$E_{\tau,\varepsilon}^{k}(u_{\varepsilon}) \leq E_{0,\varepsilon}^{k}(u_{\varepsilon}) + \frac{C_{k}^{\prime\prime}}{\int_{\zeta=0}^{\zeta=0}} E_{\zeta,\varepsilon}^{k}(u_{\varepsilon})d\zeta + C_{k}^{\prime}\sum_{j=1}^{k-1} \frac{1}{\varepsilon^{2(1+k-j)}} \int_{\zeta=0}^{\tau} E_{\zeta,\varepsilon}^{j}(u_{\varepsilon})d\zeta$$

(ii) $E_{\tau,\varepsilon}^{k}(u_{\varepsilon}) \leq (E_{0,\varepsilon}^{k}(u_{\varepsilon}) + C_{k}^{\prime}\sum_{j=1}^{k-1} \frac{1}{\varepsilon^{2(1+k-j)}} \int_{\zeta=0}^{\tau} E_{\zeta,\varepsilon}^{j}(u_{\varepsilon})d\zeta) e^{C_{k}^{\prime\prime}\tau}$

Corollary (Moderateness of energies)

If the initial energy $(E_{0,\varepsilon}^k(u_{\varepsilon}))_{\varepsilon}$ is moderate [negligible] then $\sup_{0 \le \tau \le \gamma} (E_{\tau,\varepsilon}^k(u_{\varepsilon}))_{\varepsilon}$

is moderate [negligible].

(The case of low regularity)

The global result: definitions

Definition (Generalising normal hyperbolicity)

A 2nd order PDO P with G-coefficients is called normally hyperbolic if its principal symbol is given by a generalised L-metric.

Definition (Generalising global hyperbolicity)

There is a (classical) isometry taking *M* to $\mathbb{R} \times S$ and *g* to $-\beta(t, x) dt^2 + h(t, x)$ where

• $\beta \in \mathcal{G}(\mathbb{R} \times S)$ with $\beta_{\varepsilon} \geq C > 0$ on compact sets

• *h* is a \mathcal{G} -section (of $\operatorname{pr}_2^*(T_2^0S)$ where $\operatorname{pr}_2: \mathbb{R} \times S \to S$) s.t:

 $\forall K \subset \subset \mathbb{R} \times S \quad \exists q: \ |\det_3 h(t,x)| > \varepsilon^q.$

Consequences:

- Each $\{t\} \times S$ is a Cauchy hypersurface in (M, g_{ε}) for all ε .
- The Cauchy problem for P_{ε} has a global solution on M for all ε .

The global result

Theorem ([HKS, 2011])

Let P be a generalised normally hyperbolic operator on a generalised globally hyperbolic space-time (M, g) and suppose that conditions (A) and (B) hold. Then the Cauchy problem

$$Pu = f,$$
 $u|_{\mathcal{S}} = u_0,$ $L_n u|_{\mathcal{S}} = u_1$

has a unique solution $u \in \mathcal{G}(M, E)$ for all compactly supported $u_0, u_1 \in \mathcal{G}(S, E)$ and $f \in \mathcal{G}(M, E)$.

Key steps of the proof:

- Classical theory of normally hyperbolic operators provides us with a solution candidate.
- (A) & (C) still allow us to do the energy estimates, which give existence and uniqueness.

Comments and outlook

- Variants of the result: [Hanel, 2011] Condition (A) is not necessary to prove moderateness: either
 - replace (A) by g_ε, g_ε⁻¹ = O(1) (i.e., no conditions on derivatives but moderateness) and still have the existence and uniqueness result, or
 - keep (A) and use it to calculate precise power of ε-asymptotics of (derivatives) of the solution.
- Connecting to the theory of first order systems

[Hanel, Hörmann, Spreitzer, S]

- Perspectives, questions, projects?
 - Is condition (B) really necessary?
 - compatibility with D'-result
 - connect to more classical approaches (C^{1,1} or GT space-times)
 - more general metrics: log-type growth in ε replacing O(1)

(Hölder-Zygmund classes)

- ...
- go non-linear???

(Einstein equations)

The wave equation on space-times of low regularity

32/33

Some references

- C. Bär, N. Ginoux, F. Pfäffle, *Wave Equations on Lorentzian Manifolds and Quantization*, EMS, Zürich, 2007.
- M. Kunzinger, R.S., *Generalized pseudo-Riemannian geometry*, Trans. Amer. Math. Soc. 354 (2002)
- J. A. Vickers and J. P. Wilson, *Generalised hyperbolicity in conical spacetimes*, Class. Quantum Grav., 17 (2000)
- J. Grant, E. Mayerhofer, R.S., *The wave equation on singular space times*, Commun. Math. Phys. 285(2) (2009).
- C. Hanel, *Wave-type equations of low regularity*, Appl. Analysis, in press (2011).

Děkuji vám za pozornost

