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The theme
Solving the Cauchy problem for wave(-type) operators on
Lorentzian manifolds with a metric of low regularity.

The ingredients
M a smooth manifold with a weakly regular Lorentzian metric g

�g the wave operator of g, i.e.,

�g = g ij∇i∇j = |det g|− 1
2 ∂i (|det g| 12 g ij ∂j )

This is a (scalar) PDE on M with coefficients of low regularity.

The model (Generalised metrics [M.K.& R.S., 02])
A generalized L-metric is a symmetric section

g ∈ G0
2(M) ∼= G(M)⊗C∞(M) T 0

2 (M)

(special Colombeau algebra with smooth ε-dependence) with
a representative (gε)ε consisting of smooth L-metrics, and
det(g) invertible in G(M)
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Results (Local Existence and uniqueness)
Local existence and uniqueness theorems for the Cauchy
problem for the wave operator of weakly singular Lorentzian
metrics in the Colombeau algebra.

conical space times [J. Vickers & J. Wilson, 2000]

generalisation to essentially locally bounded metrics
[J. Grant, E. Mayerhofer & R.S., 2009]

generalisation to tensors, refined regularity [C. Hanel, 2011]

Project (Global Existence and uniqueness)
Global existence and uniqueness for the Cauchy problem for

normally hyperbolic operators in
globally hyperbolic space-times

with metrics in the Colombeau algebra.

work in progress, jointly with G. Hörmann and M. Kunzinger
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Normally hyperbolic operators, 1

Definition
A 2nd order differential operator P : C∞(M,E)→ C∞(M,E)
acting on sections of a vector bundle (E , π,M) is called
normally hyperbolic if its principal symbol is given by a
Lorentzian metric g on M, i.e.,

σ(P)(x , ξ) = −gx (ξ, ξ) IdE (x ∈ M, ξ ∈ T ∗x M \ {0}).

Locally: P = −g ij(x)∂i∂j + Ai(x)∂i + B(x)

Examples

wave operator or metric d’Alembertian �g

connection d’Alembertian: �∇ := −trg ⊗ IdE (∇T∗M⊗E ◦ ∇)

Yamabe operator, squares of Dirac operators
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Normally hyperbolic operators, 2

Facts

Weitzenböck formula: For every normally hyperbolic operator P
there exists a unique connection ∇ on E and a unique
homomorphism field BP ∈ Γ(Hom(E ,E)) such that

P = �∇ + BP .

Huygens operators: subclass with sharp wave propagation
P. Günther, Hygens’ principle and Hyperbolic Equations,
Academic Press, Boston, 1988.
H. Baum, I. Kath, Ann. Glob. Anal. Geom, 14, 315-371, 1996.

Local existence on small (RCCSV) domains using Riesz
distributions and Hadamard’s construction.

Global existence and well-posedness on globally hyperbolic
space-times.
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Causality: Global Hyperbolicity
Geometric key notion allowing to formulate Cauchy problems

Theorem (Characterising global hyperbolicity)
For a space-time (M,g) the following are equivalent:

(i) M is globally hyperbolic, i.e.,
M is strongly causal (no almost closed timelike curves)
and the causal diamonds J−(p) ∩ J+(q) are all compact.

(J+(q), J−(p), causal future and past)

(ii) M has a Cauchy hypersurface S.
(Every inextendible timelike curve meets S exactly once.)

(iii) M is isometric to R× S with metric [A. Bernal, M. Sánchez, 05]

−β(t , x) dt2 + ht (x) where
β is a smooth and positive function, and
ht is a smooth one-parameter family of Riemannian metrics on S.

Note: Each {t} × S is a spacelike Cauchy hypersurface in M.
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Classical existence theory

Theorem (Global well-posedness [Bär, Ginoux, Pfäffle, 07])
Let • (M,g) be globally hyperbolic,

• S be a spacelike Cauchy hypersurface with future
directed timelike unit nomal vector field n,
• P be normally hyperbolic acting on sections in E.

Then
(i) The Cauchy problem

Pu = f , u|S = u0, ∇nu|S = u1.

has a unique solution u ∈ C∞(M,E) for each u0,u1 ∈ D(S,E)
and each f ∈ D(M,E).

(ii) In addition, supp(u) ⊆ J
(

supp(u0) ∪ supp(u1) ∪ supp(f )
)

.
(causal propagation: J(A) = J+(A) ∪ J−(A), causal future and past)

(iii) The mapping
D(S,E)×D(S,E)×D(M,E) 3 (u0,u1, f ) 7→ u ∈ C∞(M,E)

is linear and continuous.
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Distributional Data

Theorem (Global existence and uniqueness—D′-data)
Let • (M,g) be globally hyperbolic,

• S be a spacelike Cauchy hypersurface with future
directed timelike unit nomal vector field n,
• P be normally hyperbolic acting on sections in E.

Then
(i) The Cauchy problem

Pu = f , u|S = u0, ∇nu|S = u1.

has a unique solution u ∈ C∞(R;D′(S,E)) for each
u0,u1 ∈ E ′(S,E) and each f ∈ C∞(R; E ′(S,E)).

(ii) In addition, supp(u) ⊆ J
(

supp(u0) ∪ supp(u1) ∪ supp(f )
)

.

Key ideas: M ∼= R× S ; Pu = f ∈ C∞(R;D′(S,E)) possible
; wave front set of f hence u avoids normal direction to S
; u ∈ C∞(R;D′(S,E))
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Reminder: Solving PDEs in G

To prove existence and uniqueness of solutions u = [(uε)ε] ∈ G
of a PDE

P u =
∑
|α|≤m

aα∂αu = f (aα = [(aαε )ε], f = [(fε)ε] ∈ G

proceed as follows:

(1) Solve Pεuε = fε in C∞ for fixed ε on some common domain
obtaining a solution candidate (uε)ε

(2) Show that (uε)ε is moderate
obtaining existence of solutions u := [(uε)ε] ∈ G

(3) Show that disturbing (fε)ε and (Pε)ε by elements of the ideal
only changes (uε)ε by an element of the ideal

obtaining uniqueness of u ∈ G
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Local result: 3 conditions on the metric
Pick p ∈ U ⊆ M relatively compact

(all norms derived from some smooth R-metric)

(A) ∀K ⊂⊂ U ∀k ∀η1, . . . , ηk ∈ X(M)

supK ||Lη1 . . . Lηk gε || = O(ε−k )
supK ||Lη1 . . . Lηk g−1

ε || = O(ε−k )

in particular gε, g−1
ε locally uniformly bounded

⇒existence of a hypersurface S 3 p, uniformly spacelike
with unit normal vector n = [(nε)ε]

Hence we have an initial surface for the Cauchy problem.

(B) ∀K ⊂⊂ U : supK ||∇gεnε|| = O(1) ⇒ ||Lngε||eε
= O(1)

(C) For each ε, S is a past compact, spacelike hypersurface and
∂J+

ε (S) = S.
Moreover,

⋂
ε J+

ε (S) contains some non-empty open set A.

⇒ existence of classical solutions on common domain
Hence we have a solution candidate.
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A local result

Theorem (J. Grant, E. Mayerhofer & R.S., 09)
Let g be a generalised metric such that (A)–(C) holds.
Then there exists some open neighbourhood V ⊆ U of p where
the Cauchy problem

2gu = 0, u|S = u0, Lnu|S = u1

has a unique solution u ∈ G(V ) for all u0,u1 ∈ G(S).

Key steps of the proof:

(C) provides us with a solution candidate

(A) & (B) allow to carry out higher order energy estimates which
give existence and uniqueness in G.
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The global result: definitions

Definition (Generalising normal hyperbolicity)
A 2nd order PDO P with G-coefficients is called normally hyper-
bolic if its principal symbol is given by a generalised L-metric.

Definition (Generalising global hyperbolicity)
There is a (classical) isometry taking M to R× S and g to

−β(t , x) dt2 + h(t , x) where
β ∈ G(R× S) with βε ≥ C > 0 on compact sets

h is a G-section (of pr∗2(T 0
2 S) where pr2 : R× S → S) s.t:

∀K ⊂⊂ R× S ∃q : |det3 h(t , x)| > εq .

Consequences:
Each {t} × S is a Cauchy hypersurface in (M,gε) for all ε.

The Cauchy problem for Pε has a global solution on M for all ε.
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The global result

Theorem
Let P be a generalised normally hyperbolic operator on a
generalised globally hyperbolic space-time (M,g) and suppose
that conditions (A) and (B) hold. Then the Cauchy problem

Pu = f , u|S = u0, Lnu|S = u1

has a unique solution u ∈ G(M,E) for all compactly supported
u0,u1 ∈ G(S,E) and all f ∈ G(M,E).

Key steps of the proof:

Classical theory of normally hyperbolic operators provides us
with a solution candidate.

(A) & (C) still allow us to do the energy estimates, which give
existence and uniqueness.
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Comments and outlook
Variants of the result ([C.Hanel ,2010]):
Condition (A) is not necessary to prove moderateness: either

replace (A) by gε, g−1
ε = O(1)

(i.e., no conditions on derivatives but moderateness)
and still have the existence and uniqueness result, or
keep (A) and use it to calculate precise power of ε-asymptotics of
(derivatives) of the solution.

Connecting to the theory of first order systems
see Christian Spreitzer’s talk

Perspectives, questions, projects?
Is condition (B) really necessary?
compatibility with D′-result
connect to more classical approaches (C1,1 or GT space-times)
more general metrics: log-type growth in ε replacing O(1)

(Hölder-Zygmund classes)
. . .
go non-linear??? (Einstein equations)
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