Convergence of Fourier series

Richard Majer

May 7, 2008

Abstract

Closely following the presentation of [Wer05], we begin by introducing the (formal) Fourier series of a given function f. Using an integral representation of the n-th partial sum $s_{n}(f, x)$, we are going to discuss the problem of convergence for different kinds of f (e.g. $f \in C^{1}$ or $f \in C)$. Finally, we will prove Fejér's theorem on the summability of Fourier series

1 Preliminaries

Definition 1.1 (Fourier Series). Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be integrable on $[-\pi, \pi]$ and 2π-periodic. Then we can define the Fourier series of f by

$$
\begin{equation*}
\frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left(a_{k} \cos k t+b_{k} \sin k t\right) \tag{1}
\end{equation*}
$$

with a_{k} and b_{k} defined by the following relations:

$$
a_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos k t \mathrm{~d} t \quad b_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin k t \mathrm{~d} t
$$

Remark 1.2 (Convergence, complex version).

1. Note that the definition 1.1 is purely formal, since the limit might not exist. But if the Fourier series converges uniformly to f, then the coefficients necessarily have the above form.
2. Equation 1 can be reformulated using the complex exponential function:

$$
\begin{equation*}
\sum_{k=-\infty}^{\infty} c_{k} e^{i k x} \quad \text { with } c_{k}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) e^{-i k t} \mathrm{~d} t \tag{2}
\end{equation*}
$$

3. a_{k}, b_{k}, c_{k} are connected by

$$
c_{k}= \begin{cases}\frac{1}{2} a_{0} & \text { for } k=0 \tag{3}\\ \frac{1}{2}\left(a_{k}-i b_{k}\right) & \text { for } k>0 \\ \frac{1}{2}\left(a_{-k}+i b_{-k}\right) & \text { for } k<0\end{cases}
$$

Definition 1.3 (The space $C_{2 \pi}$). Let f be continuous and 2π-periodic. Then f can be identified with an element of the space

$$
C_{2 \pi}:=\{f \in C([-\pi, \pi]) \mid f(\pi)=f(-\pi)\} .
$$

$\left(C_{2 \pi},\|\cdot\|_{\infty}\right)$ is a (B)-space.

Theorem 1.4 (Banach-Steinhaus). Let X be a (B)-space, Y a normed space, I an arbitrary index set and $T_{i} \in L(X, Y) \forall i \in I$ a family of operators. Then

$$
\begin{equation*}
\sup _{i \in I}\left\|T_{i} x\right\|<\infty \quad \forall x \in X \quad \Longrightarrow \quad \sup _{i \in I}\left\|T_{i}\right\|<\infty \tag{4}
\end{equation*}
$$

Proof. For the proof we refer to [Wer05], p.141.

Definition 1.5 (Partial sums). We define the n-th partial sum of the Fourier series of f by

$$
\begin{equation*}
s_{n}(f, x):=\frac{a_{0}}{2}+\sum_{k=1}^{n}\left[a_{k} \cos k x+b_{k} \sin k x\right] \tag{5}
\end{equation*}
$$

Since this representation is somewhat impractical, we will try to derive an integral representation of (5), which is more suitable for further calculations. We start by using the above and replace a_{k}, b_{k} by their definition (cf. (1)):

$$
\begin{aligned}
s_{n}(f, t) & =\frac{a_{0}}{2}+\sum_{k=1}^{n}\left[a_{k} \cos k x+b_{k} \sin k x\right] \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi} f(s)\left[\frac{1}{2}+\sum_{k=1}^{n}(\cos k t \cos k s+\sin k t \sin k s)\right] \mathrm{d} s \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi} f(s)\left[\frac{1}{2}+\sum_{k=1}^{n} \cos k(s-t)\right] \mathrm{d} s \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi} f(s+t)[\underbrace{\frac{1}{2}+\sum_{k=1}^{n} \cos k s}_{\text {we denote this by }\left(^{*}\right)}] \mathrm{d} s
\end{aligned}
$$

Now let's take a closer look on the expression (*). Using that the cosine is an even function and $\cos x=\frac{e^{i x}+e^{-i x}}{2}$ we calculate

$$
\begin{aligned}
\frac{1}{2}+\sum_{k=1}^{n} \cos k s & =\frac{1}{2} \sum_{k=-n}^{n} \cos k s=\frac{1}{2} \sum_{k=-n}^{n} e^{i k s} \\
& =\frac{1}{2} e^{-i n s} \frac{e^{(2 n+1) s}-1}{e^{i s}-1}=\frac{1}{2} \frac{e^{\left(n+\frac{1}{2}\right) i s}-e^{-\left(n+\frac{1}{2}\right) i s}}{e^{\frac{1}{2} i s}-e^{-\frac{1}{2} i s}} \\
& =\frac{1}{2} \frac{\sin \left(\left(n+\frac{1}{2}\right) s\right)}{\sin \frac{s}{2}}
\end{aligned}
$$

We are now ready for
Definition 1.6 (Dirichlet kernel). We denote by

$$
\begin{equation*}
D_{n}(s):=\frac{1}{2} \frac{\sin \left(\left(n+\frac{1}{2}\right) s\right)}{\sin \frac{s}{2}} \tag{6}
\end{equation*}
$$

with continuous extension in $D_{n}(0)=n+\frac{1}{2}$ the n-th Dirichlet kernel. This gives rise to the following

$$
\begin{equation*}
s_{n}(f, t)=\frac{1}{\pi} \int_{-\pi}^{\pi} f(s+t) D_{n}(s) \mathrm{d} s \tag{7}
\end{equation*}
$$

By $f \equiv 1$ we see that

$$
\begin{equation*}
\frac{1}{\pi} \int_{-\pi}^{\pi} D_{n}(s) \mathrm{d} s=1 \tag{8}
\end{equation*}
$$

2 Continuity is not enough

Within this section, we'll see that continuity of f is not a sufficient condition for the convergence of its Fourier series. But if $f \in C^{1}$, everything works fine:

Theorem 2.1. Let f be continuously differentiable and 2π-periodic. Then $s_{n}(f,$.$) converges uniformly to f$.

Proof. Choose $h \in \mathbb{R}$ with $0 \leq h \leq \pi$. Then

$$
\begin{aligned}
\left|s_{n}(f, t)-f(t)\right| & =\left|\frac{1}{\pi} \int_{-\pi}^{\pi} f(t+s) D_{n}(s) \mathrm{d} s-f(t)\right| \\
& =\left|\frac{1}{\pi} \int_{-\pi}^{\pi}[f(t+s)-f(t)] D_{n}(s) \mathrm{d} s\right|
\end{aligned}
$$

$$
\leq \frac{1}{\pi}[\left|\int_{-\pi}^{-h}(\ldots)\right|+\underbrace{\left|\int_{-h}^{h}(\ldots)\right|}_{(* *)}+\underbrace{\left|\int_{h}^{\pi}(\ldots)\right|}_{(* * *)}]
$$

We now have to find estimates for the right hand side (independent of $t!$). Let now $0<h<\pi$ with $h \leq \frac{\epsilon}{\pi\left\|f^{\prime}\right\|_{\infty}}$. We'll start with $(* *)$:

$$
\begin{aligned}
&\left|\int_{-h}^{h}[f(s+t)-f(t)] D_{n}(s) \mathrm{d} s\right| \leq \int_{-h}^{h} \frac{\overbrace{|f(s+t)-f(t)|}^{\leq \| f^{\prime}| | \infty|s|}}{2 \sin \frac{|s|}{2}} \\
& \left.\underbrace{\sin \left(n+\frac{1}{2}\right)}_{\geq \frac{s}{\pi}} s \right\rvert\, \\
& \mathrm{sin} \\
& \leq 1 \\
& \leq \int_{-h}^{h} \frac{\pi}{2} \frac{\left\|f^{\prime}\right\|_{\infty}|s|}{|s|} \mathrm{d} s \\
& \leq \frac{\pi}{2}\left\|f^{\prime}\right\|_{\infty} 2 h \leq \epsilon
\end{aligned}
$$

Next we estimate the term $(* * *)$. To that end, we define

$$
\begin{equation*}
f_{t}(s)=\frac{f(s+t)-f(t)}{\sin \frac{s}{2}} \quad \text { for } s \in[h, \pi] \tag{9}
\end{equation*}
$$

Obviously $f_{t} \in C^{1}([h, \pi])$, $\sup _{t \in \mathbb{R}}\left\|f_{t}\right\|_{\infty}<\infty$ and $\sup _{t \in \mathbb{R}}\left\|f_{t}^{\prime}\right\|_{\infty}<\infty$. Set $m=n+\frac{1}{2}$. Integration by parts yields

$$
\begin{aligned}
\left|\int_{h}^{\pi} f_{t}(s) \sin m s \mathrm{~d} s\right| & \left.=\left|f_{t}(s) \frac{-1}{m} \cos m s\right|_{h}^{\pi}-\int_{h}^{\pi} f_{t}^{\prime}(s) \frac{-1}{m} \cos m s \mathrm{~d} s \right\rvert\, \\
& \leq \frac{2 \sup _{t \in \mathbb{R}}\left\|f_{t}\right\|_{\infty}}{m}+\frac{1}{m} \sup _{t \in \mathbb{R}}\left\|f_{t}^{\prime}\right\|_{\infty}(\pi-h) \\
& \leq \frac{C}{m}=\frac{C}{n+\frac{1}{2}} \quad \text { for some C independent of } t
\end{aligned}
$$

$\Longrightarrow \exists n_{0} \in \mathbb{N}$ with $\left|\int_{h}^{\pi}(\ldots)\right| \leq \frac{C}{n+\frac{1}{2}} \quad \forall n>n_{0}$. Finally the term $\int_{-\pi}^{h}(\ldots)$ can be dealt with in a similar way. Combining these results gives

$$
\begin{equation*}
\left|\frac{1}{\pi} \int_{-\pi}^{\pi}[f(t+s)-f(t)] D_{n}(s) \mathrm{d} s\right| \leq \frac{1}{\pi}(\epsilon+\epsilon+\epsilon)<\epsilon \tag{10}
\end{equation*}
$$

For $f \in C$ however, this doesn't hold anymore. We even have
Theorem 2.2. There are continuous, 2π-periodic functions, whose Fourier series does not converge for some $x \in \mathbb{R}$.

Proof. By contradiction.
Suppose that $s_{n}(f, t) \rightarrow f(t) \forall f \in C_{2 \pi}$ and $\forall t \in[-\pi, \pi]$. Then $\left(s_{n}(f, t)\right)_{n \in \mathbb{N}}$ is bounded $\forall f \in C_{2 \pi}$. Taking $s_{n}(., t)$ as an element of $C_{2 \pi}^{\prime}($ for fixed $t)$, this allows us to apply the theorem of Banach-Steinhaus (cf. 1.4). So

$$
\begin{equation*}
\sup _{n \in \mathbb{N}}\left\|s_{n}(., t)\right\|_{C_{2 \pi}^{\prime}}<\infty \tag{11}
\end{equation*}
$$

W.l.o.g. let $t=0$. Similar to [Wer05], II.1(g) [p. 49/50], we can compute

$$
\begin{equation*}
l_{n}:=\left\|s_{n}(., 0)\right\|_{C_{2 \pi}^{\prime}}=\frac{1}{\pi} \int_{-\pi}^{\pi}\left|D_{n}(s)\right| \mathrm{d} s \tag{12}
\end{equation*}
$$

For $t=0$ this means $\sup _{n \in \mathbb{N}} l_{n}<\infty$. But

$$
\begin{equation*}
l_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} \frac{\left|\sin \left(n+\frac{1}{2}\right) s\right|}{\left|2 \sin \frac{s}{2}\right|} \mathrm{d} s \geq \frac{1}{\pi} \int_{-\pi}^{\pi}\left|\sin \left(n+\frac{1}{2}\right) s\right| \frac{\mathrm{d} s}{|s|} \tag{13}
\end{equation*}
$$

With $\sigma=\left(n+\frac{1}{2}\right) s$ we get

$$
\begin{aligned}
l_{n} & \geq \frac{2}{\pi} \int_{0}^{\left(n+\frac{1}{2}\right) \pi}|\sin \sigma| \frac{\mathrm{d} \sigma}{\sigma} \geq \frac{2}{\pi} \sum_{k=1}^{n} \int_{(k-1) \pi}^{k \pi}|\sin \sigma| \frac{\mathrm{d} \sigma}{\sigma} \\
& \geq \frac{2}{\pi} \sum_{k=1}^{n} \frac{1}{k \pi} \int_{(k-1) \pi}^{k \pi}|\sin \sigma| \mathrm{d} \sigma=\left(\frac{2}{\pi}\right)^{2} \sum_{k=1}^{n} \frac{1}{k}
\end{aligned}
$$

Therefore $l_{n} \rightarrow \infty$, a contradiction to $\sup _{n} l_{n}<\infty$.

The following remark and theorems that conclude this section state various important results. Because of their difficulty and length, no proofs will be given:
Remark 2.3 (DuBois-Reymond). In 1873, DuBois-Reymond gave in [dBR73] the first example of a continuous function with divergent Fourier series. It has the form $f(t)=A(t) \sin (\omega(t) t)$ (for certain $A(t) \rightarrow 0$ and $\omega(t) \rightarrow \infty$).

Theorem 2.4 (Carleson-Hunt). Let $f \in L^{p}([0,2 \pi])$ for $p>1$. Then the Fourier series of f converges to f almost everywhere.

Proof. For details we refer to [Fef73].

Theorem 2.5 (Kolmogorov). There are functions belonging to L^{1}, whose Fourier series diverges almost everywhere.

Proof. In 1923, Andrey Kolmogorov (at the age of 21!) gave the first example of such a function. Later this result was improved to divergence everywhere. See [Kol23].

Theorem 2.6 (Kahane-Katznelson). Let $E \subseteq \mathbb{R}$ be a set of measure 0 . Then there exists a continuous function f, whose Fourier series diverges $\forall x \in E$.

Proof. For details see [KK66].

3 Summability versus convergence

To proof Fejér's theorem, we need
Theorem 3.1 (Korovkin). For $n \in \mathbb{N}$ let $T_{n} \in L\left(C_{2 \pi}\right)$. Furthermore let T_{n} be a positive operator (i.e. $T_{n} f \geq 0$ if $f \geq 0$). Now set $x_{0}(t)=1$, $x_{1}(t)=\cos t$ and $x_{2}(t)=\sin t$. Then

$$
\begin{equation*}
T_{n} x_{i} \rightarrow x_{i} \quad i=0,1,2 \quad \Longrightarrow \quad T_{n} f \rightarrow f \quad \forall f \in C_{2 \pi} \tag{14}
\end{equation*}
$$

Proof. Let $f \in C_{2 \pi}$ and $\epsilon>0$. We define

$$
\begin{equation*}
y_{t}(s):=\sin ^{2} \frac{t-s}{2} \quad t \in[0,2 \pi] \tag{15}
\end{equation*}
$$

f continuous on a cp. set $\Longrightarrow f$ uniformly continuous.

$$
\begin{equation*}
\exists \delta>0 \text { s.t. } y_{t}(s) \leq \delta \Longrightarrow|f(s)-f(t)| \leq \epsilon \tag{16}
\end{equation*}
$$

Let $\alpha:=\frac{2\|f\|_{\infty}}{\delta}$. Then

$$
\begin{equation*}
|f(s)-f(t)| \leq \epsilon+\alpha y_{t}(s) \quad \forall s, t \in[0,2 \pi] \tag{17}
\end{equation*}
$$

This inequality holds, because for $y_{t}(s) \leq \delta$ it follows directly from (16) and for $y_{t}(s)>\delta$, we have

$$
\begin{aligned}
y_{t}(s)>\delta \Longrightarrow \epsilon+\alpha y_{t}(s)=\epsilon+\frac{2\|f\|_{\infty}}{\delta} y_{t}(s) & >\epsilon+\frac{2\|f\|_{\infty}}{y_{t}(s)} y_{t}(s) \\
& >|f(s)|+|f(t)| \geq|f(s)-f(t)|
\end{aligned}
$$

Using the assumptions on T_{n} and $-\epsilon-\alpha y_{t} \leq f-f(t) \leq \epsilon+\alpha y_{t}$, we get

$$
\begin{equation*}
-\epsilon T_{n} x_{0}-\alpha T_{n} y_{t} \leq T_{n} f-f(t) T_{n} x_{0} \leq \epsilon T_{n} x_{0}+\alpha T_{n} y_{t} \tag{18}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\left|T_{n} f-f(t) T_{n} x_{0}\right| \leq \epsilon T_{n} x_{0}+\alpha T_{n} y_{t} \tag{19}
\end{equation*}
$$

Note that because of $y_{t}(s)=\frac{1}{2}[1-\cos t \cos s-\sin t \sin s]$, we have that $y_{t} \in \operatorname{span}\left\{x_{0}, x_{1}, x_{2}\right\}$.

By assumption $T_{n} x_{0} \rightarrow x_{0}$ and

$$
\begin{aligned}
T_{n} y_{t}-y_{t} & =\frac{1}{2}\left[T_{n} 1-\cos t T_{n} \cos s-\sin t T_{n} \sin s-1+\cos t \cos s+\sin t \sin s\right] \\
& =\frac{1}{2}\left[\left(T_{n} x_{0}-x_{0}\right)+\cos t\left(x_{1}-T_{n} x_{1}\right)+\sin t\left(x_{2}-T_{n} x_{2}\right)\right] \rightarrow 0
\end{aligned}
$$

So apply $\epsilon T_{n} x_{0}+\alpha T_{n} y_{t} \rightarrow \epsilon$ for $n \rightarrow \infty$ and $\left|T_{n} x_{0}-x_{0}\right| \leq \epsilon$ to estimate (19) to get

$$
\begin{equation*}
\left\|T_{n} f-f\right\|_{\infty} \leq 2 \epsilon \tag{20}
\end{equation*}
$$

Remark 3.2 (On Korovkin's theorem). Theorem 3.1 is actually Korovkin's second theorem. His first theorem states a similar result for $f \in C([0,1])$ with $x_{i}(t)=t^{i}, \quad i=0,1,2$. See [Wer05], p.143, for details.

Definition 3.3 (Fejér kernel). By

$$
\begin{equation*}
F_{n}(s)=\frac{1}{2 n} \frac{\sin ^{2} n \frac{s}{2}}{\sin ^{2} \frac{s}{2}} \tag{21}
\end{equation*}
$$

with continuous extension $F_{n}(0)=\frac{1}{2} n$, we define the n-th Fejér kernel. It can also be written as

$$
\begin{equation*}
F_{n}(s):=\frac{1}{n} \sum_{k=0}^{n-1} D_{k}(s) \tag{22}
\end{equation*}
$$

Lemma 3.4 (Another integral representation). Let

$$
\begin{equation*}
\left(T_{n} f\right)(x):=\frac{1}{n} \sum_{k=0}^{n-1} s_{n}(f, x) . \tag{23}
\end{equation*}
$$

Then T_{n} has the following integral representation using the Fejer kernel:

$$
\begin{equation*}
\left(T_{n} f\right)(x)=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x+s) F_{n}(s) \mathrm{d} s \tag{24}
\end{equation*}
$$

Proof. Similar to 1.5 :

$$
\left(T_{n} f\right)(t)=\frac{1}{n} \sum_{k=0}^{n-1} s_{n}(f, t)
$$

$$
\begin{equation*}
=\frac{1}{n} \frac{1}{\pi} \int_{-\pi}^{\pi} f(s+t) \frac{\sum_{k=0}^{n-1} \sin \left(k+\frac{1}{2}\right) s}{2 \sin \frac{s}{2}} \mathrm{~d} s \tag{*}
\end{equation*}
$$

Using $\sum_{k=0}^{n-1} \sin \left(k+\frac{1}{2}\right) s=\operatorname{Im} \sum_{k=0}^{n-1} e^{i\left(k+\frac{1}{2}\right) s}$ and the formula for finite geometric series, we have

$$
\begin{aligned}
\sum_{k=0}^{n-1} \sin \left(k+\frac{1}{2}\right) s & =\operatorname{Im}\left(e^{\frac{i s}{2}} \frac{e^{i n s}-1}{e^{i s}-1}\right)=\operatorname{Im}\left(\frac{e^{i n s} e^{\frac{i s}{2}}-e^{\frac{i s}{2}}}{e^{i s}-1} \cdot \frac{e^{-\frac{i s}{2}}}{e^{-\frac{i s}{2}}}\right) \\
& =\operatorname{Im}\left(\frac{e^{i n s}-1}{e^{\frac{i s}{2}}-e^{-\frac{i s}{2}}}\right)=\operatorname{Im} \frac{\cos n s+i \sin n s-1}{2 i \sin \frac{s}{2}} \\
& =\frac{1-\cos n s}{2 \sin \frac{s}{2}}=\frac{\sin ^{2} n \frac{s}{2}}{\sin \frac{s}{2}}
\end{aligned}
$$

Combining this result with $(*)$ completes the proof.
Theorem 3.5 (Fejér; Summability of Fourier series). Let $f \in C_{2 \pi}$ and T_{n} be defined as in Lemma 3.4. Then $\left(T_{n} f\right)$ converges uniformly to f. (The Fourier series converges to f in the sense of Césaro.)

Proof. For $-\pi \leq s \leq \pi$ we have that $F_{n}(s) \geq 0$. Therefore T_{n} is a positive operator on $C_{2 \pi}$. Now set $x_{0}(t)=1, x_{1}(t)=\cos t$ and $x_{2}(t)=\sin t$.

$$
\begin{array}{ll}
s_{k}\left(x_{0}, .\right)=x_{0} & \forall k \geq 0 \\
s_{0}\left(x_{1}, .\right)=s_{0}\left(x_{2}, .\right)=0 & \\
s_{k}\left(x_{1}, .\right)=x_{1}, s_{k}\left(x_{2}, .\right)=x_{2} & \forall k \geq 1
\end{array}
$$

With $T_{n} f=\frac{1}{n} \sum_{k=0}^{n-1} s_{k}(f,$.$) we now see that T_{n} x_{0}=x_{0}, T_{n} x_{1}=\frac{n-1}{n} x_{1}$ and $T_{n} x_{2}=\frac{n-1}{n} x_{2}$. Applying thm. 3.1 we have that

$$
\begin{equation*}
\left\|T_{n} f-f\right\|_{\infty} \rightarrow 0 \quad \forall f \in C_{2 \pi} \tag{25}
\end{equation*}
$$

This concludes the proof.

Corollary 3.6 (Weierstrass). The space of trigonometric polynomials is dense in $\left(C_{2 \pi},\|\cdot\|_{\infty}\right)$.

Proof. $T_{n} f$ is a trigonometric polynomial for $f \in C_{2 \pi}$. Apply thm. 3.5.

Remark 3.7 (On the proof of thm. 3.5). See [Ste07], p.121A-121C, for a direct proof that does not use any of the above identities.

References

[dBR73] Paul du Bois-Reymond, Ueber die fourierschen reihen, Nachr. Kön. Ges. Wiss. Göttingen 21 (1873), 571-582 (german).
[Fef73] Charles Fefferman, Pointwise convergence of fourier series, Ann. of. Math. 98 (1973).
[KK66] Jean-Pierre Kahane and Yitzhak Katznelson, Sur les ensembles de divergence des series trigonometriques, Studia math. 26 (1966), 305-306 (french).
[Kol23] Andrey Kolmogorov, Une serie de fourier-lebesgue divergente partout, Fundamenta math. 4 (1923), 324-328 (french).
[Ste07] Roland Steinbauer, Funktionalanalysis 1, 2007 (english).
[Wer05] Dirk Werner, Funktionalanalysis, fifth ed., Springer, 2005 (german).

