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Abstract. We prove the Riesz-Thorin theorem for interpolation of operators
on L

p-spaces and discuss some applications. We follow in large the presenta-

tion in [D. Werner, Funktionalanalysis (Springer, 2005), p. 72-79, II.4].
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1. The theorem of Riesz-Thorin

Motivation 1.1. Let p0 < p1, Ω
open

⊆ R
n m(Ω) < ∞ and T ∈ L(Lp0(Ω), Lq0(Ω)).

Then Tf is also defined for f ∈ Lp1(Ω) since Lp1(Ω) ⊆ Lp0(Ω). We want to suppose
that f ∈ Lp1(Ω) implies Tf ∈ Lq1(Ω) so that we have T ∈ L(Lp1(Ω), Lq1(Ω)).
We now want to study the operator T on the Lp(Ω) spaces between Lp0(Ω) and
Lp1(Ω). Additionally we want to get norm estimates from the norms ‖T‖p0→q0

and

‖T‖p1→q1
.

Strictly speaking, if we talk about an operator T : Lp0(Ω) → Lq0(Ω) and
T : Lp1(Ω) → Lq1(Ω) we mean that we have an operator T0 ∈ L(Lp0(Ω), Lq0(Ω))
and an operator T1 ∈ L(Lp1(Ω), Lq1(Ω)) for which

T0 |Lp0 (Ω)∩Lp1 (Ω)= T1 |Lp0 (Ω)∩Lp1 (Ω)

holds.

We will carry out our investigations for arbitrary open subsets Ω of R
n but it would

be possible to deal with more general measure spaces. From now on we abbreviate
Lp(Ω) with Lp. Note that we have not supposed that m(Ω) < ∞, so that we have
no inclusion relation between the Lp-spaces. However, we still have the following
statement.

Lemma 1.2 (Lyapunov inequality). Let 1 ≤ p0, p1 ≤ ∞ and 0 ≤ θ ≤ 1. Define p

by 1
p = 1−θ

p0
+ θ

p1
. Then Lp0 ∩ Lp1 ⊂ Lp and we have

(1) ‖f‖p ≤ ‖f‖1−θ
p0

‖f‖θ
p1

∀f ∈ Lp0 ∩ Lp1 .

Proof. We will use Hölder’s inequality to prove inequality (1). Indeed we have
‖fg‖1 ≤ ‖f‖p ‖g‖q whenever 1 = 1

p + 1
q .

Let x := (1 − θ)p, y := θp, 1
z0

:= 1−θ
p0

p, 1
z1

:= θ
p1

p. With these definitions we have
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x + y = p,
1

z0
+

1

z1
= 1, xz0 = p0 and yz1 = p1.

Now using Hölder’s inequality we obtain

‖f‖p
p = ‖fp‖1 = ‖fxfy‖1

Hölder
≤ ‖fx‖z0

‖fy‖z1
= (

∫

|f |xz0)
1

z0 (

∫

|f |yz1)
1

z1

= (

∫

|f |p0)
1−θ
p0

p(

∫

|f |p1)
θ

p1
p = (‖f‖1−θ

p0
‖f‖θ

p1
)p.

�

In the proof of the Riesz-Thorin theorem we will need the following result from
complex analysis.

Proposition 1.3 (Three line Lemma). Let F : S → C be bounded and continuous,

where S := {z ∈ C : 0 ≤ ℜz ≤ 1}. Additionally let F be analytic on S◦. For

0 ≤ θ ≤ 1 let Mθ := sup
y∈R

|F (θ + iy)|. Then we have

Mθ ≤ M1−θ
0 Mθ

1 .

To visualize the meaning of the proposition we take a look at the figure below.

Proof. Step 1: First of all we investigate the case M0,M1 ≤ 1. So we have to
prove that Mθ ≤ 1.

Let z0 = x0 + iy0 ∈ S◦, ǫ > 0 and define Fǫ(z) := F (z)
1+ǫz .

This function is also bounded, continuous and analytic on S◦. Moreover

lim
|y|→∞

|Fǫ(x + iy)| = 0 uniformly for x ∈ [0, 1] since |Fǫ(x + iy)| ≤ |F (x+iy)|
ǫ|y| and F

is bounded.
Let r > |y0| such that |Fǫ(x + iy)| ≤ 1 for 0 ≤ x ≤ 1 and |y| = r. Furthermore

let R be the compact rectangle [0, 1] × i [−r, r] . This implies that |Fǫ(z)| ≤ 1 on
∂R. The maximum principle for analytic functions [K. Jähnich, Funktionentheorie
(Springer, 2004), p. 30, Satz 13] now tells us that |Fǫ(z)| ≤ 1 ∀z ∈ R, in particular
|Fǫ(z0)| ≤ 1 and thus |F (z0)| = lim

ǫ→0
|Fǫ(z0)| ≤ 1.

Step 2: Let M0,M1 be arbitrarly and G(z) = F (z)
α1−zβz where α > M0 and β >

M1. Then G is continuous, bounded and analytic on S◦ and |G(z)| ≤ 1 on ∂S and

by step 1 |G(z)| ≤ 1 on S so Mθ ≤ α1−θβθ and Mθ ≤ M1−θ
0 Mθ

1 . �

Now that we have all the tools we need, we can formulate and prove the main
result of this talk.
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Theorem 1.4 (Interpolation theorem of Riesz - Thorin).
Let 1 ≤ p0, p1, q0, q1 ≤ ∞ and 0 < θ < 1. Define p and q by 1

p = 1−θ
p0

+ θ
p1

and
1
q = 1−θ

q0
+ θ

q1
.

If T is a linear map such that

T : Lp0 → Lq0 with ‖T‖Lp0→Lq0 = N0

and

T : Lp1 → Lq1 with ‖T‖Lp1→Lq1 = N1.

Then we have

(2) ‖Tf‖q ≤ N1−θ
0 Nθ

1 ‖f‖p ∀f ∈ Lp0 ∩ Lp1

if K = C and

(3) ‖Tf‖q ≤ 2N1−θ
0 Nθ

1 ‖f‖p ∀f ∈ Lp0 ∩ Lp1

if K = R. In particular, the operator T can be extended to a continuous linear

map T : Lp → Lq with

‖T‖ ≤ cN1−θ
0 Nθ

1

where c = 1 if K = C and c = 2 if K = R.

Remark 1.5. Before we prove the theorem we are going to have a closer look on
its assertion. If we consider the spaces Lp as functions of 1

p we may reinterpret the

theorem by saying that

C :=
{

(p, q) / T : L
1
p → L

1
q

}

is a convex set. Indeed, if we take two points from this set the theorem of Riesz-
Thorin shows us that their connection line is also contained in the set.

Furthermore inequality (2) tells us that the mapping

(α, β) 7→ log ‖T‖ 1
α
→ 1

β

is convex (which is to say the points lying on and above the graph form a convex
set).

Proof. To begin with note that due to our assumptions Tf ∈ Lq0 ∩ Lq1 for
f ∈ Lp0 ∩ Lp1 and by Lemma 1.2 we have that Tf ∈ Lq for such f. We treat the
case K = C first:
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Case 1: p < ∞ and q > 1
• Since the integrable step functions are dense in all Lp-spaces they are dense in
Lp0 ∩ Lp1 . So it is sufficient to show ineq. (2) for all such functions.
• We will do so by showing that

(4)

∣

∣

∣

∣

∫

(Tf)g

∣

∣

∣

∣

≤ N1−θ
0 Nθ

1

for all integrable step functions f, g with ‖f‖p = ‖g‖q′ = 1, where as usual

1 = 1
q′

+ 1
q .

Indeed ineq. (4) tells us that the functional

l : Lq′ → C

g 7→
∫

(Tf)g

obeys ‖l‖ ≤ N1−θ
0 Nθ

1 . (Note that here we again used the fact that integrable

step functions are dense in Lq′

(q′ < ∞ since q > 1).)

By [FA1, 2.45] we know that l ∈ (Lq′

)′ ∼= Lq is the isometrically isomorphic image

of Tf so ‖Tf‖q ≤ N1−θ
0 Nθ

1 .

• To show ineq. (4) we define the step functions f and g by

(5) f =

J
∑

j=1

ajχAj
, g =

K
∑

k=1

bkχBk

and

‖f‖p
p =

J
∑

j=1

|aj |p µ(Aj) = 1, ‖g‖q′

q′ =
K

∑

k=1

|bk|q
′

µ(Bk) = 1

where µ is the Lebesgue measure on R
n and Aj resp. Bk are pairwise disjoint.

For z ∈ C let p(z) and q′(z) be defined as

1

p(z)
=

1 − z

p0
+

z

p1
,

1

q′(z)
=

1 − z

q′0
+

z

q′1
so p(0) = p0, p(θ) = p and p(1) = p1 as well as q′(0) = q′0, q′(θ) = q′, q′(1) = q′1.

Using the convention 0
0 = 0 we set

fz = |f |p/p(z) f

|f | and gz = |g|q
′/q′(z) g

|g| .

Now fz and gz are integrable step functions, especially fz ∈ Lp1 which implies
that Tfz is defined since fz is again a step function.
Finally we define F : C → C as F (z) =

∫

(Tfz)gzdν

By eqs. (5) we have

F (z) =
J

∑

j=1

K
∑

k=1

|aj |
p

p(z)
aj

|aj |
|bk|

q′

q′(z)
bk

|bk|

∫

Bk

TχAj
dν.
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This shows that F is a linear combination of terms of the form γz with γ > 0.
So F is analytic and satisfies the assumptions of Prop. 1.3, since every function γz

is bounded in S (see Prop 1.3) by

∣

∣γx+iy
∣

∣ = γx ≤ max {1, γ} ∀x + iy ∈ S.

Next we estimate |F (iy)| and |F (1 + iy)|. We have

|F (iy)|
Hölder
≤ ‖Tfiy‖q0

‖giy‖q′

0
≤ N0 ‖fiy‖p0

‖giy‖q′

0

and furthermore

‖fiy‖p0

p0
=

J
∑

j=1

∣

∣

∣
|aj |

p

p(iy)
p0

∣

∣

∣
µ(Aj)

eq. (6)
=

J
∑

j=1

|aj |p µ(Aj) = ‖f‖p
p = 1,

where we have used

(6) ||aj |
p

p(iy)
p0 | = |aj |ℜ((p( 1−iy

p0
)+ iy

p1
)p0) = |aj |

p
p0

p0 = |aj |p.

Analogously we obtain ‖giy‖q′

0

q′

0
= 1

Summing up we have

sup
y∈R

|F (iy)| ≤ N0

and repeating the same calculation with 1 + iy replacing iy we obtain

sup
y∈R

|F (1 + iy)| ≤ N1.

Now finally Prop. 1.3 yields

∣

∣

∣

∣

∫

Tfgdν

∣

∣

∣

∣

= |F (θ)| ≤ sup
y∈R

|F (θ + iy)| ≤ N1−θ
0 Nθ

1

So we have estimated ineq. (4) and we are done.

Case 2: p = ∞
This assumption immediately implies that p0 = p1 = ∞. If q = q0 = q1 = 1 there’s
nothing to show. So let q > 1. Now f need not be integrable and we may choose
f = fz ∀z. Analogously we can handle the case q = 1, p < ∞ (now gz = g).

It remains to show ineq. (3), i.e., the case K = R. But luckily this follows from
ineq. (2) and the following argument. Let U : Lr

R
→ Ls

R
be a continuous linear

operator between real Lp spaces. Furthermore define its canonical extension as
UC(f + ig) = Uf + iUg. This map is C-linear, UC : Lr

C
→ Ls

C
, and the following

inequality holds

‖UC‖ = sup
‖f+ig‖=1

‖UC(f + ig)‖ ≤ sup
‖f+ig‖=1

(‖U(f)‖ + ‖U(g)‖)

≤ sup
‖f‖=1

‖U(f)‖ + sup
‖g‖=1

‖U(g)‖ ≤ 2 ‖U‖ .
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Applying this to the assumption of the Theorem we obtain for T by using the
extension TC and ineq. (2)

‖Tf‖q = ‖TCf‖q ≤ ‖TC‖1−θ
p0→q0

‖TC‖θ
p1→q1

‖f‖p

≤ 2 ‖T‖1−θ
p0→q0

‖T‖θ
p1→q1

‖f‖p = 2N1−θ
0 Nθ

1 ‖f‖p

for f real valued. �

Example 1.6. We want to give an example that eq. 2 doesn’t hold in R.
Let us have a look at T (s, t) = (s + t, s − t), which has norms ‖T‖∞→1 = 2 and

‖T‖2→2 =
√

2. For θ = 1
2 (p = 4, q = 4

3 ) we would get

‖(s + t, s − t)‖ 4
3
≤ 2

3
4 ‖(s, t)‖4

which isn’t true for s = 2 and t = 1.

2. Applications

As a first relevant application we discuss properties of the convolution.

Definition 2.1. Let T = {z ∈ C : |z| = 1} =
{

eit : 0 ≤ t ≤ 2π
}

.

The convolution of f, g ∈ L1(T) is defined by

(f ∗ g)(eis) =

∫ 2π

0

f(eit)g(ei(s−t))
dt

2π
.

Remark 2.2. For f, g ∈ L1(T) the convolution f ∗ g is measurable and the following
inequalities hold

∫ 2π

0

∣

∣(f ∗ g)(eis)
∣

∣

ds

2π
≤

∫ 2π

0

∫ 2π

0

∣

∣f(eit)
∣

∣

∣

∣

∣
g(ei(s−t))

∣

∣

∣

dt

2π

ds

2π

=

∫ 2π

0

∣

∣f(eit)
∣

∣

∫ 2π

0

∣

∣

∣
g(ei(s−t))

∣

∣

∣

ds

2π

dt

2π

=

∫ 2π

0

∣

∣f(eit)
∣

∣

dt

2π
‖g‖1

= ‖f‖1 ‖g‖1 .(7)

In particular, f ∗ g ∈ L1(T) and fixing f ∈ L1 and writing Tfg = f ∗ g we have
Tf : L1 → L1 with ‖Tf‖L1→L1 ≤ ‖f‖1. Similarly we have

sup
s∈[0,2π]

∣

∣(f ∗ g)(eis)
∣

∣ ≤ sup
s∈[0,2π]

∫ 2π

0

∣

∣f(eit)
∣

∣

∣

∣

∣
g(ei(s−t))

∣

∣

∣

dt

2π

=

∫ 2π

0

∣

∣f(eit)
∣

∣ sup
s∈[0,2π]

∣

∣

∣
g(ei(s−t))

∣

∣

∣

dt

2π

=

∫ 2π

0

∣

∣f(eit)
∣

∣

dt

2π
‖g‖∞

= ‖f‖1 ‖g‖∞ .(8)

This yields f ∗ g ∈ L∞(T) for g ∈ L∞(T) and with the notation as above
Tf : L∞ → L∞ again with ‖Tf‖L∞→L∞ ≤ ‖f‖1.
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Proposition 2.3 (Young’s inequality). Let 1 ≤ p, q ≤ ∞ and 1
r = 1

p + 1
q − 1 ≥ 0.

If f ∈ Lp and g ∈ Lq then f ∗ g ∈ Lr and we have

‖f ∗ g‖r ≤ ‖f‖p ‖g‖q .

Proof. T is finite, so f ∗ g is defined since Lp[T], Lq[T] ⊂ L1[T].

Step 1: Let f ∈ L1 be fixed. Due to ineq. (7) in Remark 2.2 we have

‖f ∗ g‖1 = ‖f‖1 ‖g‖1 resp. ‖Tf‖1→1 ≤ ‖f‖1 .

Furthermore ineq. (8) in the Remark above yields

‖Tf‖∞→∞ ≤ ‖f‖1 .

Using theorem 1.4 with θ = 1
q′

where q′ is the conjugated exponent of q we get

‖T‖q→q ≤ ‖f‖1 .

That means

(9) ‖f ∗ g‖q ≤ ‖Tf‖q→q ‖g‖q ≤ ‖f‖1 ‖g‖q ∀f ∈ L1, g ∈ Lq.

Step 2: Let now g ∈ Lq be fixed.
The Hölder inequality for f ∈ Lq′

and eis ∈ T leads us to

∣

∣(f ∗ g)(eis)
∣

∣ ≤
∫ 2π

0

∣

∣

∣
f(eit)g(ei(s−t))

∣

∣

∣

dt

2π

Hölder
≤ (

∫ 2π

0

∣

∣f(eit)
∣

∣

q′ dt

2π
)

1
q′ (

∫ 2π

0

∣

∣g(eit)
∣

∣

q dt

2π
)

1
q

= ‖f‖q′ ‖g‖q ,

which implies ‖f ∗ g‖∞ ≤ ‖f‖q′ ‖g‖q .(10)

Using ineq. (9) and ineq. (10) for the operator Tgf = f ∗ g we have

‖Tg‖1→q ≤ ‖g‖q and

‖Tg‖q′→∞ ≤ ‖g‖q .

We now choose θ such that 1
p = 1−θ

1 + θ
q′

, then θ = q
p′

. Moreover 0 ≤ θ ≤ 1 since
1
p + 1

q ≥ 1. And with this choice of θ we have

1 − θ

q
+

θ

∞ =
1

p
− 1

q′
=

1

q
− 1 +

1

p
=

1

r
.

So applying Thm. 1.4 we obtain

‖Tg‖p→r ≤ ‖g‖q ,

which means that

‖f ∗ g‖r ≤ ‖f‖p ‖g‖q ∀f ∈ Lp[T], g ∈ Lq[T].

�
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Another application is the following.

Proposition 2.4. Using the same assumptions as in Theorem 1.4 and supposing

that T : Lp0 → Lq0 is compact, we get that T : Lp → Lq is compact.

Proof. See [D. Werner, Funktionalanalysis (Sprinter, 2005), p. 79, Satz II.4.5]. �


