INTERPOLATION OF OPERATORS ON L^{p}-SPACES

NATHALIE TASSOTTI AND ARNO MAYRHOFER

Abstract. We prove the Riesz-Thorin theorem for interpolation of operators on L^{p}-spaces and discuss some applications. We follow in large the presentation in [D. Werner, Funktionalanalysis (Springer, 2005), p. 72-79, II.4].

8. April 2008

1. The theorem of Riesz-Thorin

Motivation 1.1. Let $p_{0}<p_{1}, \Omega \stackrel{\text { open }}{\subseteq} \mathbb{R}^{n} m(\Omega)<\infty$ and $T \in L\left(L^{p_{0}}(\Omega), L^{q_{0}}(\Omega)\right)$. Then $T f$ is also defined for $f \in L^{p_{1}}(\Omega)$ since $L^{p_{1}}(\Omega) \subseteq L^{p_{0}}(\Omega)$. We want to suppose that $f \in L^{p_{1}}(\Omega)$ implies $T f \in L^{q_{1}}(\Omega)$ so that we have $T \in L\left(L^{p_{1}}(\Omega), L^{q_{1}}(\Omega)\right)$.
We now want to study the operator T on the $L^{p}(\Omega)$ spaces between $L^{p_{0}}(\Omega)$ and $L^{p_{1}}(\Omega)$. Additionally we want to get norm estimates from the norms $\|T\|_{p_{0} \rightarrow q_{0}}$ and $\|T\|_{p_{1} \rightarrow q_{1}}$.

Strictly speaking, if we talk about an operator $T: L^{p_{0}}(\Omega) \rightarrow L^{q_{0}}(\Omega)$ and $T: L^{p_{1}}(\Omega) \rightarrow L^{q_{1}}(\Omega)$ we mean that we have an operator $T_{0} \in L\left(L^{p_{0}}(\Omega), L^{q_{0}}(\Omega)\right)$ and an operator $T_{1} \in L\left(L^{p_{1}}(\Omega), L^{q_{1}}(\Omega)\right)$ for which

$$
\left.T_{0}\right|_{L^{p_{0}}(\Omega) \cap L^{p_{1}}(\Omega)}=\left.T_{1}\right|_{L^{p_{0}}(\Omega) \cap L^{p_{1}}(\Omega)}
$$

holds.
We will carry out our investigations for arbitrary open subsets Ω of \mathbb{R}^{n} but it would be possible to deal with more general measure spaces. From now on we abbreviate $L^{p}(\Omega)$ with L^{p}. Note that we have not supposed that $m(\Omega)<\infty$, so that we have no inclusion relation between the L^{p}-spaces. However, we still have the following statement.
Lemma 1.2 (Lyapunov inequality). Let $1 \leq p_{0}, p_{1} \leq \infty$ and $0 \leq \theta \leq 1$. Define p by $\frac{1}{p}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}}$. Then $L^{p_{0}} \cap L^{p_{1}} \subset L^{p}$ and we have

$$
\begin{equation*}
\|f\|_{p} \leq\|f\|_{p_{0}}^{1-\theta}\|f\|_{p_{1}}^{\theta} \quad \forall f \in L^{p_{0}} \cap L^{p_{1}} \tag{1}
\end{equation*}
$$

Proof. We will use Hölder's inequality to prove inequality (1). Indeed we have $\|f g\|_{1} \leq\|f\|_{p}\|g\|_{q}$ whenever $1=\frac{1}{p}+\frac{1}{q}$.
Let $x:=(1-\theta) p, y:=\theta p, \frac{1}{z_{0}}:=\frac{1-\theta}{p_{0}} p, \frac{1}{z_{1}}:=\frac{\theta}{p_{1}} p$. With these definitions we have

$$
x+y=p, \frac{1}{z_{0}}+\frac{1}{z_{1}}=1, x z_{0}=p_{0} \text { and } y z_{1}=p_{1} .
$$

Now using Hölder's inequality we obtain

$$
\begin{aligned}
\|f\|_{p}^{p} & =\left\|f^{p}\right\|_{1}=\left\|f^{x} f^{y}\right\|_{1} \stackrel{\text { Hölder }}{\leq}\left\|f^{x}\right\|_{z_{0}}\left\|f^{y}\right\|_{z_{1}}=\left(\int|f|^{x z_{0}}\right)^{\frac{1}{z_{0}}}\left(\int|f|^{y z_{1}}\right)^{\frac{1}{z_{1}}} \\
& =\left(\int|f|^{p_{0}}\right)^{\frac{1-\theta}{p_{0}} p}\left(\int|f|^{p_{1}}\right)^{\frac{\theta}{p_{1}} p}=\left(\|f\|_{p_{0}}^{1-\theta}\|f\|_{p_{1}}^{\theta}\right)^{p} .
\end{aligned}
$$

In the proof of the Riesz-Thorin theorem we will need the following result from complex analysis.

Proposition 1.3 (Three line Lemma). Let $F: S \rightarrow \mathbb{C}$ be bounded and continuous, where $S:=\{z \in \mathbb{C}: 0 \leq \Re z \leq 1\}$. Additionally let F be analytic on S°. For $0 \leq \theta \leq 1$ let $M_{\theta}:=\sup _{y \in \mathbb{R}}|F(\theta+i y)|$. Then we have

$$
M_{\theta} \leq M_{0}^{1-\theta} M_{1}^{\theta}
$$

To visualize the meaning of the proposition we take a look at the figure below.

Proof. Step 1: First of all we investigate the case $M_{0}, M_{1} \leq 1$. So we have to prove that $M_{\theta} \leq 1$.
Let $z_{0}=x_{0}+i y_{0} \in S^{\circ}, \epsilon>0$ and define $F_{\epsilon}(z):=\frac{F(z)}{1+\epsilon z}$.
This function is also bounded, continuous and analytic on S°. Moreover
$\lim _{|y| \rightarrow \infty}\left|F_{\epsilon}(x+i y)\right|=0$ uniformly for $x \in[0,1]$ since $\left|F_{\epsilon}(x+i y)\right| \leq \frac{|F(x+i y)|}{\epsilon|y|}$ and F is bounded.
Let $r>\left|y_{0}\right|$ such that $\left|F_{\epsilon}(x+i y)\right| \leq 1$ for $0 \leq x \leq 1$ and $|y|=r$. Furthermore let R be the compact rectangle $[0,1] \times i[-r, r]$. This implies that $\left|F_{\epsilon}(z)\right| \leq 1$ on ∂R. The maximum principle for analytic functions [K. Jähnich, Funktionentheorie (Springer, 2004), p. 30, Satz 13] now tells us that $\left|F_{\epsilon}(z)\right| \leq 1 \forall z \in R$, in particular $\left|F_{\epsilon}\left(z_{0}\right)\right| \leq 1$ and thus $\left|F\left(z_{0}\right)\right|=\lim _{\epsilon \rightarrow 0}\left|F_{\epsilon}\left(z_{0}\right)\right| \leq 1$.

Step 2: Let M_{0}, M_{1} be arbitrarly and $G(z)=\frac{F(z)}{\alpha^{1-z} \beta^{z}}$ where $\alpha>M_{0}$ and $\beta>$ M_{1}. Then G is continuous, bounded and analytic on S° and $|G(z)| \leq 1$ on ∂S and by step $1|G(z)| \leq 1$ on S so $M_{\theta} \leq \alpha^{1-\theta} \beta^{\theta}$ and $M_{\theta} \leq M_{0}^{1-\theta} M_{1}^{\theta}$.

Now that we have all the tools we need, we can formulate and prove the main result of this talk.

Theorem 1.4 (Interpolation theorem of Riesz - Thorin).
Let $1 \leq p_{0}, p_{1}, q_{0}, q_{1} \leq \infty$ and $0<\theta<1$. Define p and q by $\frac{1}{p}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}}$ and $\frac{1}{q}=\frac{1-\theta}{q_{0}}+\frac{\theta}{q_{1}}$.
If T is a linear map such that

$$
T: L^{p_{0}} \rightarrow L^{q_{0}} \text { with }\|T\|_{L^{p_{0}} \rightarrow L^{q_{0}}}=N_{0}
$$

and

$$
T: L^{p_{1}} \rightarrow L^{q_{1}} \text { with }\|T\|_{L^{p_{1}} \rightarrow L^{q_{1}}}=N_{1} .
$$

Then we have

$$
\begin{equation*}
\|T f\|_{q} \leq N_{0}^{1-\theta} N_{1}^{\theta}\|f\|_{p} \quad \forall f \in L^{p_{0}} \cap L^{p_{1}} \tag{2}
\end{equation*}
$$

if $\mathbb{K}=\mathbb{C}$ and

$$
\begin{equation*}
\|T f\|_{q} \leq 2 N_{0}^{1-\theta} N_{1}^{\theta}\|f\|_{p} \quad \forall f \in L^{p_{0}} \cap L^{p_{1}} \tag{3}
\end{equation*}
$$

if $\mathbb{K}=\mathbb{R}$. In particular, the operator T can be extended to a continuous linear map $T: L^{p} \rightarrow L^{q}$ with

$$
\|T\| \leq c N_{0}^{1-\theta} N_{1}^{\theta}
$$

where $c=1$ if $\mathbb{K}=\mathbb{C}$ and $c=2$ if $\mathbb{K}=\mathbb{R}$.
Remark 1.5. Before we prove the theorem we are going to have a closer look on its assertion. If we consider the spaces L^{p} as functions of $\frac{1}{p}$ we may reinterpret the theorem by saying that

$$
C:=\left\{(p, q) / T: L^{\frac{1}{p}} \rightarrow L^{\frac{1}{q}}\right\}
$$

is a convex set. Indeed, if we take two points from this set the theorem of RieszThorin shows us that their connection line is also contained in the set.

Furthermore inequality (2) tells us that the mapping

$$
(\alpha, \beta) \mapsto \log \|T\|_{\frac{1}{\alpha} \rightarrow \frac{1}{\beta}}
$$

is convex (which is to say the points lying on and above the graph form a convex set).

Proof. To begin with note that due to our assumptions $T f \in L^{q_{0}} \cap L^{q_{1}}$ for $f \in L^{p_{0}} \cap L^{p_{1}}$ and by Lemma 1.2 we have that $T f \in L^{q}$ for such f . We treat the case $\mathbb{K}=\mathbb{C}$ first:

Case 1: $p<\infty$ and $q>1$

- Since the integrable step functions are dense in all L^{p}-spaces they are dense in $L^{p_{0}} \cap L^{p_{1}}$. So it is sufficient to show ineq. (2) for all such functions.
- We will do so by showing that

$$
\begin{equation*}
\left|\int(T f) g\right| \leq N_{0}^{1-\theta} N_{1}^{\theta} \tag{4}
\end{equation*}
$$

for all integrable step functions f, g with $\|f\|_{p}=\|g\|_{q^{\prime}}=1$, where as usual $1=\frac{1}{q^{\prime}}+\frac{1}{q}$.
Indeed ineq. (4) tells us that the functional

$$
\begin{aligned}
l: L^{q^{\prime}} & \rightarrow \mathbb{C} \\
g & \mapsto \int(T f) g
\end{aligned}
$$

obeys $\|l\| \leq N_{0}^{1-\theta} N_{1}^{\theta}$. (Note that here we again used the fact that integrable step functions are dense in $L^{q^{\prime}}\left(q^{\prime}<\infty\right.$ since $\left.q>1\right)$.)
By [FA1, 2.45] we know that $l \in\left(L^{q^{\prime}}\right)^{\prime} \cong L^{q}$ is the isometrically isomorphic image of $T f$ so $\|T f\|_{q} \leq N_{0}^{1-\theta} N_{1}^{\theta}$.

- To show ineq. (4) we define the step functions f and g by

$$
\begin{equation*}
f=\sum_{j=1}^{J} a_{j} \chi_{A_{j}}, \quad g=\sum_{k=1}^{K} b_{k} \chi_{B_{k}} \tag{5}
\end{equation*}
$$

and

$$
\|f\|_{p}^{p}=\sum_{j=1}^{J}\left|a_{j}\right|^{p} \mu\left(A_{j}\right)=1, \quad\|g\|_{q^{\prime}}^{q^{\prime}}=\sum_{k=1}^{K}\left|b_{k}\right|^{q^{\prime}} \mu\left(B_{k}\right)=1
$$

where μ is the Lebesgue measure on \mathbb{R}^{n} and A_{j} resp. B_{k} are pairwise disjoint.
For $z \in \mathbb{C}$ let $p(z)$ and $q^{\prime}(z)$ be defined as

$$
\frac{1}{p(z)}=\frac{1-z}{p_{0}}+\frac{z}{p_{1}}, \quad \frac{1}{q^{\prime}(z)}=\frac{1-z}{q_{0}^{\prime}}+\frac{z}{q_{1}^{\prime}}
$$

so $p(0)=p_{0}, p(\theta)=p$ and $p(1)=p_{1}$ as well as $q^{\prime}(0)=q_{0}^{\prime}, q^{\prime}(\theta)=q^{\prime}, q^{\prime}(1)=q_{1}^{\prime}$.
Using the convention $\frac{0}{0}=0$ we set

$$
f_{z}=|f|^{p / p(z)} \frac{f}{|f|} \text { and } g_{z}=|g|^{q^{\prime} / q^{\prime}(z)} \frac{g}{|g|} .
$$

Now f_{z} and g_{z} are integrable step functions, especially $f_{z} \in L^{p_{1}}$ which implies that $T f_{z}$ is defined since f_{z} is again a step function.
Finally we define $F: \mathbb{C} \rightarrow \mathbb{C}$ as $F(z)=\int\left(T f_{z}\right) g_{z} d \nu$
By eqs. (5) we have

$$
F(z)=\sum_{j=1}^{J} \sum_{k=1}^{K}\left|a_{j}\right|^{\frac{p}{p(z)}} \frac{a_{j}}{\left|a_{j}\right|}\left|b_{k}\right|^{\frac{q^{\prime}}{q^{\prime}(z)}} \frac{b_{k}}{\left|b_{k}\right|} \int_{B_{k}} T \chi_{A_{j}} d \nu
$$

This shows that F is a linear combination of terms of the form γ^{z} with $\gamma>0$. So F is analytic and satisfies the assumptions of Prop. 1.3, since every function γ^{z} is bounded in S (see Prop 1.3) by

$$
\left|\gamma^{x+i y}\right|=\gamma^{x} \leq \max \{1, \gamma\} \quad \forall x+i y \in S
$$

Next we estimate $|F(i y)|$ and $|F(1+i y)|$. We have

$$
|F(i y)| \stackrel{\text { Hölder }}{\leq}\left\|T f_{i y}\right\|_{q_{0}}\left\|g_{i y}\right\|_{q_{0}^{\prime}} \leq N_{0}\left\|f_{i y}\right\|_{p_{0}}\left\|g_{i y}\right\|_{q_{0}^{\prime}}
$$

and furthermore

$$
\left\|f_{i y}\right\|_{p_{0}}^{p_{0}}=\left.\left.\sum_{j=1}^{J}| | a_{j}\right|^{\frac{p}{p(i y)} p_{0}}\left|\mu\left(A_{j}\right)^{e q .(6)}=\sum_{j=1}^{J}\right| a_{j}\right|^{p} \mu\left(A_{j}\right)=\|f\|_{p}^{p}=1,
$$

where we have used

$$
\begin{equation*}
\left|\left|a_{j}\right|^{\frac{p}{p(i y)} p_{0}}\right|=\left|a_{j}\right|^{\Re\left(\left(p\left(\frac{1-i y}{p_{0}}\right)+\frac{i y}{p_{1}}\right) p_{0}\right)}=\left|a_{j}\right|^{\frac{p}{p_{0}} p_{0}}=\left|a_{j}\right|^{p} . \tag{6}
\end{equation*}
$$

Analogously we obtain $\left\|g_{i y}\right\|_{q_{0}^{\prime}}^{q_{0}^{\prime}}=1$
Summing up we have

$$
\sup _{y \in \mathbb{R}}|F(i y)| \leq N_{0}
$$

and repeating the same calculation with $1+i y$ replacing $i y$ we obtain

$$
\sup _{y \in \mathbb{R}}|F(1+i y)| \leq N_{1} .
$$

Now finally Prop. 1.3 yields

$$
\left|\int T f g d \nu\right|=|F(\theta)| \leq \sup _{y \in \mathbb{R}}|F(\theta+i y)| \leq N_{0}^{1-\theta} N_{1}^{\theta}
$$

So we have estimated ineq. (4) and we are done.

Case 2: $p=\infty$
This assumption immediately implies that $p_{0}=p_{1}=\infty$. If $q=q_{0}=q_{1}=1$ there's nothing to show. So let $q>1$. Now f need not be integrable and we may choose $f=f_{z} \forall z$. Analogously we can handle the case $q=1, p<\infty$ (now $g_{z}=g$).

It remains to show ineq. (3), i.e., the case $\mathbb{K}=\mathbb{R}$. But luckily this follows from ineq. (2) and the following argument. Let $U: L_{\mathbb{R}}^{r} \rightarrow L_{\mathbb{R}}^{s}$ be a continuous linear operator between real L^{p} spaces. Furthermore define its canonical extension as $U_{\mathbb{C}}(f+i g)=U f+i U g$. This map is \mathbb{C}-linear, $U_{\mathbb{C}}: L_{\mathbb{C}}^{r} \rightarrow L_{\mathbb{C}}^{s}$, and the following inequality holds

$$
\begin{aligned}
\left\|U_{\mathbb{C}}\right\| & =\sup _{\|f+i g\|=1}\left\|U_{\mathbb{C}}(f+i g)\right\| \leq \sup _{\|f+i g\|=1}(\|U(f)\|+\|U(g)\|) \\
& \leq \sup _{\|f\|=1}\|U(f)\|+\sup _{\|g\|=1}\|U(g)\| \leq 2\|U\| .
\end{aligned}
$$

Applying this to the assumption of the Theorem we obtain for T by using the extension $T_{\mathbb{C}}$ and ineq. (2)

$$
\begin{aligned}
\|T f\|_{q} & =\left\|T_{\mathbb{C}} f\right\|_{q} \leq\left\|T_{\mathbb{C}}\right\|_{p_{0} \rightarrow q_{0}}^{1-\theta}\left\|T_{\mathbb{C}}\right\|_{p_{1} \rightarrow q_{1}}^{\theta}\|f\|_{p} \\
& \leq 2\|T\|_{p_{0} \rightarrow q_{0}}^{1-\theta}\|T\|_{p_{1} \rightarrow q_{1}}^{\theta}\|f\|_{p}=2 N_{0}^{1-\theta} N_{1}^{\theta}\|f\|_{p}
\end{aligned}
$$

for f real valued.
Example 1.6. We want to give an example that eq. 2 doesn't hold in \mathbb{R}.
Let us have a look at $T(s, t)=(s+t, s-t)$, which has norms $\|T\|_{\infty \rightarrow 1}=2$ and $\|T\|_{2 \rightarrow 2}=\sqrt{2}$. For $\theta=\frac{1}{2}\left(p=4, q=\frac{4}{3}\right)$ we would get

$$
\|(s+t, s-t)\|_{\frac{4}{3}} \leq 2^{\frac{3}{4}}\|(s, t)\|_{4}
$$

which isn't true for $s=2$ and $t=1$.

2. Applications

As a first relevant application we discuss properties of the convolution.
Definition 2.1. Let $\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}=\left\{e^{i t}: 0 \leq t \leq 2 \pi\right\}$.
The convolution of $f, g \in L^{1}(\mathbb{T})$ is defined by

$$
(f * g)\left(e^{i s}\right)=\int_{0}^{2 \pi} f\left(e^{i t}\right) g\left(e^{i(s-t)}\right) \frac{d t}{2 \pi}
$$

Remark 2.2. For $f, g \in L^{1}(\mathbb{T})$ the convolution $f * g$ is measurable and the following inequalities hold

$$
\begin{align*}
\int_{0}^{2 \pi}\left|(f * g)\left(e^{i s}\right)\right| \frac{d s}{2 \pi} & \leq \int_{0}^{2 \pi} \int_{0}^{2 \pi}\left|f\left(e^{i t}\right)\right|\left|g\left(e^{i(s-t)}\right)\right| \frac{d t}{2 \pi} \frac{d s}{2 \pi} \\
& =\int_{0}^{2 \pi}\left|f\left(e^{i t}\right)\right| \int_{0}^{2 \pi}\left|g\left(e^{i(s-t)}\right)\right| \frac{d s}{2 \pi} \frac{d t}{2 \pi} \\
& =\int_{0}^{2 \pi}\left|f\left(e^{i t}\right)\right| \frac{d t}{2 \pi}\|g\|_{1} \\
& =\|f\|_{1}\|g\|_{1} . \tag{7}
\end{align*}
$$

In particular, $f * g \in L^{1}(\mathbb{T})$ and fixing $f \in L^{1}$ and writing $T_{f} g=f * g$ we have $T_{f}: L^{1} \rightarrow L^{1}$ with $\left\|T_{f}\right\|_{L^{1} \rightarrow L^{1}} \leq\|f\|_{1}$. Similarly we have

$$
\begin{align*}
\sup _{s \in[0,2 \pi]}\left|(f * g)\left(e^{i s}\right)\right| & \leq \sup _{s \in[0,2 \pi]} \int_{0}^{2 \pi}\left|f\left(e^{i t}\right)\right|\left|g\left(e^{i(s-t)}\right)\right| \frac{d t}{2 \pi} \\
& =\int_{0}^{2 \pi}\left|f\left(e^{i t}\right)\right| \sup _{s \in[0,2 \pi]}\left|g\left(e^{i(s-t)}\right)\right| \frac{d t}{2 \pi} \\
& =\int_{0}^{2 \pi}\left|f\left(e^{i t}\right)\right| \frac{d t}{2 \pi}\|g\|_{\infty} \\
& =\|f\|_{1}\|g\|_{\infty} \tag{8}
\end{align*}
$$

This yields $f * g \in L^{\infty}(\mathbb{T})$ for $g \in L^{\infty}(\mathbb{T})$ and with the notation as above $T_{f}: L^{\infty} \rightarrow L^{\infty}$ again with $\left\|T_{f}\right\|_{L^{\infty} \rightarrow L^{\infty}} \leq\|f\|_{1}$.

Proposition 2.3 (Young's inequality). Let $1 \leq p, q \leq \infty$ and $\frac{1}{r}=\frac{1}{p}+\frac{1}{q}-1 \geq 0$. If $f \in L^{p}$ and $g \in L^{q}$ then $f * g \in L^{r}$ and we have

$$
\|f * g\|_{r} \leq\|f\|_{p}\|g\|_{q}
$$

Proof. \mathbb{T} is finite, so $f * g$ is defined since $L^{p}[\mathbb{T}], L^{q}[\mathbb{T}] \subset L^{1}[\mathbb{T}]$.
Step 1: Let $f \in L^{1}$ be fixed. Due to ineq. (7) in Remark 2.2 we have

$$
\|f * g\|_{1}=\|f\|_{1}\|g\|_{1} \text { resp. }\left\|T_{f}\right\|_{1 \rightarrow 1} \leq\|f\|_{1}
$$

Furthermore ineq. (8) in the Remark above yields

$$
\left\|T_{f}\right\|_{\infty \rightarrow \infty} \leq\|f\|_{1}
$$

Using theorem 1.4 with $\theta=\frac{1}{q^{\prime}}$ where q^{\prime} is the conjugated exponent of q we get

$$
\|T\|_{q \rightarrow q} \leq\|f\|_{1}
$$

That means

$$
\begin{equation*}
\|f * g\|_{q} \leq\left\|T_{f}\right\|_{q \rightarrow q}\|g\|_{q} \leq\|f\|_{1}\|g\|_{q} \quad \forall f \in L^{1}, g \in L^{q} \tag{9}
\end{equation*}
$$

Step 2: Let now $g \in L^{q}$ be fixed.
The Hölder inequality for $f \in L^{q^{\prime}}$ and $e^{i s} \in \mathbb{T}$ leads us to

$$
\begin{aligned}
& \qquad \begin{aligned}
&\left|(f * g)\left(e^{i s}\right)\right| \leq \int_{0}^{2 \pi}\left|f\left(e^{i t}\right) g\left(e^{i(s-t)}\right)\right| \frac{d t}{2 \pi} \\
& \stackrel{\text { Hölder }}{\leq}\left(\int_{0}^{2 \pi}\left|f\left(e^{i t}\right)\right|^{q^{\prime}} \frac{d t}{2 \pi}\right)^{\frac{1}{q^{\prime}}}\left(\int_{0}^{2 \pi}\left|g\left(e^{i t}\right)\right|^{q} \frac{d t}{2 \pi}\right)^{\frac{1}{q}} \\
&=\|f\|_{q^{\prime}}\|g\|_{q}, \\
& \text { which implies }\|f * g\|_{\infty} \leq\|f\|_{q^{\prime}}\|g\|_{q} .
\end{aligned} .
\end{aligned}
$$

Using ineq. (9) and ineq. (10) for the operator $T_{g} f=f * g$ we have

$$
\begin{aligned}
& \left\|T_{g}\right\|_{1 \rightarrow q} \leq\|g\|_{q} \text { and } \\
& \left\|T_{g}\right\|_{q^{\prime} \rightarrow \infty} \leq\|g\|_{q}
\end{aligned}
$$

We now choose θ such that $\frac{1}{p}=\frac{1-\theta}{1}+\frac{\theta}{q^{\prime}}$, then $\theta=\frac{q}{p^{\prime}}$. Moreover $0 \leq \theta \leq 1$ since $\frac{1}{p}+\frac{1}{q} \geq 1$. And with this choice of θ we have

$$
\frac{1-\theta}{q}+\frac{\theta}{\infty}=\frac{1}{p}-\frac{1}{q^{\prime}}=\frac{1}{q}-1+\frac{1}{p}=\frac{1}{r}
$$

So applying Thm. 1.4 we obtain

$$
\left\|T_{g}\right\|_{p \rightarrow r} \leq\|g\|_{q}
$$

which means that

$$
\|f * g\|_{r} \leq\|f\|_{p}\|g\|_{q} \quad \forall f \in L^{p}[\mathbb{T}], g \in L^{q}[\mathbb{T}]
$$

Another application is the following.
Proposition 2.4. Using the same assumptions as in Theorem 1.4 and supposing that $T: L^{p_{0}} \rightarrow L^{q_{0}}$ is compact, we get that $T: L^{p} \rightarrow L^{q}$ is compact.
Proof. See [D. Werner, Funktionalanalysis (Sprinter, 2005), p. 79, Satz II.4.5].

