INTERPOLATION OF OPERATORS ON LP-SPACES

NATHALIE TASSOTTI AND ARNO MAYRHOFER

ABSTRACT. We prove the Riesz-Thorin theorem for interpolation of operators
on LP-spaces and discuss some applications. We follow in large the presenta-
tion in [D. Werner, Funktionalanalysis (Springer, 2005), p. 72-79, I1.4].
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1. THE THEOREM OF RIESZ-THORIN

Motivation 1.1. Let pg < p1, Q Opgen R™ m(2) < oo and T' € L(LP°(Q2), L1(Q)).
Then T'f is also defined for f € LP*(Q) since LP1(Q) C LPo(§2). We want to suppose
that f € LP*(Q2) implies T'f € L7 () so that we have T € L(LP*(2), L1 (Q)).

We now want to study the operator T on the LP(f2) spaces between LP°()) and
LP1(©2). Additionally we want to get norm estimates from the norms |||, . and
||T||p1 —q1°

Strictly speaking, if we talk about an operator T : LPo(Q)) — L%(2) and
T:LP(Q)) — L2 (Q) we mean that we have an operator Ty € L(LP°(§), L% (Q))
and an operator 11 € L(LP*(Q), L% (§)) for which

To | zro()nLer (@)= T1 | Lro (@)nLr1 ()
holds.

We will carry out our investigations for arbitrary open subsets 2 of R™ but it would
be possible to deal with more general measure spaces. From now on we abbreviate
LP(§) with LP. Note that we have not supposed that m(£2) < oo, so that we have
no inclusion relation between the LP-spaces. However, we still have the following
statement.

Lemma 1.2 (Lyapunov inequality). Let 1 < pg,p1 < 0o and 0 < 0 < 1. Define p

by % = 1;—09 + p%, Then LPo N LP* C L? and we have

—0 %
(1) 1y < WSl “1F N, V€ Lo N LPn

Proof. We will use Holder’s inequality to prove inequality (1). Indeed we have

| fall; < ||f||p ||9||q whenever 1 = % + %-
Let x := (1 —0)p, y := Op, % = 1p_09p’

1.
Zl'
1

= p%p. With these definitions we have
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1 1
r4+y=p,—+ — =1,229 = po and yz; = p1.
20 21

Now using Hélder’s inequality we obtain

1

1= 17 = g, s o 1 = Jrsr=s(f1srm=

= ([P = 1A = A 11,

In the proof of the Riesz-Thorin theorem we will need the following result from
complex analysis.

O

Proposition 1.3 (Three line Lemma). Let F': S — C be bounded and continuous,
where S :={z € C:0< Rz < 1}. Additionally let F be analytic on S°. For
0<60<1 let My:=sup|F(0+iy)|. Then we have

yeR

My < M3~ M7.

To visualize the meaning of the proposition we take a look at the figure below.

Proof. Step 1: First of all we investigate the case My, M; < 1. So we have to
prove that My < 1.
Let 29 = zo + iyo € S°, € > 0 and define F,(z) := f_é:i
This function is also bounded, continuous and analytic on S°. Moreover
lim |Fc(x +iy)| = 0 uniformly for x € [0,1] since |Fe(z +iy)| < w and F

ly|—o0

is bounded.

Let r > |yo| such that |Fe(x +iy)] < 1for 0 <z <1 and |y| = r. Furthermore
let R be the compact rectangle [0,1] x ¢ [—r,r]. This implies that |F.(z)] < 1 on
OR. The maximum principle for analytic functions [K. Jahnich, Funktionentheorie
(Springer, 2004), p. 30, Satz 13] now tells us that |F.(z)| < 1 Vz € R, in particular
|Fe(z0)] <1 and thus |F(2)| = l%|F€(ZO)| <1

Step 2: Let My, M; be arbitrarly and G(z) = (z)ﬁz where o« > My and § >
M;. Then G is continuous, bounded and analytic on S° and |G(z)| <1 on 9S and

by step 1 |G(2)| <1 on S so My < a'=93% and My < M3~ MY, O

Now that we have all the tools we need, we can formulate and prove the main
result of this talk.
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Theorem 1.4 (Interpolation theorem of Riesz - Thorin).

Let 1 < Po,P1,40,91 < o0 and 0 < 0 < 1. Deﬁnep and q by % = 11;]6 +1;i1 and

1_1-6 , 0
i =1=04 @
q q0 L q
If T is a linear map such that
T :LP° — L% with ||T|| 1 po_ a0 = No

and
T:LP" — L with |T|| o, _ o = N1-

Then we have

(2) ITfll, < Ng~°N{|IfIl, VfeLrnLr

(3) ITfll, <2Ng °NY\Ifll, VfeLrnL?
if K = R. In particular, the operator T can be extended to a continuous linear
map T : LP — L1 with
IT|| < eNg~"NY
where c =1 if K=C and c=2 if K=R.

Remark 1.5. Before we prove the theorem we are going to have a closer look on
its assertion. If we consider the spaces LP as functions of % we may reinterpret the
theorem by saying that

C={a)/T: L5~ L7}

is a convex set. Indeed, if we take two points from this set the theorem of Riesz-
Thorin shows us that their connection line is also contained in the set.

Furthermore inequality (2) tells us that the mapping

(a,8) = Tog | T+

is convex (which is to say the points lying on and above the graph form a convex
set).

Proof. To begin with note that due to our assumptions T'f € L% N L% for
f € LPo N LP' and by Lemma 1.2 we have that T f € L7 for such f. We treat the
case K = C first:
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Case 1: p<ooandg>1
e Since the integrable step functions are dense in all LP-spaces they are dense in
LPo N LPr. So it is sufficient to show ineq. (2) for all such functions.
e We will do so by showing that

) ' / (Tf)g‘ < NiONY

for all integrable step functions f, g with [|f||, = |lg|l,, = 1, where as usual
_ 1,1

1=21+1

Indeed ineq. (4) tells us that the functional

1.9 = C
gH/(Tf)g

obeys [|I]| < Na7?N{. (Note that here we again used the fact that integrable
step functions are dense in L9 (¢’ < oo since ¢ > 1).)
By [FA1, 2.45] we know that [ € (Lq,)’ 2 19 is the isometrically isomorphic image
of Tf so |Tf], < Ny~ *NY.
e To show ineq. (4) we define the step functions f and g by

J K
(5) F=aixa, 9= bixs,
j=1 k=1

and

J K
A1 =Y las | w(Ay) =1, Nglly =D [bal” u(By) =1
j=1 k=1

where p is the Lebesgue measure on R™ and A; resp. By, are pairwise disjoint.
For z € C let p(z) and ¢'(z) be defined as

1 _1—2 z 1 _l—z z

piz)  po i d(z) 4 4
s0 p(0) = po, p(f) = p and p(1) = p; as well as ¢'(0) = ¢5, ¢'(0) = ¢, ¢'(1) = ¢}.

Using the convention % =0 we set

_ g S a/d'(=) 9
Now f, and g, are integrable step functions, especially f, € LP* which implies
that T f, is defined since f, is again a step function.
Finally we define F : C — C as F(z) = [(T'f.)g.dv
By eqs. (5) we have

and g, = |g

J

K
P Q4 ;17’ bk
F(z) =YY" |a;|7™ |aj| |bg| 7@ i /Bk Txa,dv.

j=1k=1
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This shows that F' is a linear combination of terms of the form +* with v > 0.
So F is analytic and satisfies the assumptions of Prop. 1.3, since every function *
is bounded in S (see Prop 1.3) by

|,Yx+iy| =% <max{l,y} Vz+iyeSs.
Next we estimate |F(iy)| and |F(1 + iy)|. We have

. Holder
[FGy)l < T fiyllg lgivllyy < Noll il 9wl
and furthermore

J
£
1FigllZ2 = 3 |lagl ™
j=1

where we have used

J
eq. (6)
w(Ay) =N lag P Ay = 1IFIl = 1,
j=1

1—1 i
(6) llaj|7EaP0| = Jaj | PRI RIP) = (g 5070 = |a P

Analogously we obtain || g¢y||g9 =1
0
Summing up we have

sup |F'(iy)| < No
yeER

and repeating the same calculation with 1 + iy replacing iy we obtain

sup |F(1+iy)| < Ny.
yeR

Now finally Prop. 1.3 yields

’/ngdz/

So we have estimated ineq. (4) and we are done.

= |F(0)] < sup | F(6 +iy)| < Ng ' N
ye

Case 2: p= 0
This assumption immediately implies that pg = p; = co. If ¢ = qop = gq1 = 1 there’s
nothing to show. So let ¢ > 1. Now f need not be integrable and we may choose
f = f. Vz. Analogously we can handle the case ¢ =1, p < co (now g, = g).

It remains to show ineq. (3), i.e., the case K = R. But luckily this follows from
ineq. (2) and the following argument. Let U : Ly — L§ be a continuous linear
operator between real LP spaces. Furthermore define its canonical extension as
Uc(f +1ig9) = Uf +iUg. This map is C-linear, Uc : Lg — L%, and the following
inequality holds

[Ucll= sup [[Uc(f+ig)ll < sup (JUNI+IUQ)I)
I f+igll=1 | f+igll=1

< sup [[U(f)I + sup [[U(g)ll <2|U].
I711=1 lgli=1
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Applying this to the assumption of the Theorem we obtain for T by using the
extension T¢ and ineq. (2)

0
1Tfll, = ||ch|| 1Tl 2 o 1Tl g, I,
<2|7,.%., ||T||pl_>q1 I1£1l, = 2Ny N |I£11,
for f real valued. (]

Ezample 1.6. We want to give an example that eq. 2 doesn’t hold in R.
Let us have a look at T'(s,t) = (s +t,s — t), which has norms ||T|| ,_,; =2 and
IT||y_p = V2. For 6 = 1(p=4,q = 3) we would get

3
(s +t.s = t)lls < 2% (s, )l
which isn’t true for s = 2 and t = 1.
2. APPLICATIONS

As a first relevant application we discuss properties of the convolution.
Definition 2.1. Let T={2€ C: |2| =1} = {e" : 0 < t < 2n}.
The convolution of f,g € L(T) is defined by

A dt

isy _ i(s—t)y Y

(Fro)e) = | " gty

Remark 2.2. For f,g € L*(T) the convolution f * g is measurable and the following
inequalities hold

2m 2m 27 dt ds
15 e zt Z(S t)
/0 ’(f *9)( 27r / / ’ ‘ o 21
2m ds dt
— it z(s t)
/0 ’f |/ 27 21
_ | 22
= [T 1] ol

(7) = £l Mgl -

In particular, f* g € L*(T) and fixing f € L' and writing Trg = f * g we have
Ty : L' — L' with || T¢|| ;1 ;1 < |If]l;- Similarly we have

27r

1S 7 zs dt

sup [(Fx ) < swp [ (e gt )
s€[0,27] s€[0,2w] JO 27T

27

) dt

= f(e®)| sup i(s—t)
/0 ) )|s€[0,27r] gle ) 27

27 ) d
= [ 1) 5 sl
®) = 11711 sl

This yields f x g € L>(T) for g € L*°(T) and with the notation as above
Ty : L>® — L™ again with || T, < ;0 < |Ifll1-
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Proposition 2.3 (Young’s inequality). Let 1 < p,q < oo and % = %
If f € LP and g € LY then f+xg € L" and we have
1S+ gll,, < 11, llgllg -

Proof. T is finite, so f * g is defined since LP[T], L[T] C L*[T].
Step 1: Let f € L! be fixed. Due to ineq. (7) in Remark 2.2 we have

1 *glly = [1£1ly lglly resp [[T¢ll;_q < (11l -
Furthermore ineq. (8) in the Remark above yields

1Tl somsoe < 1l -

Using theorem 1.4 with 6 = % where ¢’ is the conjugated exponent of ¢ we get

ITllg—q < Il -

That means

9) 1f*glly < ITfllyy llglly < IfN1 llall, Vf € Llge L
Step 2: Let now g € LY be fixed.
The Holder inequality for f € L and ¢** € T leads us to

2
« is it i(s—t) ﬁ
()| < [ st )] o
older 2m g dt 1 2 0 1q dt . 1
T e g ([ et g
=141, lgl,

(10) which implies || f gl < [Ifll4 l9ll, -
Using ineq. (9) and ineq. (10) for the operator T, f = f * g we have

1Tyl ., < llgll, and
1Tl oo < llglly -
‘We now choose 6 such that % = 1;19 + %, then 8 = L. Moreover 0 < § < 1 since

'’
% + % > 1. And with this choice of 8 we have
q © p ¢ q p T
So applying Thm. 1.4 we obtain

||Tng—>r S ||g||q 9

which means that

1 *gll, < [Ifll, lgll, VS e LP[T],g € LI[T].
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Another application is the following.

Proposition 2.4. Using the same assumptions as in Theorem 1.4 and supposing
that T : LPo — L9 4s compact, we get that T : LP — L9 is compact.

Proof. See [D. Werner, Funktionalanalysis (Sprinter, 2005), p. 79, Satz 11.4.5]. O



