
SOME FIXED POINT THEOREMS

THOMAS NOWAK

Abstract. We investigate a few fixed point theorems from functional analysis and discuss fixed point problems in
general.

1. Introduction

A fixed point of a relation R ⊂ A×B is an element x ∈ A∩B with xRx, i. e., (x, x) ∈ R. In case R is a function,
this takes the form x = R(x). In any (additive) group G, solving equations of the form f(x) = g(x) can be reduced
to the problem of finding a fixed point of the function F (x) = f(x) − g(x) + x. There are many well-known fixed
point theorems, perhaps the most popular of which is Banach’s theorem.

Theorem 1 (Banach). Let (X, d) be a complete metric space and f : X → X a contraction, i. e.,

sup
x 6=y

d(f(x), f(y))
d(x, y)

< 1.

Then f has a unique fixed point. �

Its proof is folklore and uses telescope summation and triangle inequality. A lesser known result is the following
theorem about complete lattices, i. e., posets where every subset has both supremum and infimum.

Theorem 2 (Tarski-Knaster). Let C be a complete lattice and f : C → C a monotonic function. Then f has a
fixed point. �

Even more holds: The set of fixed-points of f is again a complete lattice. We can actually use this theorem
in everyday mathematics if we note that every non-empty compact interval [a, b] ⊂ R is a complete lattice. We
formulate this result as a corollary to the previous theorem, but give a proof to illustrate the theorem’s proof idea
on a concrete example.

Corollary 1. Let f : [a, b]→ [a, b] be a monotonic function. Then f has a fixed point.

Proof. Set P = {x ∈ [a, b] | x 6 f(x)} and p = supP . We claim that p = f(p). Since x 6 p for all x ∈ P , it follows
that x 6 f(x) 6 f(p) for all x ∈ P . Thus, f(p) is an upper bound of P and hence p 6 f(p). But this also implies
f(p) ∈ P which means f(p) 6 p. �

Remark 1. The Tarski-Knaster theorem can be used to prove the Cantor-Schröder-Bernstein theorem very ele-
gantly.

Another important result, which we will use in establishing further fixed point theorems, with a much more
difficult proof is

Theorem 3 (Brouwer). Let Bn denote the closed unit ball in Rn and let f : Bn → Bn be continuous. Then f has
a fixed point. �

2. Schauder

In this section, we will generalize theorem 3. We will first get rid of the domain Bn in the Brouwer fixed point
theorem and replace it by an arbitrary compact convex set.

Lemma 1. Let C ⊂ Rn be a non-empty compact convex set. Then there exists a retraction Rn → C.

Proof. We define the R to be the orthogonal projection onto C, i. e., R(x) is the unique element in C with
‖x−R(x)‖ = infy∈C ‖x− y‖. Let xn → x∞ in Rn and R(xn) 6→ R(x∞). Since C is compact, we can assume
that R(xn)→ y∞ for a y∞ ∈ C. Now,

‖x∞ − y∞‖ = lim ‖xn −R(xn)‖ = lim inf
y∈C
‖xn − y‖ = inf

y∈C
‖x∞ − y‖

which implies R(x∞) = y∞. This proves that R is the desired retraction. �
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Lemma 2. Let E be a finite-dimensional normed vector space over R or C and let C ⊂ E be a non-empty compact
convex set. Further, let f : C → C be continuous. Then f has a fixed point.

Proof. Without loss of generality, E = Rn equipped with the Euclidian norm. Let R : Rn → C be a retraction, Bn
the closed unit ball in Rn and λ > 0 such that C ⊂ λBn. We define g = f ◦ R : λBn → λBn. Then g has a fixed
point x ∈ C. It is x = R(x) and thus f(x) = x. �

Since we will construct a sequence of “nearly fixed points” in the next proof, we formalize this notion.

Definition 1. Let (X, d) be a metric space, f : X → X a function and ε > 0. A point x ∈ X is called ε-fixed point
of f if d(x, f(x)) 6 ε.

What follows is the main theorem of this section. It is a generalization of Brouwer’s theorem to infinite dimensions.

Theorem 4. Let E be a normed vector space over R or C and let C ⊂ E be a non-empty compact convex set.
Further, let f : C → C be continuous. Then f has a fixed point.

Proof. Let ε > 0. There exist finitely many points x1, . . . xn such that the open balls around xι with radius ε cover
C. The family of functions (ϕι)16ι6n defined by

ψι(x) = max (ε− ‖x− xι‖ , 0)

and ϕι = ψι/
∑
ψj is a continuous partition of unity in C. We define the subspace F as the linear envelope of

x1, . . . , xn and D = C ∩F . Further we set Φ(x) =
∑
ϕι(x)xι. It is Φ(x) ∈ D for all x ∈ C and thus Φ ◦ f : D → D

a continuous function. By lemma 2, there exists a fixed point ξε of Φ ◦ f . It is

‖Φ(x)− x‖ 6
∑

ϕι(x) ‖xι − x‖ 6 ε

for all x ∈ C and thus ξε an ε-fixed point of f .
Set yn = ξ1/n. Since C is compact, there exists a convergent subsequence (ynk

) of (yn). Let y = lim ynk
, then

‖f(ynk
)− y‖ 6 ‖f(ynk

)− ynk
‖+ ‖ynk

− y‖ → 0

and by continuity of f we get y = f(y). �

Another possibility is to shift compactness from the set C to the function f . This is done in the following

Corollary 2. Let E be a Banach space over R or C and let A ⊂ E be a non-empty closed bounded convex set.
Further, let f : A→ A be compact. Then f has a fixed point.

Proof. It is f(A) relatively compact and thus its closed convex envelope D is compact. Since A is closed and convex,
we have D ⊂ A. This implies f(D) ⊂ f(A) ⊂ D and we can apply the previous theorem to the function f |D. �

3. Darbo-Sadovskĭi

Definition 2. Let X be a metric space. We define α(X) as the infimum of the set of all ε > 0 such that there exists
a finite cover of X with sets of diameter 6 ε. If no such cover exists, it is α(X) = ∞. We call α the Kuratowski
measure of non-compactness.

In order to get used to this notion and because we will need it later on, we prove the following

Lemma 3. If X is a compact metric space, then α(X) = 0. A complete metric space Y is compact if and only if
α(Y ) = 0.

Proof. The first claim is trivial. Let now Y be complete and α(Y ) = 0. Suppose that Y is not compact. Then
there exists an open cover (Uι)ι∈I of Y which has no finite subcover. For every n ∈ N, there exists a finite cover of
Y with open balls Bnj (1 6 j 6 kn) of radius εn = 2−n. It is (Uι) an open cover of each Bnj and thus, for every n,
at least one of these sets, e. g., Bn1 , does not have a finite subcover of sets from (Uι). It is no restriction to assume
Bn1 ∩ Bm1 6= ∅. Let sn ∈ Bn1 for n ∈ N. Then (sn) is a Cauchy sequence, so let sn → s with s ∈ Uι0 . Since the
complement of Uι0 is closed and {s} is compact, the distance ∆ of these two sets is > 0. Thus the open ball around
s with radius ∆ is a subset of Uι0 . Since all Bn1 eventually are in this ball, we get a contradiction to the fact that
no Bn1 has a finite subcover. �

The next lemma is stated without proof.

Lemma 4. Let E be a Banach space over R or C and X ⊂ E. Then α(X) = α(c(X)) where c(X) denotes the
closed convex envelope of X. �

In this section’s main theorem, we treat functions whose images get “more and more compact”. These are called
condensing functions.
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Definition 3. Let X and Y be metric spaces and f : X → Y continuous. We call f condensing if for all bounded
B ⊂ X with α(B) > 0 we have α(f(B)) < α(B).

Theorem 5. Let E be a Banach space over R or C, A ⊂ E non-empty closed bounded convex and f : A → A
condensing. Then f has a fixed point.

Proof. Let p ∈ A. Set K = {K ⊂ A | p ∈ K, K closed convex and f -invariant} and

L =
⋂
K∈K

K.

It is L ∈ K and thus the minimal element of K since the f -invariance follows from f(L) ⊂ f(K) ⊂ K for all K ∈ K.
We will show that L is compact. For this, we set M = c(f(L) ∪ {p}) and show M = L. Since f(L) ∪ {p} ⊂ L, we
have M ⊂ L. It is M f -invariant since f(M) ⊂ f(L) ⊂M and thus M ∈ K. This implies L ⊂M . Now,

α(L) = α(M) = α(f(L) ∪ {p}) = α(f(L))

and hence α(L) = 0 because f is condensing and A is bounded. By lemma 3, it is L compact. We can now apply
theorem 4 to the function f |L. �

4. Browder-Göhde-Kirk

In this section we will generalize Banach’s theorem. Namely, we relax the strict inequality that guarantees the
Cauchy property of the constructed sequence in the original proof.

Definition 4. Let (X, d) be a metric space and let f : X → X be a function. We call f non-expanding if

sup
x 6=y

d(f(x), f(y))
d(x, y)

6 1.

Definition 5. Let E be a normed vector space over R or C. We call E uniformly convex if for every ε > 0 there
exists a δ > 0 such that for all x, y ∈ E with norm 6 1 and ‖x− y‖ > ε there holds:

‖x+ y‖
2

6 1− δ

The function δE : (0,∞)→ [0,∞],

δE(ε) = inf
{

1− ‖x+ y‖
2

∣∣∣ ‖x‖ , ‖y‖ 6 1, ‖x− y‖ > ε
}

is called the module of convexity of E.

Lemma 5. Let E be a Banach space over R or C, A ⊂ E non-empty closed convex and f : A→ A non-expanding
such that f(A) is bounded. Then, for every ε > 0, there exists an ε-fixed point of f .

Proof. Let ε > 0 and ∆ = diam f(A). By assumption, there exists a p ∈ f(A) and we define the function

g(x) = λp+ (1− λ)f(x)

where 0 < λ = min(ε/∆, 1). We can assume ∆ > 0 since the case |f(A)| = 1 is trivial. For A is convex, we have
g(A) ⊂ A. It is g : A → A a contraction and since A is closed, we can apply theorem 1 and get the existence of a
fixed point x of g. Now,

‖x− f(x)‖ = ‖g(x)− f(x)‖ = λ ‖p− f(x)‖ 6 ε
and we proved the lemma. �

Remark 2. By inspection of the proof, we find out that the lemma still holds if we replace “Banach space” by
“normed vector space” and “closed” by “complete”.

Theorem 6. Let E be a uniformly convex Banach space, A ⊂ E non-empty closed bounded convex and f : A→ A
non-expanding. Then f has a fixed point.

Proof.

Lemma 6. There exists a function ϕ : (0,∞) → (0,∞) such that for any two ε-fixed points x, y ∈ A, it is
z = (x+ y)/2 ∈ A a ϕ(ε)-fixed point and ϕ(ε)→ 0 as ε→ 0.
Further,

ϕ(ε) =
√
ε+

(
1
2

diamA+ ε

)(
1− δE

(
2− 2

√
ε
))

is such a function.
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Proof. We first show the fixed point property. Set

ρ =
‖x− y‖

2
+ ε.

It follows that ‖f(z)− x‖ 6 ρ and ‖f(z)− y‖ 6 ρ. Thus, both (f(z)− x)/ρ and (f(z)− y)/ρ lie in the closed unit
ball and have distance ‖x− y‖ /ρ. Since E is uniformly convex, we get

1
ρ
‖f(z)− z‖ =

1
2

∥∥∥∥f(z)− x
ρ

− f(z)− y
ρ

∥∥∥∥ 6 1− δE
(
‖x− y‖

ρ

)
= 1− δE

(
2− 2

ε

ρ

)
.

We distinguish two cases: ρ 6
√
ε and ρ >

√
ε. If ρ 6

√
ε, then ‖f(z)− z‖ 6

√
ε 6 ϕ(ε). If ρ >

√
ε, the claim

follows because δE is non-decreasing and ρ 6 1/2 ·diamA+ε. This proves the fixed point property of ϕ. It remains
to show that ϕ(ε)→ 0 as ε→ 0.
It suffices to show that limξ→2 δE(ξ) = 1. We note that limξ→2 δE(ξ) = supξ<2 δE(ξ) since δE is non-decreasing.
Suppose this supremum is < 1. Then there exists a β > 0 such δE(ξ) < 1− β for all ξ < 2. It follows that for every
γ > 0, there exist xγ , yγ with norm 6 1 and distance > 2− γ such that

1− ‖xγ + yγ‖
2

6 1− β.

If we now set y∗γ = −yγ , we get
∥∥xγ − y∗γ∥∥ > 2β > 0 and

1−
∥∥xγ + y∗γ

∥∥
2

6
γ

2
.

But from the definition of δE , we obtain

1−
∥∥xγ + y∗γ

∥∥
2

> δE(2β)

which is a contradiction for γ = δE(2β) > 0. (It is δE > 0 since E is uniformly convex.) �

We now continue with the proof of the theorem. We set

η(r) = inf {‖f(x)− x‖ | x ∈ A, ‖x‖ 6 r}
and

s0 = inf {r > 0 | η(r) = 0} .
Since A is bounded, so is f(A) and we can apply lemma 5 to get the existence of an r > 0 with η(r) = 0. This
implies s0 <∞. There exists a sequence (xn) in A with ‖xn‖ → s0 and ‖f(xn)− xn‖ → 0. We will show that (xn)
converges. For f is continuous (even Lipschitz), it then follows that with x = limxn, we have ‖f(x)− x‖ = 0. It is
x ∈ A since A is closed.
Suppose that (xn) does not converge. Then s0 > 0, because otherwise xn → 0. Since (xn) is not Cauchy, there
exists an ε > 0 and a subsequence (xnk

) of (xn) such that
∥∥xnk+1 − xnk

∥∥ > ε for all k.
Choose any s0 < s1 < 2s0 with

s2 = s1

(
1− δE

(
ε

2s0

))
< s0

and N ∈ N such that for all k > N , we have ‖xnk
‖ 6 s1. Then xnk+1/s1 and xnk

/s1 are in the closed unit ball and
their distance is > ε/s1. We get that∥∥xnk+1 + xnk

∥∥
2

6 s1

(
1− δE

(
ε

s1

))
6 s2 < s0

for k > N . For ‖f(xnk
)− xnk

‖ → 0, we get
∥∥f((xnk+1 + xnk

)/2)− (xnk+1 + xnk
)/2
∥∥ → 0 by lemma 6 and thus

η(s2) = 0 which is a contradiction since s2 < s0. �

To make this theorem practicable, we state the following result (without proof).

Lemma 7. For every 1 < p <∞, it is Lp uniformly convex. �
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