SOME FIXED POINT THEOREMS

THOMAS NOWAK

ABSTRACT. We investigate a few fixed point theorems from functional analysis and discuss fixed point problems in general.

1. INTRODUCTION

A fixed point of a relation $R \subset A \times B$ is an element $x \in A \cap B$ with xRx, i. e., $(x, x) \in R$. In case R is a function, this takes the form x = R(x). In any (additive) group G, solving equations of the form f(x) = g(x) can be reduced to the problem of finding a fixed point of the function F(x) = f(x) - g(x) + x. There are many well-known fixed point theorems, perhaps the most popular of which is Banach's theorem.

Theorem 1 (Banach). Let (X,d) be a complete metric space and $f: X \to X$ a contraction, i.e.,

$$\sup_{x \neq y} \frac{d(f(x), f(y))}{d(x, y)} < 1.$$

Then f has a unique fixed point.

Its proof is folklore and uses telescope summation and triangle inequality. A lesser known result is the following theorem about *complete lattices*, i.e., posets where every subset has both supremum and infimum.

Theorem 2 (Tarski-Knaster). Let C be a complete lattice and $f : C \to C$ a monotonic function. Then f has a fixed point.

Even more holds: The set of fixed-points of f is again a complete lattice. We can actually use this theorem in everyday mathematics if we note that every non-empty compact interval $[a,b] \subset \mathbb{R}$ is a complete lattice. We formulate this result as a corollary to the previous theorem, but give a proof to illustrate the theorem's proof idea on a concrete example.

Corollary 1. Let $f : [a,b] \to [a,b]$ be a monotonic function. Then f has a fixed point.

Proof. Set $P = \{x \in [a, b] \mid x \leq f(x)\}$ and $p = \sup P$. We claim that p = f(p). Since $x \leq p$ for all $x \in P$, it follows that $x \leq f(x) \leq f(p)$ for all $x \in P$. Thus, f(p) is an upper bound of P and hence $p \leq f(p)$. But this also implies $f(p) \in P$ which means $f(p) \leq p$.

Remark 1. The Tarski-Knaster theorem can be used to prove the Cantor-Schröder-Bernstein theorem very elegantly.

Another important result, which we will use in establishing further fixed point theorems, with a much more difficult proof is

Theorem 3 (Brouwer). Let B_n denote the closed unit ball in \mathbb{R}^n and let $f : B_n \to B_n$ be continuous. Then f has a fixed point.

2. Schauder

In this section, we will generalize theorem 3. We will first get rid of the domain B_n in the Brouwer fixed point theorem and replace it by an arbitrary compact convex set.

Lemma 1. Let $C \subset \mathbb{R}^n$ be a non-empty compact convex set. Then there exists a retraction $\mathbb{R}^n \to C$.

Proof. We define the R to be the orthogonal projection onto C, i.e., R(x) is the unique element in C with $||x - R(x)|| = \inf_{y \in C} ||x - y||$. Let $x_n \to x_\infty$ in \mathbb{R}^n and $R(x_n) \neq R(x_\infty)$. Since C is compact, we can assume that $R(x_n) \to y_\infty$ for a $y_\infty \in C$. Now,

$$||x_{\infty} - y_{\infty}|| = \lim ||x_n - R(x_n)|| = \lim \inf_{y \in C} ||x_n - y|| = \inf_{y \in C} ||x_{\infty} - y||$$

which implies $R(x_{\infty}) = y_{\infty}$. This proves that R is the desired retraction.

Lemma 2. Let E be a finite-dimensional normed vector space over \mathbb{R} or \mathbb{C} and let $C \subset E$ be a non-empty compact convex set. Further, let $f : C \to C$ be continuous. Then f has a fixed point.

Proof. Without loss of generality, $E = \mathbb{R}^n$ equipped with the Euclidian norm. Let $R : \mathbb{R}^n \to C$ be a retraction, B_n the closed unit ball in \mathbb{R}^n and $\lambda > 0$ such that $C \subset \lambda B_n$. We define $g = f \circ R : \lambda B_n \to \lambda B_n$. Then g has a fixed point $x \in C$. It is x = R(x) and thus f(x) = x.

Since we will construct a sequence of "nearly fixed points" in the next proof, we formalize this notion.

Definition 1. Let (X, d) be a metric space, $f : X \to X$ a function and $\varepsilon > 0$. A point $x \in X$ is called ε -fixed point of f if $d(x, f(x)) \leq \varepsilon$.

What follows is the main theorem of this section. It is a generalization of Brouwer's theorem to infinite dimensions.

Theorem 4. Let E be a normed vector space over \mathbb{R} or \mathbb{C} and let $C \subset E$ be a non-empty compact convex set. Further, let $f: C \to C$ be continuous. Then f has a fixed point.

Proof. Let $\varepsilon > 0$. There exist finitely many points $x_1, \ldots x_n$ such that the open balls around x_i with radius ε cover C. The family of functions $(\varphi_i)_{1 \leq i \leq n}$ defined by

$$\psi_{\iota}(x) = \max\left(\varepsilon - \|x - x_{\iota}\|, 0\right)$$

and $\varphi_{\iota} = \psi_{\iota} / \sum \psi_{j}$ is a continuous partition of unity in *C*. We define the subspace *F* as the linear envelope of x_{1}, \ldots, x_{n} and $D = C \cap F$. Further we set $\Phi(x) = \sum \varphi_{\iota}(x)x_{\iota}$. It is $\Phi(x) \in D$ for all $x \in C$ and thus $\Phi \circ f : D \to D$ a continuous function. By lemma 2, there exists a fixed point ξ_{ε} of $\Phi \circ f$. It is

$$\|\Phi(x) - x\| \leq \sum \varphi_{\iota}(x) \|x_{\iota} - x\| \leq \varepsilon$$

for all $x \in C$ and thus ξ_{ε} an ε -fixed point of f.

Set $y_n = \xi_{1/n}$. Since C is compact, there exists a convergent subsequence (y_{n_k}) of (y_n) . Let $y = \lim y_{n_k}$, then

$$||f(y_{n_k}) - y|| \le ||f(y_{n_k}) - y_{n_k}|| + ||y_{n_k} - y|| \to 0$$

and by continuity of f we get y = f(y).

Another possibility is to shift compactness from the set C to the function f. This is done in the following

Corollary 2. Let E be a Banach space over \mathbb{R} or \mathbb{C} and let $A \subset E$ be a non-empty closed bounded convex set. Further, let $f : A \to A$ be compact. Then f has a fixed point.

Proof. It is f(A) relatively compact and thus its closed convex envelope D is compact. Since A is closed and convex, we have $D \subset A$. This implies $f(D) \subset f(A) \subset D$ and we can apply the previous theorem to the function f|D. \Box

3. Darbo-Sadovskiĭ

Definition 2. Let X be a metric space. We define $\alpha(X)$ as the infimum of the set of all $\varepsilon > 0$ such that there exists a finite cover of X with sets of diameter $\leq \varepsilon$. If no such cover exists, it is $\alpha(X) = \infty$. We call α the Kuratowski measure of non-compactness.

In order to get used to this notion and because we will need it later on, we prove the following

Lemma 3. If X is a compact metric space, then $\alpha(X) = 0$. A complete metric space Y is compact if and only if $\alpha(Y) = 0$.

Proof. The first claim is trivial. Let now Y be complete and $\alpha(Y) = 0$. Suppose that Y is not compact. Then there exists an open cover $(U_{\iota})_{\iota \in I}$ of Y which has no finite subcover. For every $n \in \mathbb{N}$, there exists a finite cover of Y with open balls B_j^n $(1 \leq j \leq k_n)$ of radius $\varepsilon_n = 2^{-n}$. It is (U_{ι}) an open cover of each B_j^n and thus, for every n, at least one of these sets, e.g., B_1^n , does not have a finite subcover of sets from (U_{ι}) . It is no restriction to assume $B_1^n \cap B_1^m \neq \emptyset$. Let $s_n \in B_1^n$ for $n \in \mathbb{N}$. Then (s_n) is a Cauchy sequence, so let $s_n \to s$ with $s \in U_{\iota_0}$. Since the complement of U_{ι_0} is closed and $\{s\}$ is compact, the distance Δ of these two sets is > 0. Thus the open ball around s with radius Δ is a subset of U_{ι_0} . Since all B_1^n eventually are in this ball, we get a contradiction to the fact that no B_1^n has a finite subcover.

The next lemma is stated without proof.

Lemma 4. Let E be a Banach space over \mathbb{R} or \mathbb{C} and $X \subset E$. Then $\alpha(X) = \alpha(c(X))$ where c(X) denotes the closed convex envelope of X.

In this section's main theorem, we treat functions whose images get "more and more compact". These are called *condensing* functions.

Definition 3. Let X and Y be metric spaces and $f: X \to Y$ continuous. We call f condensing if for all bounded $B \subset X$ with $\alpha(B) > 0$ we have $\alpha(f(B)) < \alpha(B)$.

Theorem 5. Let E be a Banach space over \mathbb{R} or \mathbb{C} , $A \subset E$ non-empty closed bounded convex and $f : A \to A$ condensing. Then f has a fixed point.

Proof. Let $p \in A$. Set $\mathcal{K} = \{K \subset A \mid p \in K, K \text{ closed convex and } f\text{-invariant}\}$ and

$$L = \bigcap_{K \in \mathcal{K}} K$$

It is $L \in \mathcal{K}$ and thus the minimal element of \mathcal{K} since the *f*-invariance follows from $f(L) \subset f(K) \subset K$ for all $K \in \mathcal{K}$. We will show that *L* is compact. For this, we set $M = c(f(L) \cup \{p\})$ and show M = L. Since $f(L) \cup \{p\} \subset L$, we have $M \subset L$. It is *M f*-invariant since $f(M) \subset f(L) \subset M$ and thus $M \in \mathcal{K}$. This implies $L \subset M$. Now,

$$\alpha(L) = \alpha(M) = \alpha(f(L) \cup \{p\}) = \alpha(f(L))$$

and hence $\alpha(L) = 0$ because f is condensing and A is bounded. By lemma 3, it is L compact. We can now apply theorem 4 to the function f|L.

4. Browder-Göhde-Kirk

In this section we will generalize Banach's theorem. Namely, we relax the *strict* inequality that guarantees the Cauchy property of the constructed sequence in the original proof.

Definition 4. Let (X, d) be a metric space and let $f: X \to X$ be a function. We call f non-expanding if

$$\sup_{x \neq y} \frac{d(f(x), f(y))}{d(x, y)} \leqslant 1.$$

Definition 5. Let *E* be a normed vector space over \mathbb{R} or \mathbb{C} . We call *E* uniformly convex if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that for all $x, y \in E$ with norm ≤ 1 and $||x - y|| \ge \varepsilon$ there holds:

$$\frac{\|x+y\|}{2} \leqslant 1 - \delta$$

The function $\delta_E : (0, \infty) \to [0, \infty],$

$$\delta_E(\varepsilon) = \inf\left\{1 - \frac{\|x+y\|}{2} \Big| \|x\|, \|y\| \le 1, \|x-y\| \ge \varepsilon\right\}$$

is called the module of convexity of E.

Lemma 5. Let E be a Banach space over \mathbb{R} or \mathbb{C} , $A \subset E$ non-empty closed convex and $f : A \to A$ non-expanding such that f(A) is bounded. Then, for every $\varepsilon > 0$, there exists an ε -fixed point of f.

Proof. Let $\varepsilon > 0$ and $\Delta = \operatorname{diam} f(A)$. By assumption, there exists a $p \in f(A)$ and we define the function

$$g(x) = \lambda p + (1 - \lambda)f(x)$$

where $0 < \lambda = \min(\varepsilon/\Delta, 1)$. We can assume $\Delta > 0$ since the case |f(A)| = 1 is trivial. For A is convex, we have $g(A) \subset A$. It is $g: A \to A$ a contraction and since A is closed, we can apply theorem 1 and get the existence of a fixed point x of g. Now,

$$||x - f(x)|| = ||g(x) - f(x)|| = \lambda ||p - f(x)|| \le \varepsilon$$

and we proved the lemma.

Remark 2. By inspection of the proof, we find out that the lemma still holds if we replace "Banach space" by "normed vector space" and "closed" by "complete".

Theorem 6. Let E be a uniformly convex Banach space, $A \subset E$ non-empty closed bounded convex and $f : A \to A$ non-expanding. Then f has a fixed point.

Proof.

Lemma 6. There exists a function $\varphi : (0, \infty) \to (0, \infty)$ such that for any two ε -fixed points $x, y \in A$, it is $z = (x + y)/2 \in A$ a $\varphi(\varepsilon)$ -fixed point and $\varphi(\varepsilon) \to 0$ as $\varepsilon \to 0$. Further,

$$\varphi(\varepsilon) = \sqrt{\varepsilon} + \left(\frac{1}{2}\operatorname{diam} A + \varepsilon\right) \left(1 - \delta_E\left(2 - 2\sqrt{\varepsilon}\right)\right)$$

is such a function.

Proof. We first show the fixed point property. Set

$$\rho = \frac{\|x - y\|}{2} + \varepsilon$$

It follows that $||f(z) - x|| \leq \rho$ and $||f(z) - y|| \leq \rho$. Thus, both $(f(z) - x)/\rho$ and $(f(z) - y)/\rho$ lie in the closed unit ball and have distance $||x - y||/\rho$. Since E is uniformly convex, we get

$$\frac{1}{\rho} \|f(z) - z\| = \frac{1}{2} \left\| \frac{f(z) - x}{\rho} - \frac{f(z) - y}{\rho} \right\| \leq 1 - \delta_E \left(\frac{\|x - y\|}{\rho} \right) = 1 - \delta_E \left(2 - 2\frac{\varepsilon}{\rho} \right).$$

We distinguish two cases: $\rho \leq \sqrt{\varepsilon}$ and $\rho > \sqrt{\varepsilon}$. If $\rho \leq \sqrt{\varepsilon}$, then $||f(z) - z|| \leq \sqrt{\varepsilon} \leq \varphi(\varepsilon)$. If $\rho > \sqrt{\varepsilon}$, the claim follows because δ_E is non-decreasing and $\rho \leq 1/2 \cdot \operatorname{diam} A + \varepsilon$. This proves the fixed point property of φ . It remains to show that $\varphi(\varepsilon) \to 0$ as $\varepsilon \to 0$.

It suffices to show that $\lim_{\xi \to 2} \delta_E(\xi) = 1$. We note that $\lim_{\xi \to 2} \delta_E(\xi) = \sup_{\xi < 2} \delta_E(\xi)$ since δ_E is non-decreasing. Suppose this supremum is < 1. Then there exists a $\beta > 0$ such $\delta_E(\xi) < 1 - \beta$ for all $\xi < 2$. It follows that for every $\gamma > 0$, there exist x_{γ}, y_{γ} with norm ≤ 1 and distance $\geq 2 - \gamma$ such that

$$1 - \frac{\|x_{\gamma} + y_{\gamma}\|}{2} \leqslant 1 - \beta.$$

If we now set $y_{\gamma}^* = -y_{\gamma}$, we get $||x_{\gamma} - y_{\gamma}^*|| \ge 2\beta > 0$ and

$$1 - \frac{\left\|x_{\gamma} + y_{\gamma}^{*}\right\|}{2} \leqslant \frac{\gamma}{2}$$

But from the definition of δ_E , we obtain

$$1 - \frac{\left\| x_{\gamma} + y_{\gamma}^* \right\|}{2} \ge \delta_E(2\beta)$$

which is a contradiction for $\gamma = \delta_E(2\beta) > 0$. (It is $\delta_E > 0$ since E is uniformly convex.)

We now continue with the proof of the theorem. We set

$$\eta(r) = \inf \{ \|f(x) - x\| \mid x \in A, \|x\| \le r \}$$

and

$$s_0 = \inf \left\{ r \ge 0 \mid \eta(r) = 0 \right\}.$$

Since A is bounded, so is f(A) and we can apply lemma 5 to get the existence of an $r \ge 0$ with $\eta(r) = 0$. This implies $s_0 < \infty$. There exists a sequence (x_n) in A with $||x_n|| \to s_0$ and $||f(x_n) - x_n|| \to 0$. We will show that (x_n) converges. For f is continuous (even Lipschitz), it then follows that with $x = \lim x_n$, we have ||f(x) - x|| = 0. It is $x \in A$ since A is closed.

Suppose that (x_n) does not converge. Then $s_0 > 0$, because otherwise $x_n \to 0$. Since (x_n) is not Cauchy, there exists an $\varepsilon > 0$ and a subsequence (x_{n_k}) of (x_n) such that $||x_{n_{k+1}} - x_{n_k}|| \ge \varepsilon$ for all k. Choose any $s_0 < s_1 < 2s_0$ with

$$s_2 = s_1 \left(1 - \delta_E \left(\frac{\varepsilon}{2s_0} \right) \right) < s_0$$

and $N \in \mathbb{N}$ such that for all k > N, we have $||x_{n_k}|| \leq s_1$. Then $x_{n_{k+1}}/s_1$ and x_{n_k}/s_1 are in the closed unit ball and their distance is $\geq \varepsilon/s_1$. We get that

$$\frac{\left\|x_{n_{k+1}} + x_{n_k}\right\|}{2} \leqslant s_1 \left(1 - \delta_E\left(\frac{\varepsilon}{s_1}\right)\right) \leqslant s_2 < s_0$$

for k > N. For $||f(x_{n_k}) - x_{n_k}|| \to 0$, we get $||f((x_{n_{k+1}} + x_{n_k})/2) - (x_{n_{k+1}} + x_{n_k})/2|| \to 0$ by lemma 6 and thus $\eta(s_2) = 0$ which is a contradiction since $s_2 < s_0$.

To make this theorem practicable, we state the following result (without proof).

Lemma 7. For every $1 , it is <math>L^p$ uniformly convex.

References

- [1] N. Bourbaki, Topological Vector Spaces, Springer, Berlin, 1987.
- [2] L. A. Steen and J. A. Seebach, Conterexamples in Topology, Dover, 1978.
- [3] D. Werner, *Funktionalanalysis*, Springer, Berlin, 2007.

 $E\text{-}mail \ address: \texttt{nowathom}@\texttt{gmail.com}$