
Page 1

Fourier Transform & Sobolev Spaces
Michael Reiter, Arthur Schuster

Summer Term 2008

Abstract

We introduce the concept of weak derivative that allows us to define new inter-
esting Hilbert spaces—the Sobolev spaces. Furthermore we discuss the Fourier
transform and its relevance for Sobolev spaces.

We follow largely the presentation of [Werner, Funktionalanalysis (Springer 2005);
V.1.9–V.2.14].

1 Test Functions & Weak Derivatives

Motivation 1.1 (test functions and weak derivatives). In this paragraph we want to extend the
concept of derivative to introduce new Hilbert spaces of “weakly differentiable” functions.

Remark 1.2 (Notation). We are going to use the following notational conventions:

(i) Let x ∈ Rn, we write |x| for the euclidean norm of x, |x| :=
∑n

k=1 x2
k .

(ii) If x, y ∈ Rn, we denote the standard scalar product simply by xy :=
∑n

k=1 xkyk.
(iii) We employ the following notation for polynomials: we simply write x f for the function x 7→

f (x)x if f : Rn
→ R.

Definition 1.3 (test functions). LetΩ ⊆ Rn be open. Then we define the set of test functions (or C∞-
functions with compact support) on Ω as

D(Ω) :=
{
ϕ ∈ C∞(Ω,C) : supp(ϕ) :=

{
x : ϕ(x) 6= 0

}
⊆ Ω is compact

}
We call supp(ϕ) the support of ϕ.

Example 1.4 (of a test function). The function

ϕ(x) =
{

c · exp((|x|2 − 1)−1) for |x| < 1,
0 for |x| ≥ 1,

is a test function on Rn (c.f. [A1, 10.12]). So there actually do exist such functions.

Lemma 1.5 (D(Ω) = Lp(Ω)). The space of test functions D(Ω) is dense in Lp(Ω) for 1 ≤ p < ∞.

Proof (sketch). Given f ∈ Lp we have to find fε ∈ D such that fε → f ∈ Lp. This can be done using
convolution with so called mollifiers:

fε(x) :=
∫

f (x − y)ϕε(y)dy

where the mollifier is defined by ϕε(x) := 1
εϕ( x

ε ) using ϕ from example 1.4.
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Then we have fε ∈ C∞ and fε → f in Lp by [Evans, Partial Differential Equations; Appendix C, Thm. 6].
The compact support can be achieved by an appropriate cut--off.

Motivation 1.6 (weak derivatives). Many functions that arise in applications are not differentiable
in the classical sense but they are still integrable. This allows us to use the following trick called the
concept of weak derivatives. Let I ⊆ R be an open interval, and to begin with let f ∈ C1(I) and ϕ ∈ D(I),
it then follows that ∫

I
f ′(x)ϕ(x)dx = −

∫
I

f (x)ϕ′(x)dx

using integration by parts (the boundary values vanish, since the support of ϕ is a compact subset
of I). This formula can be rewritten using the scalar product of L2(I) as〈

f ′ |ϕ
〉
= −

〈
f |ϕ′

〉
.

We call a function g that satisfies
〈
g |ϕ

〉
= −

〈
f |ϕ′

〉
a “weak” or “generalized” derivative of f .

The n-dimensional analogon can be derived similarly. Let Ω ⊆ Rn open, f ∈ C1(Ω) and ϕ ∈ D(Ω),
then 〈

∂
∂xi

f
∣∣∣∣ ϕ〉
= −

〈
f
∣∣∣∣ ∂
∂xi

ϕ

〉
now by the theorem of Gauss and the compact support of ϕ. Similarly we obtain the following for
m-times continuously differentiable functions f :〈

Dα f |ϕ
〉
= (−1)|α|

〈
f |Dαϕ

〉
∀ϕ ∈ D(Ω), (1)

where α is a multi--index (i.e. α ∈ Nn
0), and |α| ≤ m (for an introduction to the multi--index notation

see [A2, 19.2]).

We now drop the assumption f ∈ Cm and turn equation (1) into a definition.

Definition 1.7 (weak derivative). Let Ω ⊆ Rn be open, α a multi--index and f ∈ L2(Ω). Then
g ∈ L2(Ω) is called weak or generalized α-th derivative of f , if〈

g |ϕ
〉
= (−1)|α|

〈
f |Dαϕ

〉
∀ϕ ∈ D(Ω).

Remark 1.8 (on weak derivatives). By the above discussion if f ∈ Cm then the “weak derivatives”
Dα f (|α| ≤ m) coincide with the classical (usual) derivatives. Moreover, such a g is unique: suppose
h is another weak derivative of f , then

〈
g − h |ϕ

〉
= 0 for all ϕ ∈ D(Ω) and by lemma 1.5 and

[
FA1,

Prop. 2.34:
〈

f |ϕ
〉
= 0 ∀ϕ in a dense set⇒ f = 0

]
it follows that g = h.

We denote the weak derivative of f by D(α) f , so we can write〈
D(α) f |ϕ

〉
= (−1)|α|

〈
f |Dαϕ

〉
∀ϕ ∈ D(Ω).

Now we may define spaces of weakly differentiable functions.

Definition 1.9 (Sobolev spaces). Let Ω ⊆ Rn be open. Then we define

(i) Wm(Ω) :=
{

f ∈ L2(Ω) : D(α) f ∈ L2(Ω) exists ∀|α| ≤ m
}

(ii)
〈

f | g
〉

Wm :=
∑
|α|≤m

〈
D(α) f |D(α)g

〉
L2
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(iii) Hm(Ω) := Cm(Ω) ∩Wm(Ω), where the closure is taken with respect to the norm induced
by

〈
. | .

〉
Wm

(iv) Hm
0 (Ω) := D(Ω), again with respect to the induced norm on Wm.

These spaces are all called Sobolev spaces.

Remark 1.10 (on Sobolev spaces).

(i) W0 = L2 by definition and H0
0 = L2 by lemma 1.5.

(ii) Obviously Wm, Hm and Hm
0 are vector spaces, and

〈
. | .

〉
Wm is a scalar product.

(iii) (no proofs) If Ω is a bounded region with sufficiently smooth boundary, then Wm(Ω) =

Hm(Ω)
(
i.e. Wm(Ω) = Cm(Ω) ∩Wm(Ω)

)
. On the other hand, it always holds that Wm(Ω) =

Cm(Ω) ∩Wm(Ω).

Proposition 1.11 (Sobolev spaces are (H)-spaces). Wm, Hm and Hm
0 are Hilbert spaces for all m ≥ 0.

Proof. Since Hm and Hm
0 are closed subspaces of Wm is suffices to show the completeness of Wm(Ω).

Let ( fn)n be a Cauchy sequence with respect to ‖ . ‖Wm . Since

‖ f ‖2Wm =
∑
|α|≤m

‖D(α) f ‖
2
2 ∀ f ∈Wm,

the sequences (D(α) fn)n are all ‖ . ‖2-Cauchy sequences. Therefore there exist fα ∈ L2(Ω) such that

‖D(α) fn − fα‖2 → 0 (n→∞, |α| ≤ m).

Set f0 := f(0,...,0), we’ll show that D(α) f0 = fα, since this implies f0 ∈ Wm and fn → f0 with respect to
‖ . ‖Wm (by definition of that norm). Indeed, for ϕ ∈ D(Ω), we have (using the continuity of the L2-
scalar product in both slots)〈

fα |ϕ
〉
=

〈
lim
n→∞

D(α) fn
∣∣∣ ϕ〉
= lim

n→∞

〈
D(α) fn

∣∣∣ ϕ〉
1.7
== lim

n→∞
(−1)|α|

〈
fn

∣∣∣ Dαϕ
〉
= (−1)|α|

〈
lim
n→∞

fn
∣∣∣ Dαϕ

〉
= (−1)|α|

〈
f0

∣∣∣ Dαϕ
〉

1.7
==

〈
D(α) f0

∣∣∣ ϕ〉
And so we obtain fα = D(α) f0 by lemma 1.5.

Motivation 1.12 (Sobolev spaces and PDEs). Clearly the Sobolev spaces are nested, i.e., Wm(Ω) ⊆
Wm−1(Ω), and the identity map id : Wm(Ω) → Wm−1(Ω) is continuous [since the norm on Wm−1 can
be estimated by ‖ . ‖Wm].

In applications the following two results are of great importance:

Sobolev embedding theorem: For f ∈ Wm(Ω) and m > k + n
2 there exists g ∈ Ck(Ω) with f = g

almost everywhere.

Rellich-Kondrachov theorem: If Ω ⊆ Rn is a bounded open set, then the embedding Hm
0 (Ω) →

Hm−1
0 (Ω) is compact.

These theorems are important tools for proving the existence of solutions of many (especially ellipti-
cal) partial differential equations.
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We are going to prove these theorems in section 3. As a technical tool we introduce the Fourier
transform, which is also an interesting topic in itself.

2 Fourier Transform

Motivation 2.1 (decay vs. smoothness). If f ∈ L2(Rn) this means that f has a certain fall--off prop-
erty at∞. In the Sobolev space Wm we even ask for such a fall--off property for the (weak) derivatives
of f . The Fourier transform allows us to translate derivatives into multiplication with polynomials
(see lemma 2.8 below). So we may relate the L2-property of derivatives of f into stronger fall--off
conditions on f itself. In this way the Sobolev spaces allow us to measures smoothness of functions
in terms of their fall--off on the Fourier transform side. Finally the Sobolev embedding theorem links
this fall--off back to classical Ck-properties.

Definition 2.2 (Fourier transform). Let f ∈ L1(Rn), then we define the Fourier transform F f of f by

(F f )(ξ) := f̂ (ξ) :=
1

(2π)
n
2

∫
Rn

f (x)e−ixξdx ∀ξ ∈ Rn. (2)

[recall the notation xξ for the scalar product of x with ξ] The operator F is called the Fourier transform.

Proposition 2.3 (F ∈ L(L1,C0)). If f ∈ L1(Rn), then F f ∈ C0(Rn). The Fourier transform F :
L1(Rn)→ C0(Rn) is a continuous and linear operator with ‖F‖ ≤ (2π)−

n
2 .

Proof. First we have

|(F f )(ξ)| ≤
1

(2π)
n
2

∫
Rn
| f (x)| |e−ixξ

|︸︷︷︸
=1

dx =
1

(2π)
n
2
‖ f ‖1,

i.e. ‖F f ‖
∞
≤ (2π)−

n
2 ‖ f ‖1, which implies ‖F‖ ≤ (2π)−

n
2 . Therefore F is a continuous operator from

L1(Rn)→ L∞(Rn).

To show that F f ∈ C0(Rn) (i.e. F f is continuous and vanishes at infinity), let (ξ(k)) be a sequence in
Rn with ξ(k)

→ ξ. Using the continuity of exp(x) and the scalar product we obtain

|e−ixξ(k)
− e−ixξ

| → 0 ∀x ∈ Rn.

Plugging this into (2) and using dominated convergence we see that

|(F f )(ξ(k)) − (F f )(ξ)| ≤
1

(2π)
n
2

∫
Rn
| f (x)| |e−ixξ(k)

− e−ixξ
|︸ ︷︷ ︸

≤ 2

dx→ 0,

since the integrand is dominated by the L1-function 2| f |. This shows that F f is continuous.

To obtain im F ⊆ C0(Rn) it suffices to show

lim
|ξ|→∞

|(Fϕ)(ξ)| = 0 ∀ϕ ∈ D(Rn)

since D(Rn) is dense in L1(Rn) by lemma 1.5. So let ϕ ∈ D(Rn), R > 0 and |ξ| ≥ R. Then there exists a

coordinate ξ j with |ξ j| ≥
R
√

n

[
R ≤ |ξ| =

√∑n
k=1 |ξk|

2
≤
√

n max1≤k≤n |ξk|
]
. Using integration by parts we

finally obtain
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|(Fϕ)(ξ)| =
∣∣∣∣∣ 1

(2π)
n
2

∫
Rn
ϕ(x)e−ixξdx

∣∣∣∣∣ = ∣∣∣∣∣ −1

(2π)
n
2

∫
Rn

∂
∂x j

ϕ(x)
1
−iξ j

e−ixξdx
∣∣∣∣∣

≤
1

(2π)
n
2

∫
Rn

∣∣∣∣∣ ∂∂x j
ϕ(x)

∣∣∣∣∣ ∣∣∣∣∣ 1
−iξ j

∣∣∣∣∣︸︷︷︸
≤

√
n

R

∣∣∣∣∣e−ixξ
∣∣∣∣∣︸︷︷︸

=1

dx ≤
1

(2π)
n
2

∥∥∥∥∥ ∂
∂x j

ϕ(x)
∥∥∥∥∥

1

√
n

R
→ 0 (R→∞),

which completes the proof.

Remark 2.4 (on proposition 2.3). This result means, that the Fourier transform of an L1-function
has some decay behaviour, but not enough to secure the L1-property. We now hope to find an explicit
inverse operator of the Fourier transform starting with a certain subset of L1(Rn). It turns out that
the rapidly decreasing Schwartz functions do the trick:

Definition 2.5 (Schwartz space). Let f : Rn
→ C; f is called rapidly decreasing, if

lim
|x|→∞

xα f (x) = 0 ∀α ∈Nn
0 (3)

[recall xα := xα1
1 · · · x

αn
n ]. The space

S(Rn) :=
{

f ∈ C∞(Rn) : Dβ f is rapidly decreasing ∀β ∈Nn
0

}
is called Schwartz space, its elements Schwartz functions.

Remark 2.6 (on Schwartz functions).

(i) Examples for Schwartz functions are γ(x) = e−x2
and every testfunction.

(ii) The following conditions are equivalent to (3):

lim
|x|→∞

P(x) f (x) = 0 ∀ polynomials P : Rn
→ C (4)

lim
|x|→∞

|x|m f (x) = 0 ∀m ∈N0 (5)

(Obviously (3) implies the first condition, which in turn implies (5), because one only has to
consider the polynomials P(x) = (x2

1 + . . . + x2
n)

m
2 with even m. Finally this again implies (3),

because |xα| ≤ |x||α|.)
(iii) So by definition, Schwartz functions and all of their derivatives decay faster than the inverse of

any polynomial. Using this we obtain S(Rn) ⊆ Lp(Rn) for all p ≥ 1 , since for mp− (n−1) > 1 and
f ∈ S(Rn) we have: ∫

Rn
| f (x)|pdx ≤

∫
Rn

( c
1 + |x|m

)p
dx

= cpωn−1

∫
∞

0

( 1
1 + rm

)p
rn−1dr < ∞,

where ωn−1 is the area of the n-sphere
{
x ∈ Rn : |x| = 1

}
and c is a properly chosen constant (see

[Otto Forster, Analysis 3; §14, Satz 8, Beispiel (14.10)]).
(iv) Because D(Rn) is obviously a subspace of S(Rn), the space of Schwartz functions is dense in

Lp(Rn) for 1 ≤ p < ∞ as well (lemma 1.5).
(v) A smooth function f ∈ C∞ is a Schwartz function if and only if



Page 6

sup
x∈Rn

(1 + |x|m)|Dβ f (x)| < ∞ ∀m ∈N0, β ∈N
n
0 . (6)

Clearly every Schwartz function has this property. For the other direction consider

xαDβ f ≤ |x|m|Dβ f (x)| =
(|x|m + |x|m+1)|Dβ f (x)|

1 + |x|
≤

((1 + |x|m) + (1 + |x|m+1))|Dα f |
1 + |x|

(6)
≤

c
1 + |x|

→ 0.

The motivation for the use of the factor (1 + |x|m) is that it is always possible to divide by it—
which is not the case for |x|m.

Motivation 2.7 (Schwartz functions and Fourier transform). The importance of the Schwartz
space lies in the fact, that the Fourier transform F is a bijection of S(Rn) (we’ll prove this
in proposition 2.14), which was not the case with L1(Rn).

Recall the notation xα for the map x 7→ xα, then we have for any f ∈ S(Rn):

xα f ∈ S(Rn),Dα f ∈ S(Rn) ∀α ∈Nn
0 . (7)

This allows us to state the interesting and important interplay between differentiation and multipli-
cation by polynomials using the Fourier transform:

Lemma 2.8 (exchange formulas). Let f ∈ S(Rn) and α be a multi--index. Then

(i) F f ∈ C∞(Rn) and Dα(F f ) = (−i)|α| F(xα f ),
(ii) F(Dα f ) = i|α|ξα F f .

Proof. (i) Formally we have:

Dα(F f )(ξ) =
∂α

∂ξα
1

(2π)
n
2

∫
Rn

f (x)e−ixξdx
(∗)
==

1

(2π)
n
2

∫
Rn

f (x)
∂α

∂ξα
e−ixξdx

= (−i)|α|
1

(2π)
n
2

∫
Rn

f (x)xαe−ixξdx = (−i)|α| F(xα f )(ξ).

We are allowed to pull the differential into the integral in step (∗) by dominated convergence and
because xα f ∈ S(Rn) ⊆ L1(Rn) (c.f. [Werner, Cor. A.3.3]).

(ii) is also a simple calculation using integration by parts (note that since f ∈ S(Rn) all boundary
terms vanish):

F(Dα f )(ξ) =
1

(2π)
n
2

∫
Rn

(Dα f )(x)e−ixξdx =
(−1)|α|

(2π)
n
2

∫
Rn

f (x)
∂α

∂xα
e−ixξdx

= (−1)|α|(−i)|α|ξα(F f )(ξ) = i|α|ξα(F f )(ξ).

Remark 2.9 (on lemma 2.8). This lemma now shows why the Fourier transform is so interesting for
PDEs: differentials are turned into multiplications, i.e. analytic operations are turned into algebraic
operations and the other way round.

Lemma 2.10 (F : S(Rn)→ S(Rn)). If f ∈ S(Rn), then also F f ∈ S(Rn).

Proof. In lemma 2.8(i) we showed that F f ∈ C∞(Rn) holds. So we just have to prove ξαDβ(F f )(ξ)→
0 for |ξ| → ∞. This also follows by lemma 2.8:

ξαDβ(F f )(ξ) = (−i)|β|ξα F(xβ f )(ξ) = (−i)|β|(−i)|α| F(Dαxβ f )(ξ),
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since Dα(xβ f ) ∈ S(Rn) ⊆ L1(Rn), proposition 2.3 gives the result.

Motivation 2.11 (e−
x2
2 ). Next we want to find out what happens to a function f ∈ S(Rn) if we

apply the Fourier transform twice—which is now allowed by lemma 2.10. To do this we first need
to calculate the Fourier transform of

γ(x) = e−
x2
2 (x ∈ Rn),

We also use γa(x) = γ(ax) for a > 0. Recall [A3-PS, 182]:

1

(2π)
n
2

∫
Rn
γ(x)dx = 1.

Lemma 2.12 (F of e−
x2
2 ). We have

(F γ)(ξ) = e−
ξ2
2 = γ(ξ), (F γa)(ξ) =

1
anγ

(
ξ
a

)
.

Proof. The second result is clear once we have proved the first one (just substitute ξ for aξ). First we
are going to calculate F γ for n = 1. In this case γ solves the ordinary differential equation

y′ + xy = 0, y(0) = 1.

Thus, by lemma 2.8, we have

0 = F(γ′ + xγ) = iξF γ +
( 1
−i

F γ
)′
,

which means, that F γ solves the same differential equation; it even has the same initial value:

(F γ)(0) =
1
√

2π

∫
∞

−∞

e−
x2
2 dx = 1.

Because such initial value problems have unique solutions, it follows that γ = F γ.

We show the case n > 1 using the result for n = 1:

(F γ)(ξ) =
1

(2π)
n
2

∫
∞

−∞

· · ·

∫
∞

−∞

n∏
k=1

e−x2
k
/2

n∏
k=1

e−ixkξkdx1 · · · dxn

=

n∏
k=1

(
1
√

2π

∫
∞

−∞

e−
x2
k
2 e−ixkξkdxk

)

= e
ξ2

1
2 · · · e

ξ2
n
2 = e

ξ2
2 .

Lemma 2.13 (a step closer to F−1). Let f ∈ S(Rn), then

(F F f )(x) = f (−x) ∀x ∈ Rn,

i.e., F2 is the reflection.

Proof. Because we have F f ∈ S(Rn) by lemma 2.10, the lefthand side of the equation is defined.
If we tried to use Fubini’s theorem directly to calculate the double-integral (F F f )(x), we would
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obtain a non-convergent integral. Therefore we have to be more careful and use the “convergence-
improving” property of the functions γa.

A first useful observation is the following implication of Fubini’s theorem:∫
Rn

(F f )(x)g(x)dx =
∫
Rn

∫
Rn

f (ξ)g(x)e−iξxdξdx

=

∫
Rn

∫
Rn

f (x)g(ξ)e−iξxdξdx =
∫
Rn

f (x)(F g)(x)dx.
∀ f , g ∈ S(Rn) (8)

Here the change in the order of integration is allowed, because (x, ξ) 7→ f (ξ)g(x)e−iξx is integrable
(e−iξx is damped in both arguments). Now set g(x) := e−ixξ0γ(ax) with ξ0 ∈ Rn and a > 0. Then we
have:

(F g)(ξ) =
1

(2π)
n
2

∫
Rn

e−ixξ0γ(ax)e−ixξdx = (F γa)(ξ + ξ0). (9)

Now comes the actual proof:

1

(2π)
n
2

∫
Rn

(F f )(x) e−ixξ0γ(ax)︸ ︷︷ ︸
=g(x)

dx (8)
==

1

(2π)
n
2

∫
Rn

f (x)(F g)(x)dx

(9)
===
2.12

1

(2π)
n
2

∫
Rn

f (x)
1
an (F γ)

(x + ξ0

a

)
dx

u=
x+ξ0

a
======

2.12

1

(2π)
n
2

∫
Rn

f (au − ξ0)γ(u)du.

If we now let a → 0 then we see, using dominated convergence, that the first expression tends to
(F F f )(ξ0) while the last expression tends to f (−ξ0). Since the first integral is dominated by |F f | and
the last one by ‖ f ‖

∞
γ, which are both integrable.

Proposition 2.14 (F is bijective, Plancherel formula). The Fourier transform is a bijection of S(Rn);
the inverse operator is given by

(F−1 f )(x) =
1

(2π)
n
2

∫
Rn

f (ξ)eixξdξ.

Furthermore we have the so--called Plancherel equation〈
F f |F g

〉
L2 =

〈
f | g

〉
L2 ∀ f , g ∈ S(Rn).

Proof. From the previous lemma 2.13 we immediately obtain F4 = idS(Rn), which implies that the
Fourier transform is bijective and F−1 = F3. Therefore we have

(F−1 f )(x) = (F2(F f ))(x) 2.13
=== (F f )(−x),

which implies the first claim. We prove the Plancherel equation using (8):∫
Rn

(F f )(ξ)(F g)(ξ)dξ =
∫
Rn

f (x)(F (F g))(x)dx,

if we write h := F g, we obtain
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(F (F g))(x) = (F h)(x) =
1

(2π)
n
2

∫
Rn

h(ξ)e−ixξdξ =
1

(2π)
n
2

∫
Rn

h(ξ)eixξdξ

= (F−1 h)(x) = g(x),

which immediately implies 〈
F f |F g

〉
L2 =

∫
Rn

f (x)g(x)dx =
〈

f | g
〉

L2 .

Remark 2.15 (F on L2).

(i) The Plancherel equation implies

‖F f ‖2 = ‖ f ‖2 ∀ f ∈ S(Rn).

Which means that the Fourier transform F is bijective and isometric with respect to ‖ . ‖2 on the
subspace S(Rn) of L2(Rn).

(ii) Since by remark 2.6(iv) S(Rn) is dense in L2(Rn), we can extend F to an isometric opera-
tor on L2(Rn), which is called the Fourier(-Plancherel) transform. Proposition 2.14 implies that
F : L2(Rn)→ L2(Rn) is also an isometric isomorphism, and that we have:〈

F f |F g
〉

L2 =
〈

f | g
〉

L2 ∀ f , g ∈ L2(Rn). (10)

(iii) It is important to understand, that F f for f ∈ L2(Rn) cannot generally be calculated using the
formula for f ∈ L1(Rn): the integral in (2) need not exist.

Lemma 2.16 (exchange formula for Wm). Let f ∈Wm(Rn). Then:

F(D(α) f ) = i|α|ξα F f ∀|α| ≤ m.

Proof. For ϕ ∈ S(Rn) we have:〈
F(D(α) f ) |Fϕ

〉 (10)
===

〈
D(α) f |ϕ

〉 (∗)
== (−1)|α|

〈
f |Dαϕ

〉
(10)
=== (−1)|α|

〈
F f |F Dαϕ

〉 2.8
== (−1)|α|

〈
F f | i|α|ξα Fϕ

〉
= i|α|

∫
Rn
ξα(F f )(ξ)(Fϕ)(ξ)dξ.

In step (∗) we used the fact that the “integration by parts-trick” also works for ϕ ∈ S(Rn): More
precisely let ϕ ∈ S(Rn), (ϕn)n ∈ D(Rn) and ϕn → ϕ in S(Rn). Then a simple calculation shows〈

D(α) f |ϕ
〉
=

〈
D(α) f | lim

n→∞
ϕn

〉
= lim

n→∞

〈
D(α) f |ϕn

〉
1.7
== lim

n→∞
(−1)|α|

〈
f |Dαϕn

〉
= (−1)|α|

〈
f | lim

n→∞
Dαϕn

〉
= (−1)|α|

〈
f |Dαϕ

〉
.

Since the Fourier transform is a bijection of the Schwartz space, we have for h(ξ) := F(D(α) f )(ξ) −
i|α|ξα(F f )(ξ) in particular that
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∫
Rn

h(ξ)ψ(ξ)dξ = 0 ∀ψ ∈ D(Rn).

We still don’t know whether h ∈ L2(Rn). What we know is, that every restriction of h to an open ball
BR :=

{
x ∈ Rn : |x| < R

}
is in L2(BR). Thus the previous equation tells us〈

h |ψ
〉

L2(BR)
= 0 ∀ψ ∈ D(BR).

And since D(BR) is dense in L2(BR), we know that h = 0 almost everywhere in BR for all R > 0, so that
we have h = 0 almost everywhere in Rn—the result we were after.

Remark 2.17 (the other exchange formula). In lemma 2.16 we only showed the analogon for weak
derivatives of one of the exchange formulas of lemma 2.8. Since we only know that F f ∈ L2(Rn) for
f ∈Wm(Rn), the weak derivative D(α)(F f ) need not exist.

Now we have all the tools we need to prove the promised big theorems:

3 Sobolev embedding theorem &
Rellich-Kondrachov theorem

Theorem 3.1 (Sobolev embedding theorem). Let Ω ⊆ Rn be open, and m, k ∈ N0 with m > k + n
2 .

If f ∈ Wm(Ω), then there exists a k-times continuously differentiable function on Ω that is equal to f
almost everywhere. In other words, the class of equivalent functions f ∈Wm(Ω) has a representative
in Ck(Ω).

Remark 3.2 (on theorem 3.1). Theorem 3.1 essentially means that a function that is sufficiently
often weakly differentiable is also classically differentiable. Seen differently, decay conditions on a
function and its weak derivatives imply smoothness of the function (c.f. also motivation 2.1).

Proof (of theorem 3.1). We will only prove this for Ω = Rn, for arbitrary open subsets Ω ⊆ Rn

see [Werner; V.2.12]. The idea is to use the proof of lemma 2.8 where we showed that (read step (i)
backwards)

xαg ∈ L1(Rn) ∀|α| ≤ k ⇒ F g ∈ Ck(Rn).

If we use this result for g := F f , we only need to show that

f ∈Wm(Rn), m > k +
n
2

and |α| ≤ k ⇒ ξα F f ∈ L1(Rn), (11)

since then we have F F f ∈ Ck(Rn), which is already nearly the claimed result.

To show (11), notice that lemma 2.16 already implies ξα F f ∈ L2(Rn) for |α| ≤ m. In particular we
have ∫

Rn
ξ2m

j |F f (ξ)|2dξ < ∞ ∀ j = 1, . . . ,n and
∫
Rn
|F f (ξ)|2dξ < ∞.

Using 1+ξ2 = ‖(1, ξ2
1, . . . , ξ

2
n)‖1 ≤ ‖(1, . . . , 1)‖p‖(1, ξ

2
1, . . . , ξ

2
n)‖m = (n+1)

1
p (1+ξ2m

1 + · · ·+ξ
2m
n )

1
m , (Hölder

inequality with 1
p +

1
m = 1) we also obtain
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∫
Rn

(1 + ξ2)m
|F f (ξ)|2dξ < ∞.

Plugging this inequality and |ξα| ≤ |ξ||α| ≤ (1 + ξ2)
|α|
2 together, it follows that for all |α| ≤ k∫

Rn
|ξα F f (ξ)|dξ ≤

∫
Rn

(1 + ξ2)
|α|
2 |F f (ξ)|dξ ≤

∫
Rn

(1 + ξ2)
m
2 |F f (ξ)|(1 + ξ2)−

m−k
2 dξ

≤

(∫
Rn

(1 + ξ2)m
|F f (ξ)|2dξ

) 1
2
(∫
Rn

1
(1 + ξ2)m−k

dξ
) 1

2
< ∞.

To explain the last step in some more detail we denote by ωn−1 the area of the unit sphere in Rn (see
[Otto Forster, Analysis 3; §14, Satz 8, Beispiel (14.10)]), then we have∫

Rn

1
(1 + ξ2)m−k

dξ = ωn−1

∫
∞

0

1
(1 + r2)m−k

rn−1dr < ∞,

as long as 2(m−k)− (n−1) > 1, i.e., m > k+ n
2 . Therefore we really have ξα F f ∈ L1(Rn) which implies,

as already mentioned, F F f ∈ Ck(Rn).

Using (σg)(x) := g(−x) we now have by lemma 2.13 that the equation σg = F F g holds for all g ∈
S(Rn). Since σ and F are continuous and S(Rn) is dense in L2(Rn), the equation must also hold for
all g ∈ L2(Rn). This shows that f has to be equal to σ(F F f ) ∈ Ck(Rn) almost everywhere, which is
the claimed result for Ω = Rn.

Theorem 3.3 (Rellich-Kondrachov theorem). LetΩ ⊆ Rn be bounded and open, then the identity
map from Hm

0 (Ω) to Hm−1
0 (Ω) is compact.

Proof. First we prove the statement for m = 1. To see that the identity map from H1
0(Ω) to H0

0(Ω) =
L2(Ω) (see remark 1.10) is compact, we need to show that all bounded sequences ( f j) j in H1

0(Ω) have
a subsequence that converges with respect to ‖ . ‖2. Since the space of tesfunctions D(Ω) is dense
in H1

0(Ω) (by definition), we can assume that f j ∈ D(Ω). By setting f j = 0 outside its compact support
we may extend f j to a compactly supported function on all of Rn, hence view f j as an element
of D(Rn).

Since a bounded sequence in D(Ω) is also bounded in L2(Rn), we can use [FA2, Theorem 5.26
resp. Corollary 5.28] to obtain the existence of a weakly converging subsequence of ( f j) j in L2(Ω).
We again write ( f j) j for this sequence. The next step is to show its Cauchy property—then we’re
done since L2(Ω) is of course complete.

Using the Plancherel equality (10) we obtain

‖ fk − f j‖
2
2 = ‖F fk − F f j‖

2
2 =

∫
Rn
|F fk(ξ) − F f j(ξ)|2dξ

=

∫
|ξ|≤R
|F fk(ξ) − F f j(ξ)|2dξ +

∫
|ξ|>R
|F fk(ξ) − F f j(ξ)|2dξ. (12)

First we’ll show that the second integral can be made small by choosing an appropriate R > 0. Using
the exchange formula of lemma 2.16 we have for l = 1, . . . ,n and f ∈W1(Rn) that

‖ξl F f ‖2
2.16
===

∥∥∥∥∥F(
∂
∂xl

f
)∥∥∥∥∥

2

(10)
===

∥∥∥∥∥ ∂∂xl
f
∥∥∥∥∥

2
≤ ‖ f ‖W1(Rn) (13)

(here the derivatives are weak derivatives). This means that the sequence (|ξ|F f j) j is bounded
in L2(Rn), so for all ε > 0 we may find R > 0 such that
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∫
|ξ|>R
|F fk(ξ) − F f j(ξ)|2dξ ≤

1
R2

∫
|ξ|>R
|ξ|2|F fk(ξ) − F f j(ξ)|2dξ︸ ︷︷ ︸

< c, by (13)

< ε ∀ j, k ∈N.

Now we have to deal with the first integral in (12). Set eξ(x) := eixξ for x ∈ Ω. SinceΩ is bounded, we
have eξ ∈ L2(Ω). Thus

f 7→
〈

f | eξ
〉
=

∫
Ω

f (x)e−ixξdx = F( fχΩ)(ξ)

defines a continuous functional on L2(Ω). Since ( f j) j converges weakly in L2(Ω) we obtain that
((F f j)(ξ)) j is convergent for all ξ ∈ Rn. Using this we want to conclude that∫

|ξ|≤R
|F fk(ξ) − F f j(ξ)|2dξ→ 0 ( j, k→∞).

This follows using dominated convergence: the integrand is dominated by sup j ‖F f j‖∞

(
by [FA1,

Satz 1.34(iii)] the sequence ( f j) j is also bounded in L1(Ω), which allows us to use proposition 2.3 to
obtain that (F f j) j is bounded with respect to ‖ . ‖∞

)
. This proves the statement for m = 1.

Now let m > 1 and ( f j) j a bounded sequence in Hm
0 (Ω), then all of the sequences (D(α) f j) j for 0 ≤ |α| ≤

m − 1 are bounded in H1
0(Ω). Therefore, by the above, they contain L2-Cauchy--subsequences. Ap-

plying this argument to all multi--indices we obtain a subsequence of ( f j) j that converges in Hm−1
0 (Ω)

since Hm−1
0 (Ω) is complete (by definition).

Remark 3.4 (description of Wm using F). Lemma 2.16 implies the following characterization:

Wm(Rn) =
{

f ∈ L2(Rn) : (1 + |ξ|2)
m
2 F f ∈ L2(Rn)

}
.[

f ∈ Wm
⇔ D(α) f ∈ L2

∀|α| ≤ m ⇔ F(D(α) f ) ∈ L2
∀|α| ≤ m ⇔ ξα F f ∈ L2

∀|α| ≤ m ⇔ (1 + |ξ|2)
|α|
2 F f ∈

L2
∀|α| ≤ m

]
This characterization would allow us to extend the definition of the Sobolev spaces Wm to positive
real exponents m ∈ R+ [if we also want to allow negative m we have to use tempered distributions].


