Some prerequisites from integration theory

In this note we recall some basic facts from integration theory which will be used throughout the course. We consider the material a must in any advanced analysis course. For more details and further reading see the list of references at the end.
(c) M.K. 2003, R.S. 2010

Integration in \mathbb{R}^{n}

Denote by $Q:=\Pi_{j=1}^{n}\left[a_{j}, b_{j}\right]$ a compact cube in \mathbb{R}^{n} and let $f: Q \rightarrow \mathbb{R}$ be a bounded function. For a partition \mathfrak{Z} of Q into subcubes Q_{i} we define the upper and lower sums

$$
U(\mathfrak{Z})=\sum_{i} \sup _{Q_{i}} f\left|Q_{i}\right|, \quad L(\mathfrak{Z})=\sum_{i} \inf _{Q_{i}} f\left|Q_{i}\right|
$$

where $\left|Q_{i}\right|$ denotes the volume of the cube Q_{i}. We say that f is (Riemann-)integrable over Q if

$$
\inf _{\mathfrak{Z}} U(\mathfrak{Z})=\sup _{\mathfrak{Z}} L(\mathfrak{Z})=: \int_{Q} f(x) d x
$$

Any continuous f is integrable and Fubini's theorem tells us that

$$
\int_{Q} f(x) d x=\int_{a_{n}}^{b_{n}} \ldots \int_{a_{1}}^{b_{1}} f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \ldots d x_{n}
$$

For $\Omega \subset \mathbb{R}^{n}$ denote by χ_{Ω} the characteristic function of Ω, i.e., $\chi_{\Omega}(x)=1$ if $x \in \Omega$ and $\chi_{\Omega}(x)=0$ for $x \notin \Omega$. A bounded set $\Omega \subseteq Q$ is called (Jordan-)measurable if χ_{Ω} is integrable over Q. In this case the (Jordan-) volume of Ω is given by

$$
|\Omega|:=\int_{Q} \chi_{\Omega}(x) d x=\int_{\Omega} d x .
$$

Finally, for $f: \Omega \subseteq Q \rightarrow \mathbb{R}$ with $f \chi_{\Omega}$ integrable over Q we write

$$
\int_{\Omega} f(x) d x:=\int_{Q} f(x) \chi_{\Omega}(x) d x
$$

Next we discuss changing of variables. Let $G \subseteq \mathbb{R}^{n}$ be open and $T: G \rightarrow \mathbb{R}^{n}$ be an injective \mathcal{C}^{1}-function with $\operatorname{det} D T$ everywhere positive (or negative). Moreover, let $\Omega \subseteq G$ be compact and measurable and let $f: T(\Omega) \rightarrow \mathbb{R}$ be continuous. Then $T(G)$ is measurable and f is integrable over $T(\Omega)$ and we have that

$$
\begin{equation*}
\int_{T(\Omega)} f(y) d y=\int_{\Omega} f(T(x))|\operatorname{det} D T(x)| d x \tag{1}
\end{equation*}
$$

Polar and spherical coordinates

A simple and important special case of the above situation are polar coordinates in \mathbb{R}^{2}. We set $x_{1}=r \cos \varphi$ and $x_{2}=r \sin \varphi$ or more formally

$$
T_{2}:(r, \varphi) \mapsto(r \cos \varphi, r \sin \varphi) \quad \text { for } 0 \leq r \text { and } 0 \leq \varphi<2 \pi
$$

and observe that T_{2} is a diffeomorphism from $\Omega=\{(r, \varphi): 0<r, 0<\varphi<2 \pi\}$ to $\mathbb{R}^{2} \backslash \mathbb{R}_{0}^{+}$. Also we clearly have that

$$
\operatorname{det} D T_{2}=\operatorname{det}\left(\begin{array}{cc}
\cos \varphi & -r \sin \varphi \\
\sin \varphi & r \cos \varphi
\end{array}\right)=r .
$$

Another important special case is spherical coordinates in \mathbb{R}^{3}, where we set

$$
x_{1}=r \cos \varphi \sin \theta_{1}, x_{2}=r \sin \varphi \sin \theta_{1}, \text { and } x_{3}=r \cos \theta_{1}
$$

More formally we may write $\left(0 \leq r, 0 \leq \varphi<2 \pi, 0 \leq \theta_{1} \leq \pi\right)$

$$
T_{3}:\left(r, \varphi, \theta_{1}\right) \mapsto\left(r \cos \varphi \sin \theta_{1}, r \sin \varphi \sin \theta_{1}, r \cos \theta_{1}\right),
$$

which can be seen to be a diffeomorphism on $\Omega=\left\{\left(r, \varphi, \theta_{1}\right): 0<r, 0<\varphi<2 \pi, 0<\theta_{1}<\pi\right\}$ with image $\mathbb{R}^{3} \backslash\left\{x: x_{1}>0, x_{2}=0\right\}$. For convenience we rewrite as $T_{3}=T_{z} \circ \Psi$ with

$$
\begin{aligned}
\Psi\left(r, \varphi, \theta_{1}\right) & :=\left(r \sin \theta_{1}, \varphi, r \cos \theta_{1}\right)=:\left(\rho, \varphi, x_{3}\right), \text { and } \\
T_{z}\left(\rho, \varphi, x_{3}\right) & :=\left(T_{2}(\rho, \varphi), x_{3}\right) .
\end{aligned}
$$

In this way we obtain by the chain rule $D T_{3}\left(r, \varphi, \theta_{1}\right)=D T_{z}\left(\rho, \varphi, x_{3}\right) \circ D \Psi\left(r, \varphi, \theta_{1}\right)$, hence

$$
\left|\operatorname{det} D T_{3}\left(r, \varphi, \theta_{1}\right)\right|=\left|\operatorname{det} D T_{z}\left(\rho, \varphi, x_{3}\right)\right| \cdot\left|\operatorname{det} D \Psi\left(r, \varphi, \theta_{1}\right)\right|=\rho r=r^{2} \sin \theta_{1}
$$

This now generalizes easily to the case of arbitrary n. Indeed we set ($0 \leq r, 0 \leq \varphi<2 \pi$, $0 \leq \theta_{i} \leq \pi, i=1, \ldots, n-2$)

$$
\begin{array}{rrr}
x_{1} & = & r \cos \varphi \sin \theta_{1} \sin \theta_{2} \sin \theta_{3} \ldots \ldots \ldots \ldots \sin \theta_{n-2} \\
x_{2} & = & r \sin \varphi \sin \theta_{1} \sin \theta_{2} \sin \theta_{3} \ldots \ldots \ldots \ldots \sin \theta_{n-2} \\
x_{3} & = & r \cos \theta_{1} \sin \theta_{2} \sin \theta_{3} \ldots \ldots \ldots \ldots \sin \theta_{n-2} \\
x_{4} & = & r \cos \theta_{2} \sin \theta_{3} \ldots \ldots \ldots \ldots \sin \theta_{n-2} \tag{2}\\
\vdots & r \cos \theta_{n-3} \sin \theta_{n-2} \\
x_{n-1} & = & r \cos \theta_{n-2},
\end{array}
$$

or for short

$$
\begin{equation*}
x=T_{n}\left(r, \varphi, \theta_{1}, \ldots, \theta_{n-2}\right) \tag{3}
\end{equation*}
$$

Similar to the above we now have that T_{n} is a diffeomorphism on $(0, \infty) \times(0,2 \pi) \times(0, \pi)^{n-2}$ with image $\mathbb{R}^{n} \backslash\left\{x: x_{1} \geq 0, x_{2}=0\right\}$ and that

$$
\begin{equation*}
\left|\operatorname{det} D T_{n}\right|=r^{n-1} \sin \theta_{1}\left(\sin \theta_{2}\right)^{2} \ldots\left(\sin \theta_{n-2}\right)^{n-2} \tag{4}
\end{equation*}
$$

Indeed the latter statement can be proved by induction. To this end we write similar to the above $T_{n}=T_{z} \circ \Psi$ with

$$
\begin{aligned}
\Psi\left(r, \varphi, \theta_{1}, \ldots, \theta_{n-2}\right) & :=\left(r \sin \theta_{n-2}, \varphi, \theta_{1}, \ldots, \theta_{n-3}, r \cos \theta_{n-2}\right)=:\left(\rho, \varphi, \theta_{1}, \ldots, \theta_{n-3}, x_{n}\right) \\
T_{z}\left(\rho, \varphi, \theta_{1}, \ldots, \theta_{n-3}, x_{n}\right) & :=\left(T_{n-1}\left(\rho, \varphi, \theta_{1}, \ldots, \theta_{n-3}\right), x_{n}\right)
\end{aligned}
$$

Now by the induction hypothesis $\left|\operatorname{det} D T_{z}\right|=\rho^{n-2} \sin \theta_{1} \ldots\left(\sin \theta_{n-3}\right)^{n-3}$ and observing that $|\operatorname{det} D \Psi|=r$ as well as the definition of ρ we obtain

$$
\left|\operatorname{det} T_{n}\right|=\left|\operatorname{det} D T_{z}\right|\left|\operatorname{det} D_{\psi}\right|=r^{n-1} \sin \theta_{1}\left(\sin \theta_{2}\right)^{2} \ldots\left(\sin \theta_{n-2}\right)^{n-2}
$$

Surface integrals

The next topic we discuss is integration over m-dimensional surfaces in \mathbb{R}^{n}. We start with some linear algebra and recall that given m vectors v_{1}, \ldots, v_{m} in \mathbb{R}^{n} the Gram determinant $G\left(v_{1}, \ldots, v_{m}\right)$ of v_{1}, \ldots, v_{m} is defined by

$$
G\left(v_{1}, \ldots, v_{m}\right):=\operatorname{det}\left(\begin{array}{ccc}
\left\langle v_{1}, v_{1}\right\rangle & \ldots & \left\langle v_{1}, v_{m}\right\rangle \\
\vdots & & \vdots \\
\left\langle v_{m}, v_{1}\right\rangle & \ldots & \left\langle v_{m}, v_{m}\right\rangle
\end{array}\right)
$$

where \langle,$\rangle denotes the standard scalar product in \mathbb{R}^{n}$. Also recall that the volume of the parallelepiped spanned by v_{1}, \ldots, v_{m} equals the square root of the Gram determinant, i.e.,

$$
\operatorname{Vol}\left(v_{1}, \ldots, v_{m}\right)=\left(G\left(v_{1}, \ldots, v_{m}\right)\right)^{1 / 2}
$$

In particular, if $n=3$ and $m=2$ then we have that

$$
\operatorname{Vol}\left(v_{1}, v_{2}\right)=\sqrt{\left\|v_{1}\right\|^{2}\left\|v_{2}\right\|^{2}-\left\langle v_{1}, v_{2}\right\rangle^{2}}
$$

the surface of the parallelogram spanned by v_{1}, v_{2}.
Let now $\Omega \subseteq \mathbb{R}^{m}$ be open and let $S \in \mathcal{C}^{1}\left(\Omega, \mathbb{R}^{n}\right)$ be an immersion, that is

$$
\operatorname{rank}(D S(x))=m \quad \text { for all } x \in \Omega
$$

Recall that the latter condition is equivalent to linear independence of the vectors $D_{1} S(x), \ldots$, $D_{m} S(x)$, which tells us that they span an m-dimensional subspace in \mathbb{R}^{n}. So we call $S(\Omega)$ or more sloppy S an m-dimensional (parametrized) surface in \mathbb{R}^{n}.

Now we want to determine the area of S. To this end we imagine that the surface consist of many infinitesimal parallelepipeds spanned by $D_{1} S(x), \ldots, D_{m} S(x)$ and we have to sum all of them. Mathematically this sum has to be turned into an integral and so the following definition is justified: We define the area $|S|$ of S to be

$$
|S|:=\int_{\Omega} \sqrt{G(D S(y))} d y=\int_{\Omega} \sqrt{\operatorname{det}\left(\left\langle\frac{\partial S}{\partial y_{i}}, \frac{\partial S}{\partial y_{j}}\right\rangle\right)_{i, j=1}^{m}} d y
$$

One often writes $g_{i j}(S)=\left\langle\frac{\partial S}{\partial y_{i}}, \frac{\partial S}{\partial y_{j}}\right\rangle$ and $d S(y)=\sqrt{G(D S(y))} d y=\sqrt{\operatorname{det} g_{i j}(S)} d y$ and moreover $\int_{S} d S(y)=\int_{\Omega} \sqrt{G(D S(y))} d y$. With this notation we define for any continuous $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ the integral of f over S by

$$
\int_{S} f(y) d S(y):=\int_{\Omega} f(S(y)) \sqrt{G(D S(y))} d y
$$

Spheres and balls

As an application of the above we calculate the surface of the unit sphere S^{n-1} in \mathbb{R}^{n} as well as the volume of the unit ball $B(0,1)$. We again start with some linear algebra and observe that in the case $m=n$, hence for vectors $v_{1}, \ldots v_{n}$ in \mathbb{R}^{n} we have with $A:=\left(v_{1}, \ldots, v_{n}\right)$ that

$$
\begin{equation*}
G\left(v_{1}, \ldots, v_{n}\right)=\operatorname{det} A^{2} \tag{5}
\end{equation*}
$$

Next we parametrize the unit sphere S^{n-1} in \mathbb{R}^{n} using (3), i.e,

$$
\begin{aligned}
S:=\left.T_{n}\right|_{r=1}:(0,2 \pi) \times(0, \pi)^{n-2} & \rightarrow \mathbb{R}^{n} \\
y=\left(\varphi, \theta_{1}, \ldots, \theta_{n-2}\right) & \mapsto T_{n}\left(1, \varphi, \theta_{1}, \ldots, \theta_{n-2}\right)
\end{aligned}
$$

To determine $d S(y)$ we have to calculate $G(D S(y))$. To do so we first show that $G(D S)=$ $\left.G\left(D T_{n}\right)\right|_{r=1}$ and then use (5) to obtain $\left.G\left(D T_{n}\right)\right|_{r=1}$ via det $D T_{n}^{2}$ which we already know from (4). Indeed from (2) we see that

$$
\left\langle\partial_{r} T_{n}, \partial_{r} T_{n}\right\rangle=1,\left\langle\partial_{r} T_{n}, \partial_{\varphi} T_{n}\right\rangle=0=\left\langle\partial_{r} T_{n}, \partial_{\theta_{i}} T_{n}\right\rangle \quad(1 \leq i \leq n-2),
$$

hence

$$
\left.G\left(D T_{n}\right)\right|_{r=1}=\operatorname{det}\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & & & \\
\vdots & & g_{i j}(S) & \\
0 & &
\end{array}\right)=\operatorname{det}\left(g_{i j}(S)\right)=G(D S)
$$

and so we obtain

$$
\begin{aligned}
d S(y) & =\sqrt{G(D S(y))} d y=\left.\sqrt{G\left(D T_{n}\right)}\right|_{r=1} d y=\left.\sqrt{\left(\operatorname{det} D T_{n}\right)^{2}}\right|_{r=1} d y=\left|\operatorname{det} D T_{n}\right|_{r=1} d y \\
& =\sin \theta_{1}\left(\sin \theta_{2}\right)^{2} \ldots \sin \left(\theta_{n-2}\right)^{n-2} d \varphi d \theta_{1} \ldots d \theta_{n-2}
\end{aligned}
$$

Now to compute the area of the unit sphere we just have to evaluate

$$
\begin{aligned}
\left|S^{n-1}\right| & \equiv|\partial B(0,1)|=\int_{\partial B(0,1)} d S(y) \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi} \ldots \int_{0}^{\pi} \sin \theta_{1} \ldots \sin \left(\theta_{n-2}\right)^{n-2} d \varphi d \theta_{1} \ldots d \theta_{n-2}=: n \alpha(n)
\end{aligned}
$$

and an explicit calculation (cf. e.g. [1, Bsp. (5.7)]) shows that

$$
\alpha(n)=\frac{\pi^{n / 2}}{\Gamma\left(\frac{n}{2}+1\right)},
$$

where Γ denotes Euler's gamma function.
Now it is easy to calculate the volume of the unit ball $B(0,1)$ in \mathbb{R}^{n} : Observe that its interior $B^{\circ}(0,1)$ is given by $B^{\circ}(0,1)=T_{n}\left((0,1) \times(0,2 \pi) \times(0, \pi)^{n-2}\right)=: T_{n}(\Omega)$ hence by the change of variables formula (1) we obtain

$$
\begin{aligned}
|B(0,1)| & =\left|B^{\circ}(0,1)\right|=\int_{B^{\circ}(0,1)} d x=\int_{\Omega}\left|\operatorname{det} D T_{n}(x)\right| d x \\
& =\int_{0}^{1} \int_{0}^{2 \pi} \int_{0}^{\pi} \ldots \int_{0}^{\pi} r^{n-1} \sin \theta_{1} \ldots \sin \left(\theta_{n-2}\right)^{n-2} d \varphi d \theta_{1} \ldots d \theta_{n-1} d r \\
& =\int_{0}^{1} r^{n-1} \int_{\partial B(0,1)} d S(y) d r=\left.\frac{r^{n}}{n} \alpha(n) n\right|_{0} ^{1}=\alpha(n) .
\end{aligned}
$$

Finally, we want to integrate some continuous function u over general balls and spheres. For $\partial B(x, r)$ with arbitrary $x \in \mathbb{R}^{n}$ and $r>0$ we choose the parametrization

$$
S: y=\left(\varphi, \theta_{1}, \ldots \theta_{n-2}\right) \mapsto x+T_{n}\left(r, \varphi, \theta_{1}, \ldots \theta_{n-2}\right)=x+r T_{n}\left(1, \varphi, \theta_{1}, \ldots \theta_{n-2}\right)
$$

Now we have in analogy to the above that

$$
d S(y)=\left|\operatorname{det} D T_{n}\right|_{r}=r^{n-1} \sin \theta_{1} \ldots \sin \left(\theta_{n-2}\right)^{n-2} d \varphi d \theta_{1} \ldots d \theta_{n-2}
$$

and so we obtain

$$
\begin{aligned}
& \int_{\partial B(x, r)} u(y) d S(y) \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi} \ldots \int_{0}^{\pi} u\left(x+r T_{n}\left(1, \varphi, \theta_{1}, \ldots \theta_{n-2}\right) r^{n-1} \sin \theta_{1} \ldots \sin \left(\theta_{n-2}\right)^{n-2} d \varphi d \theta_{1} \ldots d \theta_{n-2}\right. \\
& = \\
& =r^{n-1} \int_{\partial B(0,1)} u(x+r y) d S(y)
\end{aligned}
$$

Similarly we may write $B^{\circ}(x, r)=x+T_{n}\left((0, r) \times(0,2 \pi) \times(0, \pi)^{n-2}\right)=: T(\Omega)$, where we have set $T\left(s, \varphi, \theta_{1}, \ldots, \theta_{n-2}\right) \mapsto x+T_{n}\left(s, \varphi, \theta_{1}, \ldots, \theta_{n-2}\right)$. This immediately gives

$$
\begin{aligned}
\int_{B(x, r)} u(x) d x & =\int_{\Omega} u\left(T\left(s, \varphi, \theta_{1}, \ldots, \theta_{n-2}\right)|\operatorname{det} D T| d\left(s, \varphi, \theta_{1}, \ldots, \theta_{n-2}\right)\right. \\
& =\int_{0}^{r} \int_{0}^{2 \pi} \int_{0}^{\pi} \ldots \int_{0}^{r} u\left(T\left(s, \varphi, \ldots, \theta_{i}, \ldots\right) s^{n-1} \sin \theta_{1} \ldots \sin \left(\theta_{n-2}\right)^{n-2} d \varphi d \theta_{1} \ldots d \theta_{n-2} d s\right. \\
& =\int_{0}^{r} s^{n-1} \int_{\partial B(0,1)} u(x+s y) d S(y) d s=\int_{0}^{r} \int_{\partial B(x, s)} u(y) d S(y) d s .
\end{aligned}
$$

Finally, if we set $u \equiv 1$ we obtain the area of the spheres as well as the volume of the balls of radius r

$$
\begin{aligned}
|\partial B(x, r)| & =r^{n-1}|\partial B(0,1)|=r^{n-1} n \alpha(n) \\
|B(x, r)| & =\int_{0}^{r} s^{n-1} n \alpha(n) d s=r^{n} \alpha(n) .
\end{aligned}
$$

Some integral theorems and formulas

To finish this note we recall the Gaussian divergence theorem and some of its consequences which are essential in several places of the lecture course.

Let $U \subseteq \mathbb{R}^{n}$ open and bounded with \mathcal{C}^{1}-boundary ∂U and outer unit normal vector $\nu: \partial U \rightarrow$ \mathbb{R}^{n}. Moreover, let $F: \bar{U} \rightarrow \mathbb{R}^{n}$ be a \mathcal{C}^{1}-function. Then the divergence theorem (see e.g. [1, §15, Satz 3]) says that

$$
\int_{U} \mathrm{~d} i v F d x=\int_{\partial U} F \cdot \nu d S .
$$

In particular, for F of the form $F=(0, \ldots, 0, u, 0, \ldots, 0)$ where the i-th component of F is given by some \mathcal{C}^{1}-function $u: \bar{U} \rightarrow \mathbb{R}$ we obtain the Gauss-Green theorem

$$
\int_{U} u_{x_{i}} d x=\int_{\partial U} u \nu^{i} d S \quad(1 \leq i \leq n)
$$

Applying this formula with u replaced by the product $u v$ of some $\mathcal{C}^{1}(\bar{U})$-functions u, v we obtain the integration by parts formula

$$
\int_{u} u_{x_{i}} v d x=-\int_{U} u v_{x_{i}} d x+\int_{\partial U} u v \nu^{i} d S .
$$

The following so-called Gaussian formulas for $u, v \in \mathcal{C}^{2}(\bar{U})$-functions are again easy consequences of the integration by parts formula:
(i) $\int_{U} \triangle u d x=\int_{\partial U} \frac{\partial u}{\partial \nu} d S$
(ii) $\int_{U} D u \cdot D v d x=-\int_{U} u \triangle v d x+\int_{\partial U} u \frac{\partial v}{\partial \nu} d S$
(iii) $\int_{U}(u \triangle v-v \Delta u) d x=\int_{\partial U}\left(u \frac{\partial v}{\partial \nu}-v \frac{\partial u}{\partial \nu}\right) d S$

References

[1] O. Forster, Analysis 3 (5. Auflage, Vieweg+Teubner, Braunschweig, 2008).
[2] W. Walter, Analysis 2 (5. Auflage, Springer, Berlin, 2009).
[3] H. Heuser, Analysis 2 (14. Auflage, Vieweg+Teubner, Braunschweig, 2008).
[4] G. Fischer, Lineare Algebra (17. Auflage, Vieweg+Teubner, Braunschweig, 2009).

