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Exercises no. 31, 33, 36–38

31. Properties of the closure (cf. Lecture 2.40).
Prove Proposition 2.40 from the lecture, that is, prove that the closure of an arbitrary subset
A of a topological space (X,O) has the following properties

• ∅̄ = ∅, X̄ = X

• A ⊂ B ⇒ Ā ⊂ B̄
• A ∪B = Ā ∪ B̄
• A is closed if and only if Ā = A.

• A = Ā

33. Boundary and closure of ε-balls in discrete metric spaces.
Let X be a set containing at least two distinct points and let d be the discrete metric on X.

(i) Let ε > 0 and x ∈ X. Compute the sets Bε(x), Sε(x) and Kε(x) (for the respective
definitions see Exercise 32.)

(ii) Prove that d induces (cf. Lecture Ex. 2.4(i)) the discrete topology on X.

(iii) Compare the set S1(x) with ∂B1(x) and K1(x) with B1(x). Discuss the differences
between the present situation and the well-known picture in (Rn, d2)!

36. Convergence in simple topological spaces.
Which nets converge with respect to

(i) the trivial topology (O := {∅, X}, also called the indiscrete topology) and

(ii) the discrete topology?

37. Closure via nets (cf. Lecture, 3.10).
Prove 3.10(ii) from the lecture course, that is prove that

Ā = {x ∈ X| there exists a net (xλ)λ in A : xλ → x}.

38. The topology of pointwise convergence (cf. Lecture, Remark 1.18(ii)).
We consider the (real) vector space of real-valued functions on R, i.e.,

F = {f : R→ R}
with the toplogy O induced by the sub-basis (cf. Lecture, 2.13.) St,a,b, where t, a, b ∈ R with
a ≤ b

St,a,b := {f ∈ F| a < f(t) < b}.
(i) Prior to seriously starting to work on items (ii)–(v) answer the following question: What

is the purpose of this exercise?

(ii) Justify the name “topology of pointwise convergence” for O by showing that a sequence
of functions (fn)n converges pointwise if and only if it converges in (F ,O).

(iii) Prove that the constant function f(x) = 1 ∀x ∈ R lies in the closure of the set

A := {f ∈ F| f(x) 6= 0 for only finitely many x}.

(iv) Show that there is no sequence (fn)n in A that converges to f . (Hint: Let Cn be the
(finite!) set of all x ∈ R such that fn(x) 6= 0 and consider the neighborhood St,1/2,3/2
of f for some t 6∈ Cn ∀n.)

(v) Prove that (F ,O) is not first countable hence not metrizable. (Hint: Use the charac-
terization of the closure in metric spaces analogous to Lecture, 3.20(ii).)

(vi) For good measure, construct a net in A that converges to f . (Such a net exists by
Lecture, 3.10(ii)!) (Hint: Consider Λ = {M ⊆ R|M finite} and fΛ the characteristic
function of the set Λ.)


