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ABSTRACT. We give a short introduction to the contact invariant in bordered Floer homology defined
in [AFH+21]. The construction relies on a special class of foliated open books. We discuss a procedure
to obtain such a foliated open book and present a definition of the contact invariant. We also provide
a “local proof”, through an explicit bordered computation, of the vanishing of the contact invariant
for overtwisted structures.

1. INTRODUCTION

Many of the recent advances in classifying tight contact structures were made possible by the
advent of Heegaard Floer homology in the early 2000s and the subsequent development of Floer-
theoretic contact invariants. Using open books, Ozsváth and Szabó defined an invariant of closed
contact three-manifolds [OS05]. Given a closed, contact manifold (M, ξ), this invariant is a class

c(ξ) in the Heegaard Floer homology ĤF (−M). In [HKM09b], Honda, Kazez, and Matić gave an
alternative description of c(ξ), again using open books. This “contact class” was used to show
that knot Floer homology detects both genus [OS04] and fiberedness [Ghi08, Ni07]. It also gives
information about overtwistedness: if ξ is overtwisted, then c(ξ) = 0, whereas if ξ is Stein fillable,
then c(ξ) 6= 0 [OS05]. The contact class was also used to distinguish notions of fillability: Ghiggini
used it to construct examples of strongly symplectically fillable contact three-manifolds which do
not have Stein fillings [Ghi05].

In [AFH+21], a contact invariant was defined in the bordered sutured Floer homology of a
foliated contact three-manifold (M, ξ,F) (that is, a contact manifold with a certain type of singular
foliation on the boundary). We associate to a foliated contact three-manifold a bordered sutured
manifold (M, Γ,Z). The resulting sutures are particularly simple, so one can think of (M, Γ,Z) as
a bordered manifold (M,Z) of a type slightly more general than in [LOT18] – the parametrization
on the boundary uses n zero-handles and n two-handles, where n is half the number of elliptic
points in the foliation F . Below, we rephrase the main results of [AFH+21], translating from
“bordered sutured” to “multipointed” language. Section 2 explores the correspondence between
these two viewpoints in more detail.

Using a special decomposition of (M, ξ,F) called a sorted foliated open book, one can construct
an admissible multipointed bordered Heegaard diagram for the manifold (M,Z) and identify a
preferred generator. This preferred generator is an invariant of the contact structure.

Theorem 1 (cf. [AFH+21, Theorem 1]). Let (M, ξ,F) be a foliated contact three-manifold with associated
bordered manifold (M,Z). Then there are invariants cD(M, ξ,F) and cA(M, ξ,F) of the contact struc-
ture which are well defined homotopy equivalence classes in the multipointed bordered Floer homologies

C̃FD(−M,Z) and C̃FA(−M,Z), respectively.

Further, this generator “vanishes” for overtwisted manifolds, in the following sense.
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Theorem 2 (cf. [AFH+21, Corollary 4]). If (M, ξ,F) is overtwisted, then the classes cD(M, ξ,F) and

cA(M, ξ,F) are zero in H∗(C̃FD(−M,Z)) and H∗(C̃FA(−M,Z)), respectively.

Given a pair of foliated contact three-manifolds (ML, ξL,FL) and (MR, ξR,FR) whose bound-
aries agree in an appropriate sense, there is a natural way to glue them to obtain a closed contact
three-manifold (M, ξ). The contact invariants of the two foliated contact three-manifolds pair to
recover the contact invariant of (M, ξ).

Theorem 3 (cf. [AFH+21, Theorem 2]). The tensor product cA(M
L, ξL,FL)⊠ cD(M

R, ξR,FR) recov-
ers the contact invariant c(M, ξ).

In this short paper we give a hands-on introduction to the construction of the bordered contact
invariant. Section 2 lays out the language of multipointed bordered Floer homology as a special
case of bordered sutured Floer homology, laying the groundwork for a simplified description of
the construction of the bordered contact invariant. In Section 3 we introduce foliated open books
and develop an important example. We start with a relatively simple foliated open book for a
neighborhood of an overtwisted disk. We then execute the stabilization process to produce a more
complicated, but better-behaved, foliated open book, called sorted. In Section 4 we describe how to
construct a Heegaard diagram from a sorted foliated open book and define a generator on it that
represents the contact invariant. Finally, in Section 5 we use the sorted foliated open book from our
earlier example to construct a Heegaard diagram, and we study the associated contact invariant
via a local computation. We then apply this local computation, in conjunction with Theorem 3, to
recover the following vanishing result.

Corollary 4. Let (M, ξ) be a closed contact three-manifold. If ξ is overtwisted, then c(ξ) = 0.

Note that in [HKM09a], vanishing of the sutured contact class is established for a neighbor-
hood of an overtwisted disk. A sutured argument for the vanishing of c(ξ) for overtwisted closed
manifolds can then be obtained with the TQFT gluing map from [HKM08]. Our local construc-
tion explicitly constructs the “contact compatible” layer needed in the sutured setting, giving a
bordered counterpart to the argument.

Acknowledgements. We are grateful to BIRS for hosting the workshop Interactions of gauge theory
with contact and symplectic topology in dimensions 3 and 4.

2. MULTIPOINTED BORDERED FLOER HOMOLOGY

As a stepping stone for defining link Floer homology, Ozsváth and Szabó defined a multipointed

version of ĤF denoted by H̃F [OS08]. This version is defined using Heegaard diagrams with

multiple basepoints, and, given a closed, oriented three-manifold M , it is related to ĤF (M) by the
isomorphism

H̃F (M,n) ∼= ĤF (M)⊗ V n−1.

Here, n is the number of basepoints and V is a 2-dimensional graded Z/2Z-vector space with

generators in gradings 1 and 0; i.e., V ∼= H∗(S
1). Note that both ĤF (M) and H̃F (M,n) are sutured

Floer homologies of specific sutured manifolds corresponding to M . Specifically, let M(n) be the
sutured manifold obtained from M by removing n pairwise disjoint balls and adding as a suture
one oriented simple closed curve on each resulting sphere boundary component. Then, we have

ĤF (M) ∼= SFH (M(1)) while H̃F (M,n) ∼= SFH (M(n)).

Lipshitz, Ozsváth, and Thurston define bordered Floer homology as an extension of ĤF for
three-manifolds with parametrized boundary [LOT18]. First, they associate a differential graded
algebra A(∂M) to the parametrization. Then, they define an A∞-module, or type A structure,
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ĈFA(M) over A(∂M), or equivalently a type D structure (roughly, a dg module) ĈFD(M) over

A(−∂M). These invariants are constructed to satisfy a nice gluing formula which recovers ĤF .
Specifically, if M is a closed three-manifold obtained by a gluing M1∪∂M2, then the derived tensor

product ĈFA(M1)⊗̃A(∂M1)ĈFD(M2) (which often has a smaller model denoted ⊠) is homotopy

equivalent to ĈF (M).

A generalization of bordered Floer homology, called bordered sutured Floer homology, was
defined by Zarev [Zar09]. It is an invariant of three-manifolds whose boundary is “part sutured,
part parametrized” and satisfies a gluing formula which recovers sutured Floer homology.

In this section, we introduce a multipointed theory for bordered Floer homology as a special case
of bordered sutured Floer homology. First, we recall the definition of the boundary parametriza-
tion in bordered Floer homology. Let M be a three-manifold with boundary of genus k. A
parametrization for ∂M consists of a disk D ⊂ ∂M ; a basepoint z ∈ ∂D; and 2k pairwise dis-
joint properly embedded arcs ∐2k

i=1δi in ∂M \ Int(D) such that M \
(
D ∪ ∐2k

i=1δi
)

is an open disk.
The parametrization data is recorded by a pointed matched circle Z = (Z, a,m), where Z = ∂D
with z ∈ Z , a = ∂(∐2k

i=1δi) union of 4k points on Z , and M is a matching on a that pairs endpoints
of the same arc δi.

Definition 2.1. A pointed matched multicircle is a triple Z = (Z, a,m) where Z = ∐n
i=1Zi is a union of

n circles with a basepoint zi on each Zi, a ⊂ Z is a set of an even number of points, and m : a → a is
a matching. Given a three-manifold M with boundary of genus k, a (multipointed) parametrization
of ∂M is a pointed matched multicircle Z with |a| = 4n + 4k − 4, along with an embedding of Z

and of pairwise disjoint arcs δ = ∐2n+2k−2
i=1 δi into M , satisfying the following:

(1) The image of each Zi bounds a disk Di in ∂M whose interior is disjoint from the arcs δi for
all i.

(2) ∂δ = a and each ∂δi is a pair of points matched by m.

(3) ∂M \
(
(∐n

i=1Di) ∪ (∐2n+2k−2
i=1 δi)

)
is the union of n open disks such that each disk contains

exactly one of the marked points zi for i = 1, . . . , n.

We call the three-manifold with multipointed parametrized boundary a bordered manifold, as in
[LOT18], and denote it by (M,Z), omitting from the notation the implicit data of how the arcs δi
are embedded on ∂M .

It is easy to see that a three-manifold with multipointed parametrized boundary (M,Z) can be
reinterpreted as a bordered sutured manifold (M, Γ,Z◦) where ∐n

i=1Di is the sutured part while
its complement is the parametrized part, and Z◦ is the arc diagram obtained from Z by remov-
ing neighborhoods of the basepoints. Thus, Zarev’s construction associates a type A structure

B̂SA(M) over A(Z) := A(Z◦), or equivalently a type D structure B̂SD(M) over A(−Z). We will

denote these structures C̃FA(M) and C̃FD(M), respectively. The construction uses a Heegaard
diagram presentation H = (Σ,α,β,Z◦) for the bordered sutured manifold. The arc diagram Z◦ is
embedded on ∂H so that there is one interval on each component of ∂H, and can be extended to
an identification of Z with ∂H, by placing back the basepoints, one in each component of ∂H\Z◦.
The result is a multipointed bordered Heegaard diagram for (M,Z). Since there is no loss of infor-
mation from one perspective to the other, we denote Z◦ simply by Z in this paper. The gluing
formula for bordered sutured Floer homology implies that if the closed three-manifold M with
multiple basepoints is obtained by gluing multipointed bordered three-manifolds M1 ∪∂ M2, with

M1 parametrized by Z and M2 by −Z , then ĈFA(M1)⊠A(Z) ĈFD(M2) is homotopy equivalent to

C̃F (M,n).
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3. FOLIATED OPEN BOOKS

3.1. Foliated open books. An abstract open book for a closed three-manifold is a pair (S, h),
where S is a surface with boundary and h and element of its mapping class group. This data
suffices to construct an S-bundle over S1, and after collapsing the boundary in a controlled way,
yields a closed three-manifold. A foliated open book adapts this approach to the setting of a man-
ifold with boundary. This time, the data consist of a sequence of 2k topologically distinct surfaces
and the maps identifying one surface with the next. Analogously, this determines a manifold with
foliated boundary.

Definition 3.1. [LV20, cf. Definition 3.12] An abstract foliated open book is a tuple ({Si}
2k
i=0, h) where

Si is a surface with boundary ∂Si = B ∪Ai
1 and corners at E = B ∩Ai such that

(1) for all i, Ai is a union of intervals;
(2) the surface Si is obtained from Si−1 by either

• attaching a 1-handle along two points on Ai−1, or
• cutting Si−1 along a properly embedded arc γi with endpoints in Ai−1 and then smooth-

ing.2

Furthermore, h : S2k → S0 is a diffeomorphism between cornered surfaces that preserves B
pointwise.

To construct a manifold from this data, one concatenates the elementary cobordisms associated
to successive pages and glues S2k to S0 by the map h. Each abstract page Si yields a product

Si× (πi
k
, π(i+1)

k
), and two such products join smoothly along a singular page which is surface with

two points on its boundary identified. After collapsing each component B × S1 to a curve called
the binding and still denoted by B, the remaining boundary is decorated by the non-binding
boundaries of the pages. The result of this decoration is a singular foliation F whose regular
leaves are copies of Ai, oriented as the boundary of the pages, and whose singular leaves each
contain a single four-pronged hyperbolic point. The elliptic points E and the hyperbolic points
H each come with signs: each interval component of Ai is oriented from a positive elliptic point
towards a negative one. Hyperbolic points associated to attaching a one-handle are negative,
while hyperbolic points associated to cutting along an arc are positive. See Figure 3.1.

With the above decomposition in mind, define a function π : M \ B → S1 so that on each

piece Si × (πi
k
, π(i+1)

k
) it is given by projection to the second coordinate; here S1 is identified with

[0, 2π]/(0 ∼ 2π). Below, we abuse notation a couple of times and write St for π−1(t).

We denote the resulting smooth object by the triple (M,∂M,F) and call it a manifold with foliated
boundary. We remember the identification of leaves with intervals on the boundary of abstract
pages, and in particular, the foliation has a distinguished 0-leaf which is always regular. Because
there are no S1 leaves and the singular points come with signs, we may associate a dividing set to
the foliation: a dividing set Γ is the boundary of a neighborhood of the positive separatrices of
positive hyperbolic points. With this in hand, we recall the compatibility between foliated open
books and contact structures.

Definition 3.2. [LV20, Definition 3.7] The abstract foliated open book ({Si}, h) supports the contact
structure ξ on (M,∂M,F) if ξ is the kernel of some one-form α on M satisfying the following
properties:

(1) α(TB) > 0;
(2) for all t, dα|π−1(t) is an area form; and

1By a slight abuse of notation we denote the “constant” part of the boundary of Si by B for all i.
2The indices of γi in this paper are shifted compared to [LV20], where the cutting arcs were denoted by γi−1.
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(3) there is a topological isotopy of ∂M taking F to the characteristic foliation Fξ such that
some Γ is a dividing set for the foliation throughout.

We will often want to consider a manifold with foliated boundary (M,∂M,F) together with a
contact structure ξ supported by a corresponding foliated open book; we call this a foliated contact
three-manifold and denote it by the triple (M, ξ,F).

Foliated open books were developed to provide easy tools for cutting and gluing contact mani-
folds. Cutting a manifold with a classical open book decomposition along a suitably generic sur-
face produces two foliated open books whose boundary foliations match, but with the signs of all
singular points removed. Conversely, any two foliated open books with matching, sign-reverse
boundary foliations may be glued to produce a closed manifold with an open book structure.
These cutting and gluing results also respect the supported contact structures of each of the open
books involved.

S0 S1 S2 S3 S4

FIGURE 3.1. Left: A foliated open book for the solid torus in R3. Middle: Some of
the pages. Right: The singular foliation on the boundary torus.

To a foliated open book that obeys a certain technical condition called sorted, one can associate
a multipointed bordered Heegaard diagram, along with a preferred generator.

3.2. Sorted foliated open books. In order to associate a Heegaard diagram to a foliated open
book, we will need to impose a further condition. Since the notation to verify this condition is
somewhat involved, we pause to motivate it first. As above, the definition of a foliated open book
requires pages to evolve by cutting or by gluing, but we may equivalently think of this as the con-
dition that adjacent pages always evolve by a one-handle addition, but in either direction: either
Si is obtained from Si−1 by a one-handle addition or else Si is obtained from Si+1 by a one-handle
addition. One-handles associated to negative hyperbolic points are those already described in
Definition 3.1 as “adds”, while positive hyperbolic points correspond to adding a handle as the
page index decreases. We will call a foliated open book sorted if a one-handle, after being added
with respect to some direction (i.e., increasing or decreasing indices), persists for all subsequent
pages with respect to that direction. See Figure 3.2.

+

i
S

i-1
S

FIGURE 3.2. Here Si−1 is obtained from Si by adding the shaded one-handle. The
sorted condition requires that this handle persist for all Sj with 0 ≤ j < i. Note
that the binding has been blown up as B × I for ease of viewing.
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Recall that the elliptic points E = Ai ∩ B partition as E = E+
∐

E−, where each interval is
oriented from a point e+ ∈ E+ to a point e− ∈ E−. We impose the following conventions on the
cutting and gluing arcs that govern how the pages evolve:

• If Si → Si+1 cuts Si along a properly embedded arc, the endpoints of the arc lie near the
e+ end of the intervals of Ai. We decorate Si and all prior pages with a copy of the cutting
arc and label these arcs as γ+i . If Sj is decorated with multiple cutting arcs near the same
point e+, the indices decrease with the orientation of Aj .

• If Si → Si+1 adds a one-handle to Si, the points of the attaching sphere separate any γ+

endpoints from the e− on the intervals of Ai. We decorate Si+1 and all subsequent pages
with a copy of the cocore of the attached one-handle and label these arcs as γ−i . If Sj

is decorated with multiple cocores near the same point e−, the indices decrease with the
orientation of Aj .

If we take the perspective that gluing is simply cutting in with the order of the indices reversed,
then the second bullet point can be phrased in identical language to the first. Figure 3.3 illustrates
these conventions in an example.

Definition 3.3. A foliated open book is sorted if the arcs γ− ∪ γ+ are mutually disjoint on all the
pages where they appear. We denote a sorted foliated open book by ({Si}

2k
i=0, h, {γ

±
i }).

A foliated open book which is sorted has a ghost page: a minimal surface formed by cutting
along all of the arcs which may not actually coincide with any Si in the foliated open book. Al-
though this is not precise statement, it may be helpful in understanding the following notation-
heavy definition.

Suppose ({Si}
2k
i=0, h, {γ

±
i }) is a sorted foliated open book for foliated contact three-manifold

(M, ξ,F). On each page Si, let Pi be the complement of a “cornered” neighborhood of Ai ∪
(
⋃

i<j γ
+
j ) ∪ (

⋃
i≥j γ

−
j ), with corners at E. This Pi is the ghost page and exists as subsurface of

each Si. The copies of Pi may be identified via the flow of a vector field transverse to the pages,
and we denote the composition of these identifications from P0 ⊂ S0 onto P2k ⊂ S2k by ι.

FIGURE 3.3. An indicative interval of An. Here i > j ≥ n > m. The arcs γ+i and
γ+j show arcs that will be cut along on higher-index pages. The bold dot indicates

where a one-handle could be attached on some later page, while the arc γ−m is the
cocore of a handle already attached.

3.3. Sorting by stabilization. In this subsection we examine the operation of positive stabilization
on a foliated open book and show how it can be used to render a non-sorted foliated open book
sorted. The idea is straightforward: each stabilization adds a one-handle to every page of the
foliated open book by taking a connect sum with a foliated open book for the standard tight
S3. Since the number of sorting arcs γ± is controlled by the foliation, and hence unchanged by
stabilization, repeating the process sufficiently many times gives the sorting arcs enough room
in the enlarged page to avoid each other. Of course, the arcs that guide the stabilization must
be chosen carefully, and we explain how to do this below. The formal proof that this is always
possible may be found in [LV20].
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As shown in [LV20], stabilization may be understood as a concrete example of gluing two foli-
ated open books. Choose an arc (γ, ∂γ) embedded in a fixed page (St, B) of a foliated open book.
A regular neighborhood of this arc may be chosen so that its boundary is a sphere whose signed
singular foliation has two hyperbolic singularities. Choosing such neighborhoods in two separate
foliated open books yields manifolds with matching foliated boundaries. Shift the t coordinate
by 1

2 and the two may be glued to construct a foliated open book for the connect sum of the two
original manifolds, with pages formed as the Murasugi sum of the pages of the original foliated
open books. If one of the manifolds was an open book with annular pages supporting the tight
contact structure on S3, then the contactomorphism type of the manifold is unchanged and we
say that the foliated open book has been positively stabilized.

The description above applies with minor modification to all versions of open books, but a
distinguishing feature of foliated open books is the non-homegeneity of the pages. An arc on St

may not persist to some later page St′ , or St′ may have a non-trivial mapping class group even
though St was a collection of disks. This highlights that there are two choices to be made when
defining a stabilization of a foliated open book: which page, and which arc?

With a goal of removing intersections of the form γ+i ∩ γ−j , choose a regular page between the

hyperbolic points h+i and h−j . We will stabilize along an arc in this page so that as γ+i rises up

through the manifold, the subinterval that would collide with the descending γ−j picks of the

monodromy of the foliated open book for S3 and instead undergoes a Dehn twist around the core
of the annular Murasugi summand of the page.

Example 3.4. Here we illustrate the process described above in a concrete example. Figure 3.4
shows the pages of a foliated open book for an overtwisted ball studied in [LV21], with the letters
labeling elliptic points.

FIGURE 3.4. A foliated open book for an overtwisted ball. The intersection γ+2 ∩γ−1
on page S1 dictates a specific stabilization. The result of this stabilization is shown
in Figure 3.5.

Since each component of each page is a disk, there is a unique (up to isotopy) way to identify
successive pages. The first hyperbolic singularity is negative and corresponds to adding a one-
handle to S0 as shown; on the second page (S1), the cocore of the one-handle is recorded as an arc
γ−1 . However, the second hyperbolic singularity is positive and corresponds to cutting the second
page along the arc labelled γ+2 to get the third page. Because γ−1 and γ+2 intersect, we choose a copy
of S1 and stabilize along an arc that crossed γ+2 and γ−1 once. The result is shown in Figure 3.5.
One can think of γ−1 as undergoing a right-handed twist as it ascends, or γ+2 as undergoing a left-
handed twist as it descends, and since the two curves now avoid each other, we may proceed with
increasing t until γ−3 and γ+4 intersect on the new S3 page.

To remove the intersection γ−3 ∩ γ+4 , we analogously stabilize along an arc intersecting each of
these curves once. Finally, a sorted foliated open book is seen in Figure 3.6. Since the gluing map
is inherited from the original foliated open book, it remains translation in the page as drawn.
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FIGURE 3.5. The stabilization of the foliated open book from Figure 3.4. Note that
γ+3 and γ−4 intersect on the new page S3, so the foliated open book remains un-
sorted.

FIGURE 3.6. A sorted foliated open book for a neighborhood of an overtwisted
disk, obatined from the foliated open book in Figure 3.4 by a sequence of two sta-
bilizations.

4. THE BORDERED CONTACT INVARIANT

Let (M, ξ,F) be a foliated contact three-manifold. In [AFH+21], a bordered sutured manifold
(M, Γ,Z) was associated to (M, ξ,F). As explained in Section 2, we can convert the bordered su-
tured data to multipointed bordered data for a simpler perspective. We describe the parametriza-
tion on the boundary of the resulting bordered manifold (M,Z) directly below.

Use the foliation to define a natural parametrization of ∂M via a pointed matched multicircle
Z = (Z, a,m). Recall that the data of the foliation remembers the page index associated to each
leaf, and in particular, that there is a distinguished regular leaf A0. Let D ⊂ ∂M be a closed
neighborhood of A0, and let Z = ∂D. Note that D is a union of n disks, where 2n is the number
of elliptic points in the foliation. Let δi be subarc of the positive (resp. negative) separatrix for h+i
(resp. h−i ) that lies in ∂M \ (intD). Define a ⊂ Z to be the set of points that are the boundaries
of δi and let m be the matching induced on the points in a by δi. For each component of Z , mark
a basepoint with a smallest possible (0, 2π)-coordinate. See Figure 4.1. It is easy to check that
Z = (Z, a,m) together with the embedding of the arcs δi parametrizes ∂M .
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FIGURE 4.1. Left: The bordered three-manifold associated to the foliated solid
torus from Figure 3.1.

Let ({Si}
2k
i=0, h, {γ

±
i }) be an abstract sorted foliated open book for a foliated contact three-

manifold (M, ξ,F). The sortedness condition ensures that the first page of the open book, together
with its (indexed) γ+i arcs; the last page together with its (indexed) γ−j arcs; and the monodromy

h fully describe the manifold. In fact, the union of the first and last page naturally describes a
(cornered) handlebody decomposition for M . Using the data of ({Si}, h, {γ

±
i }), we describe a

multipointed bordered Heegaard diagram H = (Σ,α,β,Z) for this handlebody decomposition,
along with a preferred generator. We outline the construction below; cf. [AFH+21, Section 3].

Let gi be the genus of Si and let ni be the number of boundary components of Si. Recall that the
boundary of the cornered surface Si is B ∪ Ai, where B is a union of circles and arcs, and Ai is a
union of intervals only.

We let Σ = S0 ∪B −S0. In order to distinguish the two copies, we will write

Σ = Sǫ ∪B −S0,

but we emphasize that Sǫ can be identified with S0. The surface Σ has genus 2g0 +n0 − 1 and |A0|
boundary components.

For i ∈ H−, consider the S2k copies of the sorting arcs γ−i , and let β−
i = −h(γ−i ) on −S0. For

i ∈ H+, consider the Sǫ copies of the sorting arcs γ+i . The endpoints of γ+i lie near the E+ end of
intervals of Aǫ. Isotope the arcs {γ+i } (simultaneously, to preserve disjointness) near the endpoints
along −∂Σ until they all lie in I+ ⊂ A0; the isotopy stops after crossing E+ and before encoun-
tering ∪j∈H−

− h(γ−j ) ⊂ −S0. Call the resulting arcs β+
i . Define a set of arcs βa = {βa

1 , . . . , β
a
2k}

by

βa
i =

{
β+
i if i ∈ H+,

β−
i if i ∈ H−.

As in [AFH+21], we use the notation βa
i or β±

i if i ∈ H± interchangeably.

Let b = {b1, . . . , b2g0+n0+|A0|−k−2} be a set of cutting arcs for Pǫ ⊂ Sǫ disjoint from βa and with
endpoints on B, so that each connected component of Sǫ\(b∪β

a) is a disk with exactly one interval
of Aǫ on its boundary. (In [AFH+21], we show this can always be achieved.) In other words, b is
a basis for H1(Pε, B). Recalling the identification Sǫ = S0, we may push bi ⊂ S0 through M to lie
on S0 again and define

βi = bi ∪ −h ◦ ι(bi) ⊂ Sǫ ∪B −S0,

where ι is the identification of P0 with P2k from Section 3.2. Write βc = {β1, . . . , β2g0+n0+|A0|−k−2}.
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For each cutting arc bi ∈ b on Sǫ, let ai be an isotopic curve formed by pushing the endpoints
negatively along the boundary so that ai and bi intersect once transversely. Similarly, for each arc
b+i := Sǫ ∩ β+

j , let ãj be an isotopic curve formed by pushing the endpoints negatively along the

boundary so that ãj and b+i (and equivalently ãj and β+
j ) intersect once transversely. We “double”

each of these arcs to form the α-circles which define the handlebody S0 × [0, ǫ]. Namely, define

αi = ai ∪ −ai ⊂ Sǫ ∪B −S0

α̃j = ãj ∪ −ãj ⊂ Sǫ ∪B −S0,

and write αc = {α̃i}i∈H+
∪ {α1, . . . , α2g0+n0+|A0|−k−2}. Place a basepoint on each interval of Aǫ ⊂

Sǫ ⊂ Σ. Write

z = {z1, . . . , z|Aǫ|}

for the set of basepoints.

We say that a mutipointed bordered Heegaard diagram H = (Σ,α,β,Z) constructed as above is
adapted to the sorted abstract foliated open book ({Si}, h, {γ

±
i }) and to the corresponding foliated

contact three-manifold (M, ξ,F).

Let H be a mutipointed bordered Heegaard diagram adapted to ({Si}, h, {γ
±
i }). In [AFH+21],

we show that any such diagram is admissible. (In fact, in [AFH+21] neighborhoods of basepoints
are drilled out to obtain a bordered sutured diagram for a certain bordered sutured manifold natu-
rally associated to (M, ξ,F), but we suppress this discussion here.) Using the notation introduced
above, define

x = {x1, . . . , x2g0+n0+|A0|−k−2} ∪ {x+i | i ∈ H+}

to be the set of unique intersection points

xi = ai ∩ bi ∈ Sǫ ⊂ Σ

x+i = ãi ∩ b+i ∈ Sǫ if i ∈ H+.

We will use x to define two contact invariants in bordered sutured Floer homology.

By Proposition [AFH+21, Proposition 3.4] and [Zar10, Section 3.4], the diagram H = (Σ,β,α,Z)
obtained by exchanging the roles of the two sets of curves and formally replacing the arc diagram
Z of β-type (which is to say, parametrized by arcs which are part of the second set of curves)
with the identical arc diagram Z of α-type (parametrized by arcs which are part of the first set
of curves) is a multipointed bordered diagram for (−M,Z). Write Z = (Z, a,m). We have the
following proposition.

Proposition 4.1 (cf. [AFH+21, Proposition 3.5]). The above x gives a well defined generator

xD := x ∈ C̃FD(H)

with ID(x) = I(H−) and δ1(xD) = 0, and a well defined generator

xA := x ∈ C̃FA(H)

with IA(xA) = I(H+) and mi+1(xA, a(ρ1), . . . , a(ρi)) = 0 for all i ≥ 0 and all sets of Reeb chords ρj in
(Z, a).

Example 4.2. We illustrate the construction outlined above using the sorted foliated open book in
Figure 3.6. For convenience, in Figure 4.2 we display again the pages S0 and −S4, along with the
sorting arcs decorations.

Figure 4.3 shows the associated Heegaard diagram.
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FIGURE 4.2. The first page (to the left) and the mirror of the last page (to the right)
of the sorted foliated open book in Figure 3.6.

x1
y1

w1

w4

w3 w2

x2x3

x4
y2

y3

x5

x6x7

FIGURE 4.3. The Heegaard diagram for the sorted foliated open book in Figure
3.6. The monodromy h is the identity, so the images β−

i = −h(γ−i ) are simply the
sorting arcs γ−i on −S0. Intersection points are labelled differently from the above
definition, for convenience. The contact generator x is the triple {x1, y1, w1}, or
x1y1w1 for short.

5. VANISHING OF THE CONTACT CLASS FOR OVERTWISTED STRUCTURES – A LOCAL ARGUMENT

In this section, we illustrate the power of invariants compatible with cut-and-paste construc-
tions by providing a local argument that the contact class c(ξ) for closed contact manifolds van-
ishes if the contact structure is overtwisted.

We begin by showing that the bordered contact invariant vanishes for a neighborhood of an
overtwisted disk. Specifically, we consider the foliated open book constructed in [LV21] for a
three-ball neighborhood (B3, ξOT,FOT). In Example 3.4, we stabilized the foliated open book
from [LV21] to a sorted one. Example 4.2 then constructed the associated Heegaard diagram H;

see Figure 4.3. The generator x1y1w1 ∈ C̃FD(H) represents the contact class. We claim that there
is a unique holomorphic curve asymptotic to x1y1w4 at −∞, and it ends at x1y1w1.

Indeed, x1 and y1 cannot be starting moving coordinates for a holomorphic curve; the only
non-basepointed regions at these intersection points are the thin strips supported on the Sǫ part
of the diagram, but the orientation on these strips is into x1 and y1. So any holomorphic curve
starting from x1y1w4 must only have w4 as a moving coordinate. A curve that hits the boundary
of the Heegaard diagram would need to have a moving coordinate on a β-arc. Since w4 is on a
β-circle, all holomorphic curves starting from x1y1w4 project to the interior of the diagram. Thus,
any such curve with a single moving coordinate projects to an immersed bigon. By counting
local coefficients, the yellow bigon from x1y1w4 to x1y1w1 in Figure 4.3 represents the unique such
curve.

Thus, considering C̃FD(H), we have δ1(x1y1w4) = x1y1w1. Or, if one prefers to consider

C̃FA(H), we have m1(x1y1w4) = x1y1w1, whereas higher products mi vanish on x1y1w4. It fol-

lows that there is a type D (resp. type A) homotopy equivalence from C̃FD(H) (resp. C̃FA(H)) to
an equivalent structure, carrying x1y1w1 to zero.
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Proof of Corollary 4. Suppose (M, ξ) is a closed overtwisted three-manifold. By Giroux flexibility,
(M, ξ) contains an overtwisted disk whose neighborhood is contactomorphic to the contact three-
ball (B3, ξOT,FOT) studied above. Thus, (M, ξ) decomposes as the union of two foliated contact
three-manifolds, one of which is (B3, ξOT,FOT). By the above computation, Theorem 3, and func-
toriality for ⊠, it follows that c(ξ) = 0. �
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