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Transversely Non-Simple Knots

VERA VERTESI

By proving a connected sum formula for the Legendrian invarlanin knot Floer
homology we exhibit infinitely many transversely non-simple knot types.

57M27, 57M25, 57R17; 57R58

1 Introduction

The study of Legendrian and transverse knots is central in contact geometry. A Legen-
drian knot with a given knot type has two classical invariants: its Thurston-Bennequin
number and its rotation number. The problem of classifying Legendrian knots up to
Legendrian isotopy naturally leads to the question whether these invariants classify
Legendrian knots. A knot type is called Legendrian simple if any two realizations of
it with equal classical invariants are Legendrian isotopic. For transverse knots there
is only one classical invariant, the self-linking number. Similarly, the knot types for
which transverse realizations are classified by the self-linking number are called trans-
versely simple. The unknod], torus knots and the figure-eight kn@j ere proved

to be both Legendrian and transversely simple. By constructing a new invariant for
Legendrian knots, Chekanog][showed that not all knots are Legendrian simple, in
particular he proved that the knot % not Legendrian simple. Later many other
Legendrian non-simple knots were detected by Epstein, Fuchs and Nigyand by

Ng [13]. The case for transverse knots turned out to be harder. Birman and Menasco
[1], and Etnyre and Hond&®] constructed families of transversely non-simple knots
using braid and convex surface theory. Recently Ng, @fsand Thurstonl4] gave

such examples using the Legendrian invariant in knot Floer homology.

Heegaard Floer homologﬁl\:(Y), HF—(Y) defined by Ozsath and Szab [17] are
invariants for three-manifolds. The construction was extendépt$ give the invari-
antsH/|:T<(Y, K), HFK=(Y, K) for null-homologous knot& C Y via doubly pointed
Heegaard diagrams. Using Heegaard diagrams with multiple basepoints the invariants
were generalized for linksLp]. Multiply pointed Heegaard diagrams turned out to be
extremely useful in the case of knots as well, and led to the discovery of a combinatorial
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version of knot Floer homologies through grid diagrarhg, [L1]. This version pro-
vided a natural way to define invariants and\_ of Legendrian and for transverse
knots in the three-spheré&§.

From hereon if not stated otherwise every (Legendrian or transverse) knot is oriented
and will be considered in the standard contact three-spheren(kgtdenote the mirror
of a knot. In this paper we will prove

Theorem 1.1 Let L3 and Ly be (oriented) Legendrian knots of topological type K1
and K;. Then there is an isomorphism

HFK™(M(K1)) ®z,1u) HFK™(M(K2)) — HFK™ (M(K1#K2))
which maps A+ (L1) ® Ay (Lp) to Ay(Li#Lo). Similar statement holds for the A_ -
invariant.
Corollary 1.2 Let L1 and L, be (oriented) Legendrian knots of topological type K1
and Ky. Then there is an isomorphism

HFK(M(K1)) @z, HFK(M(K2)) — AFKM(K1#K2))

which maps X+(L1) ® X+(L2) to X+(L1#L2). Similar statement holds for the A_ -
invariant. U
Similar results hold for thé-invariant of transverse knots:
Corollary 1.3 Let T1 and Ty be transverse knots of topological type K1 and Kj.
Then there are isomorphisms

HFK™(M(K1)) ®z,1u; HFK™ (M(K32)) — HFK™ (M(K1#K>))

and
HFR(M(K1)) ©2, AFK(M(K2)) — AFK(M(K1#K2))

which map 0(T1) ® 0(T2) to 8(T1#T>2) and §(T1) ® §(T2) to §(T1#T2) , respectively. 0O
As an application of the above result we prove:
Theorem 1.4 There exist infinitely many transversely non-simple knots.

Similar statement follows from the main result 8f,[see also10] and [1].

The paper is organized as follows. In Sectbwe recall the definitions and collect
the basic facts about Legendrian and transverse knots, knot Floer homology, and the
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Legendrian and transverse invariant. In Sec8aeve introduce spherical grid diagrams
and prove Theorerh.1 In Sectiord we use the results of Secti@ro prove Theorem
1.4
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2 Preliminaries

2.1 Legendrian and transverse knots

A Legendrian knot lin R® (orin S* = R3U {cc}) endowed with the standard contact
form dz— ydxis an oriented knot along which the fordz — ydx vanishes identically.
Legendrian knots are determined by their front projection toxhelane; a generic
projection is smooth in all but finitely many cusp points, has no vertical tangents and
at each crossing the strand with smaller slope is in the front. Note thataf i€ the
standard positive basis in the plane, then in order to have the standard orientation on
R3 the y axis points into the page. By changing the parts with vertical tangents to
cusps and adding zig-zags, a generic smooth projection of a knot can be arranged to be
of the above type. Thus any knot can be placed in Legendrian position. But this can be
done in many different ways up to Legendrian isotopy. For example, by adding extra
zZig-zags in the front projection we obtain a different Legendrian representative. This
method is calledstabilization Adding a downward (upward) cusp is called positive
(negative) stabilization. (Here and throughout the paper we use the conventions of
[7].) There are two classical invariants for Legendrian knots defined as follows. By
pushing off the knot in the(% direction we obtain thdhurston-Bennequin framing

of the Legendrian knot. Comparing this to the Seifert framing we geftheston-
Bennequin numbeb(L). Therotation numberr(L) is the winding number of L with
respect to a trivialization of the contact planes alantpat extends to a Seifert surface.

A transverse knoin S* with the standard contact structure is a knot along which the
contact formdz — ydx never vanishes. Any transverse knot is naturally endowed with
an orientation, the one along which the contact form is positive. Again, every knot
can be placed in transverse position by translating its Legendrian realization in the
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Figure 1: Connected sum of two Legendrian knots

ia% direction. The resulting transverse knot is called tilamsverse push oftf the
Legendrian knot. A push off is called positive if the orientation of the knot agrees
with the natural orientation of the transverse knot and called negative otherwise. A
Legendrian knot is aegendrian approximatioaf its positive push off. Two transverse
knots are transversely isotopic if and only if their Legendrian approximations have
common negative stabilizations. By pushing off the transverse Kniata direction

of a vector field in the contact planes that extends to a nonzero vectorfield to a Seifert-
surface of T we getT’. The self-linking numbersi(T) is the linking of T with its
push-off T’. The self-linking number of a push off can be deduced from the classical
invariants of the Legendrian knot: El{) = tb(L) = r(L).

A knot is calledLegendrian simpldor transversely simpleif any two Legendrian
(transverse) realizations of it with equal Thurston-Bennequin and rotation (self-linking)
number(s) are isotopic through Legendrian (transverse) knots.

As it is explained in ], there is a well-defined notion of the connected sum of two
Legendrian or transverse knots$, which comes from connected summing the two
S*s the knots are sitting in. This process can be described in terms of the front
projection as it is shown by Figuie

2.2 Knot Floer homology with multiple basepoints

Here we outline the basic definitions of knot Floer homologies with multiple basepoints,
originally defined by Ozsath and Szab[15) and independently by Rasmusséi]|
Consider a knoK in an oriented, closed three-manifod There is a self-indexing
Morse function withk minima andk maxima such thaK is made out of R flow lines
connecting all the index zero and index three critical points. Such a Morse function
gives rise to a Heegaard diagral, o, 3,w, 2) for (Y, K) in the following way. Let

Y= f‘l(%) be a genug surface. Thex-curvesa = {ai}ig;rf—l are defined to be
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the circles of¥X whose points flow down to the index one critical points. Similarly
B = {0 ig:lk_l are the curves with points flowing up to the index two critical points.
Finally let w = {wi}¥_, be the positive and = {z}K_, the negative intersection
points of K with X.

Consider the modul€F~ (X, a, 3, w) over the polynomial algebr@,[U,, . .., Uy]
freely generated by the intersection points of the totally real submaniflds=
a1 X -+ X agik-1 and Tz = B x -+ - X Bgrk_1 of SynPH*=1(). This module is
endowed with the differential

- Y Y

yETaﬂ’ﬂ‘ﬂ ¢€Tr2(X,y)
we)=1

where, as usuakry(x,y) denotes the space of homotopy classes of Whitney disks
connectingx to y, M(¢) denotes the moduli space of pseudo-holomorphic repre-
sentatives ofp, the Maslov indexu(¢) denotes its formal dimension angi(¢) =

#{ ¢~ Y(p x SynPTk=2(x))} is the local multiplicity of¢ atp. Let

y

/\/ﬁgﬁ)’ P g

(1) (CFE. @, 8.w).0) = (CF&’Z’J; 2, [6“]) -

The chain-homotopy type of the above complexes are invariarisiothe following
sense:

Theorem 2.1 (Ozsvath-Szabo, [15]) Let Y be a closed oriented three-manifold.
Consider the Heegaard diagrams (X1, o1, 31,W1) and (X2, acp, B5,W2) for Y with
|w1| = kg and |W2| = kz. Assuming k; > ky the complexes CF~ (21, a1, 31, W1) and
CF (22, a2, B5,Wp) are chain-homotopy equivalent as Zy[Ux, ..., Uy, ]-modules.
Here the latter complex is endowed with the Z[U1,...,Uy]-module structure by
defining the action of Uy,, ..., Uy, to be identical. Similar statement holds for the
C/ZT:—theory, moreover the chain-homotopy equivalences form a commutative diagram
with the factorization map of (1). O

Hereafter we assume that our underlying three-manifold is the three-sphere. Note that
in this case the homology ®F~ (2, a, B, W) is HF (%) = Z[U]. The relative
Maslov-grading of two intersection pointsy € T, NTg is defined byM(x) —M(y) =

w(@) — 2> nw (¢), whereg € ma(x,y) is any homotopy class fromto y. We extend

this relative grading to the whole module by(U3 - - - UZX) = M(X) —2(a1+ - - +a).

For S, the grading can be lifted to an absolute grading by fixing the grading of the
generator oHF ~(S%) = Z,[U] at 0.
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Note that so far we made no reference to the basepaint§he relative Alexander
grading is defined bA(X) — A(y) = > nz(¢)— > nw (¢), where agair can be chosen

to be any homotopy class itp(X, y). This relative grading can be uniguely lifted to an
absolute Alexander grading which satisfigsTA® = Ax(T)(1 — )1 (mod 2),
whereAk (T) is the symmetrized Alexander polynomial. We can extend the Alexander
grading to the module bA(US - - UZx) = A(X) — (a1 + - + a&). As the local
multiplicities of pseudo-holomorhic discs are non-negative, we obtain filtered chain
complexesCFK™ (%, «, B,w, z) and C/F\K(Z, a, B,w,z), that are invariants of the
knot:

Theorem 2.2 (Ozsvath-Szabo, [15]) Let K be an oriented knot. Consider the Hee-
gaard diagrams (X1, a1, B1,W1,21) and (X2, ap, 35, W2,22) for K with |wq| =
|z1) = ki and |wz| = |z2| = kp. Assuming ki > kp the filtered complexes
CFK™ (21, a1, 81, W1, 21) and CFK™ (22, a2, B2, W2, 22) are filtered chain-homotopy
equivalent as Z[Uy, . .., Uy,]-modules. Here the latter complex is endowed with the
Z3[U1, ..., Uy]-module structure by defining the action of Uy,, ..., Uy, to be iden-
tical. Similar statement holds for the C/F\K—theory, moreover the chain homotopy
equivalences form a commutative diagram with the factorization map of (1). |

As it is easier to work with, we usually consider the associated graded objects of
the filtered chain complexes and denote their homologies by HFih particular
HFK™ (2, o, B,w, 2) is the homology of the complexCEK™ (X, o, B,W, 2), 0y ),

where M)
x= ) > ‘ R ‘Urfwl(@“-UEW @y,

yeToNT gz pem(X,y)
Nz, (@) +++++Nz (¢)=0
w@)=1
The U;’s for differenti act chain-homotopically, so on the homology level@jlact
identically. This observation endowdFK = (2, «, 3, w, 2) with a Z,[U]-structure,
by defining theU action to be the the action of any of th&’s. Then Theoren2.2
translates:

Theorem 2.3 (Oszvath-Szabo, [15]) Let K be an oriented knot. Consider the Hee-
gaard diagrams (31, a1, 81, W1,21) and (X2, a2, 35,W2,2p) for K. Then the knot
Floer homologies HFK™ (31, a1, 31, W1, 21) and HFK™ (X2, a2, 35, W2, Z2) are iso-
morphic as Z[U]-modules. Similar statement holds for the m:?—theory, moreover
the isomorphisms form a commutative diagram with the factorization map of (1). O

Knot Floer homology satisfies ailkneth-type formula for connected sums:
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Theorem 2.4 (Ozsvith-Szabé, [15]) Let K1 and Ko be oriented knots in S described
by the Heegaard diagrams (X1, a1, 31, W1, 21) and (32, a2, B2, W2,22). Let W € Wy
and z € zp. Then

(1) (21#22, a1Ua 81U By, (W1 —W)UWsg, 23 U (22 — Z)) is a Heegaard di-
agram for Ki#Ko. Here the connected sum X1#%.» is taken in the regions
containing W € 31 and Z € Yip;

Let |w1| = |z1| = kg and |wy| = |z2| = kp. Both complexes CFK™ (X1, a1, 81, W1, Z1)
and CFK™ (22, a2, B5,Wo, 2p) are Zp[Uy, ..., Uy, V1, ..., Vi,] -modules with the el-
ements Uy, ..., Uy, acting trivially on the latter and V1, . . ., V, acting trivially on the
former complex. With these conventions in place we have

(2) CFK™ (31, a1, B1,W1,21)®u,—v; CFK™ (32, a2, B, Wa, 25) is filtered chain
homotopy equivalent to

CFK™ (Z1#%2, a1 U ax2, 81 U By, (W1 — W) UWo, 21 U (22 — 2)) ;

(3) HFK™(K1#K>) is isomorphic to HFK™ (K1) ® HFK™(K2) and this isomorphism
can be given by X1 ® X2 +— (X1, X2) on the generators.

Similar statement holds for the CFK-theory, moreover the chain homotopy equiva-
lences form a commutative diagram with the factorization map of (1). O

2.3 Grid diagrams

As itwas observed inf2, 11], knot Floer homology admits a completely combinatorial
description via grid diagrams. #rid diagram Gis a k x k square grid placed on
the plane with some of its cells decorated with>aror an O and containing exactly
one X and O in each of its rows and columns. Such a diagram naturally defines an
oriented link projection by connecting ti@s to the X's in each row and thX’s to the

O’s in the columns and letting the vertical line to overpass at the intersection points.
For simplicity we will assume that the corresponding link is a kKot There are
certain moves of the grid diagram that do not change the (topological) knotigpe [
These areyclic permutatiorof the rows or columng;ommutatiorof two consecutive
rows (columns) such that thé and theO from one row (column) does not separate
the X and theO from the other row (column) anflie)stabilizationwhich is defined

as follows. A square in the grid containing ah(O) can be subdivided into four
squares by introducing a new vertical and a new horizontal line dividing the row and
the column that contains that square. By replacingXh@) by oneO (X) and two

X’s (O’s) in the diagonal of the new four squares and placing the®(X’s) in the
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Figure 2: Stabilization of typ&:NW

subdivided row and column appropriately, we get a new grid diagram which is called
the stabilization of the original one. The inverse of stabilization is destabilization.
There are eight types of (de)stabilizatio®:.: SW, O: SE, O:NW, O:NE, X:SW,
X:SE, X:NW andX:NE, where the first coordinate indicates which symbol we started
with and the second shows the placement of the unique new symbol. A stabilization
of type X:NW is depicted on Figurg.

Placing the grid on a torus by identifying the opposite edges of the square grid we obtain
a Heegaard diagram with multiple basepoints 8%, K). Here thew’s correspond to

the O’s, the z's to the X's, and the« -curves to the horizontal lines and tife-curves

to the vertical lines. As each region of this Heegaard diagram is a square, it is“nice”
in the sense defined ir2(]. Thus boundary maps can be given by rectangles. This
observation led to a completely combinatorial description of knot Floer homology
[12, 11] in the three-sphere.

2.4 Legendrian and transverse invariants on grid diagrams

Consider a grid diagran®. It describes not only a knot projection but also a front
projection of a Legendrian realization of its mirro(K), as follows. Rotate the grid
diagram by 45 clockwise, reverse the over- and under crossings and turn the corners
into cusps or smooth them as appropriate. Legendrian Reidemeister moves correspond
to certain grid moves giving the following result:

Proposition 2.5 (Ozsvath-Szab6-Thurston, [18]) Two grid diagrams represent the
same Legendrian knot if and only if they can be connected by a sequence of cyclic
permutation, commutation, and (de)stabilization of types X:NW, X:SE O:NW and
O:SE O
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Moreover stabilizations of typ&X : NE or O: SW of the grid diagram correspond to
negative stabilization of the knot, yielding

Proposition 2.6 (Ozsvath—Szabo—Thurston, [18]) Two grid diagram represent the
same transverse knot if and only if they can be connected by a sequence of cyclic
permutation, commutation, and (de)stabilization of types X : NW, X :SE X:NE,
O:NW, O:SEand O:SW. m|

Consider a grid diagran® for a Legendrian knot. of knot typeK. Pick the upper

right corner of every cell containing aX. This gives a generator d@FK™(m(K))
denoted byx, (G). Since there is no positive rectangle starting.a(G), it is a cycle
defining an elemeni_ (G) in HFK~(m(K)). Similarly one can definex_(G) and

A_(G) by taking the lower left corners of the cells contain. These elements are
proved to be independent of the grid moves that preserve the Legendrian knot type,
giving an invariant of the Legendrian knht

Theorem 2.7 (Ozsvath—-Szab6-Thurston, [18]) Consider two grid diagrams G; and
Gy defining the same oriented Legendrian knot. Then there is a quasi-isomorphism of
the graded chain complexes CFK™ taking X4 (G1) to X4 (G2) and X_(G1) to X_(G2).

O

One can understand the transformation 0fG) andx_(G) under positive and negative
stabilization:

Theorem 2.8 (Ozsvath—Szabo—Thurston, [18]) Let L be an oriented Legendrian knot,
denote by L its positive and by L_ its negative stabilization. Then

(1) There is a quasi-isomorphism of the corresponding graded complexes taking
X4 (L) to X4 (Ly) and Ux_(L) to x_(L4);

(2) There is a quasi-isomorphism of the corresponding graded complexes taking
Ux4 (L) to x4 (L-) and x_(L) to x_(L-).

O

It follows from [7] that the Legendrian knots with transversely isotopic positive push
offs admit common negative stabilizations. This principle provides a well defined
invariant for transverse knots: [f is a Legendrian approximation df then define
O(T) = A (L).

Theorem 2.9 (Ozsvath—Szabo-Thurston, [18]) For any two grid diagrams G; and
G2 of Legendrian approximations of the transverse knot T there is quasi-isomorphism
of the corresponding graded chain complexes inducing a map on the homologies that
takes 0(Gy) to (Gy). O
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3 Proof of Theorem1.1

The Legendrian invariant can be thought of in two different ways, depending on the
version of Floer homology we work with. The one introduced in subse@idis in

the combinatorial Heegaard Floer homology. Once the grid is placed on the torus we
get a Heegaard diagram and thus there is a natural identification of the combinatorial
Heegaard Floer complex with the holomorphic Heegaard Floer compligx Under

this identification the previously defined invariant has a counterpart in the original,
holomorphic Heegaard Floer homology. We will use the same notation for both. In
the next subsection we introduce yet another invariant for Legendrian knots.

3.1 Legendrian invariant on spherical Heegaard diagrams

A k x k grid diagramG of a Legendrian knot. of topological typeK can also be
placed on the 2-sphere in the following way. 1St= {(x,y,2) € R3: |(x,y,2)| = 1}
and define the circlesx = {@}{=; as the intersection o8 with the planesp; =
(%Y, e R®: z=[ -3} (i =1,....k—1); similarly define3 = {fi}}]
as the intersection of® with the planesB; = {(x,y,2 €¢ R®: x= | -1} (i =
1,...,k—1). CallF = {(x,y,2) € R®: |(x,y,2)| = 1,y > 0} the front hemisphere,
andR = {(x,y,2 € R®: |(x,y,2)| = 1,y < O} the rear hemisphere. Then there is
a grid on both the front and on the rear hemisphere. We placX®and theO’s
on the front hemisphere in the way they were placed on the original@ridifter
identifying the O’s with W = {W;}K_; and theX’s with Z = {Z}K_; this defines a
Heegaard diagrantt, &, 8, W, 7) with multiple basepoints for®, K). A spherical
grid diagram for the trefoil knot is shown by Figute

Let L be a Legendrian knot i6%. To define the spherical Legendrian invaria&t(L)
we will use a grid diagram that have ahin its upper right corner. This can always be
arranged by cyclic permutation, but in the following we will need a slightly stronger

property:

Lemma 3.1 For any Legendrian knot there exists a grid diagram representing it which
contains an X in its upper right corner and an O in its lower left corner.

Proof Consider any grid diagram describing the Legendrian kndsiitis illustrated

on Figure3, we can obtain a suitable diagram as follows. First do a stabilization of
type X:NE and then do a stabilization of tyfi@: NE on the newly obtaine®. Lastly,

by cyclic permutation we can place the lowerintroduced in the first stabilization to
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the upper right corner of the diagram. Notice that @en the upper right of thiX
will be automatically placed to the lower left corner. According to Proposii&ithe
Legendrian type of the knot is fixed under these moves, thus the statement follows.

ToE
X:NE X| 0o O:NE ° cyclic

X X R — o
x permutation
x o
o] x

Figure 3: Grid moves

O

Suppose, thaE is a grid diagram having aX in its upper right corner. Form a spher-

ical grid diagram as above. Definé(L) as the generator €FK~ (S, E},Vv,“z)
consisting of those intersection points on the front hemisphere that occupy the upper
right corner of each region marked with ah Note that theX in the upper right
corner has no such corner. On Figdrthe elemenk? is indicated for the trefoil knot.
Similarly to the toroidal case we have:

[e]

\
o B KN |
/

X
B2 B3 fs B2
front hemisphere rear hemisphere

Figure 4: Spherical grid diagram for the trefoil knot

Lemma 3.2 The element Xi(L) is acycle in (2, &, 3, W, 2).

Proof We will show that for anyy there is no positive dise) € m(xS,y) with
w(@) = 1. As the diagranCFK— (S, &, 3, W, 2) is “nice” in the sense ofJ0] the
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eIement9<§r andy differ either in one coordinate ari}(v)) is a bigon or they differ
in two coordinates an®(w)) is a rectangle. In any cas®(:)) contains anX which
means it is not counted in the boundary map. |

The homology class ofS , denoted by)&(G), turns out to be an invariant af (i.e.
it is independent of the choice of the grid diagram, and the way it is placed on the
sphere). This can be proved directly through grid moves, but instead we show:

Theorem 3.3 Consider a grid diagram for the Legendrian knot L in S° having
an X in its upper right corner. Then there is a filtered quasi-isomorphism )
CFK(T?, a, B,W,2) — CFK~ (%, a, B,\TV,?) of the corresponding toroidal and
spherical Heegaard diagrams which maps X, (L) to Xi(L).

In the proof we will need the notion of Heegaard triples, which we will briefly describe
here. (For a complete discussion sdg]) Consider a pointed Heegaard triple
&, a,8,4,2). ThepairsE, «, 3,2), (X, 8,~,2) and &, «, +, z) define the three-
manifoldsY,gs, Y,3 andY,.,, respectively. There is a map fro@F (3, o, 3,2) ®

CF (%, 8,v,2to CF (%, a, v, 2) given on a generatot ® y by

YooY MU

VET,NT UEm2(X,Y,V)

nz(u)=0

w(u)=0
where m(X, Y, V) is the set of homotopy classes of triangles connecting to v;
maps from a triangle to Syfk—1(X) sending the edges of the triangle T, T3
and T, M(u) is the moduli space of pseudo-holomorphic representatives of the
homotopy clasau. This gives a well-defined map on the homologids—. When
~ can be obtained fron8 by Heegaard moves then the manifolg, is #9St x &
and HF~(#9S! x &) is a freeZ,[U]-module generated by92elements. Denote its
top-generator bf')/;,- The same definition gives a map on the filtered chain complexes
CFK™. The mapCFK™(Yas3) — CFK™(Ya,) sendingx to the image ofx ® ©,
defines a quasi-isomorphism of the chain complexes.

Proof of theorem 3.3 From a toroidal grid diagram one can obtain a spherical one by
first sliding every3-curve over3; to obtain 3’ and sliding everyx-curve overa; to
obtain «’, and then destabilize the diagramaat and 3;. Thus we will construct the
quasi-isomorphism by the compositign= vgestan° o © ¥, Where

p= Y > M)y

YETaNT g uema(x4(L),07,y)
nz(u)=0
w(w)=0
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with ©~ € TN T4 being the top generator ®iF (T2, 3, B/,z) = HF (S x &)

and ¢, defined similarly. Note that in the case of the sliding there is also a “closest
point” map denoted by for the sliding of the3-curves and by for the sliding of the
a-curves. We claim:

Lemma3.4 ¢p(x4) =X, .
Lemma 3.5 ¢, (X ) = (X,)".

Here we just include the proof of Lemn3a4; Lemmaa3.5follows similarly.

Proof of Lemma 3.4 Figure5 shows a weakly admissible diagram for the slides of
the 5-curves.

aq

J ]
X
o o)
’ T
3, © 3 3,
o3 o)
1J
x 62 o
Qy _"\
1
X o
Qs N
1
X
“j, —

5 2 B3 fon Bs

Figure 5: Handleslides

Claim 1 The Heegaard triple (T?, o, 3, 3’,2) of Figure 5 is weakly admissible.

Proof Let Pggp, (i > 1) denote the domain bounded by, 5 and 51 and con-
taining no basepoint. Similarl?ﬂlﬁi denotes the domain bounded By and 3] and
containing no basepoint. These domains form a basis for the periodic domains of
(T2, 3, 8’,2) and as all have domains with both positive and negative coefficients we
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can see thatT?, 3, 3’, z) is weakly admissible. Consider a triply periodic domain

If there is noa-curve in its boundary, then it is a periodic domain @3, 3, 2),

and by the previous observation we are done. Smust contain ar-curve in its
boundary. To ensure it does not containgrthere must be some vertical curve, either
from 3 or 3, in the boundary. At the intersection point of the horizontal and vertical
lines the domain must change sign, concluding the argument. ad

The grey area in Figurb indicates a domain of a canonical trianglge connecting
X+(L),©~ andx/_(L); by the Riemann mapping theorem there is exactly one map with
that domain. We claim that this is the only map that is encountereg irFor this, let

u € m(x. (L), ®~,y) be a holomorphic triangle witp(u) = 0 andn,(u) = 0.

Claim 2 There exists a periodic domain Pgg of (T2, 3, 3’,2) such that O(D(u) —
D(up) — Pﬁﬂ')‘ﬁ = (). Thus (D(u) — D(up) — Pgﬁ/)’ﬁ is a domain in (Tz, a, ,3', 2),
representing an element V in w»(X/,,y) with Maslov index p(v) = p(u) — p(uo) —
1(Pay) = 0.

Proof As n,(u) = 0 andx/ (L) is in the upper right corner of th¥’s, the domain
of any triangle must contaif®(up). ConsequentlyyD(u)|s is an arc containing the
small partD(up) N G and some copies of the wholg. By subtractingD(up) and
sufficiently many copies of the periodic domaiRs, 53, we obtain a domain with no
boundary component off;. Doing the same process for everry> 1 and then by
subtracting som@;, 5 We can eliminate every; from the boundary. |

Claim 3 There is no positive disc in mo(X, ).

Proof This follows similarly to LemméB.2 m|

Claim 4 None of the regions of (T?, o, 3',2) can be covered completely with the
periodic domains of (T?, 3, 3’,2) and D(ug).

Proof The periodic domains are the linear combination§®f; g5, },U{Ps, 5.},
and those cannot cover the domains®,(«, 3, 2). O

Putting these together, we have tiia@u) — D(upg) — Psg has a negative coefficient,
which gives a negative coefficient i(u) as well, contradicting the fact that was
holomorphic. This proves Lemnga4. m|
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Note that by assuming that there is drin the upper right corner of the grid diagram
we assured that the intersection point containsag N B1, and that point remained
unchanged during the whole process. Thus by destabilizing; and 31 we get

Theorem3.3. |
o \ L
X \\
. x| o e
X [e]
front hemisphere rear hemisphere

Figure 6: Connected Sum

Proof of Theorem 1.1 Consider two Legendrian knotg andL, of topological types

K1 andK,. Note that once we obtain the result fm_ﬁ we are done. Indeed, passing
from the toroidal diagram to the spherical one, the invariantd_;) and A, (L») are
mapped to\i(Ll) andAi(LZ), respectively. Knowing thaXi(L1)®)\§(L2) is mapped

to )\i(Ll#Lz) and passing back to the toroidal diagram, there is an isomorphism that
maps this to\ (L1#L2). So the combination of these arguments prove Thedrdm

Consider the grid diagrants; andG, corresponding td; andL, admitting the condi-
tions of LemmaB.1 These grids define the spherical grid diagraB¥s ¢ 1, 8, W1, z1)
and &, az, B,, W2, 22). Letz € z;, w € w; be the basepoints corresponding to ¥he
in the upper right corner of the first diagram and @an the lower left corner of the sec-
ond diagram. Form the connected sum®#, (1, 31, w1, z1) and &, a2, 85, W2, 22)

at the regions containing and w to obtain a Heegaard diagram with multiple base-
points &, a1 U ap, B U B, W1 U (Wo — {W}), (z1 — {z} U 2)) of (S}, L1#l,). By
2.4the map

Yeonnsum:  HFK™(S%, eu1, By, W1, 21) @ HFK™ (S, a2, B, W2, 22) —
HFK™ (S, a1 U ag, B1 U B, Wi U (W — {W}), (21 — {2}) U )
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defined on the generators as® X, — (X1, X2) is an isomorphism. Thus the image of
A3 (L) @ A3 (L) is (A3 (Le), A3 (L2))-

Figure6 shows the resulting Heegaard diagram. From this diagram of the connected
sum one can easily obtain a spherical grid diagram by isotoping every curag in
to intersect the curves i, and every curve inx; to intersect the curves i8, as
shown on Figurer. Indeed, the resulting diagram is a grid obtained by patci@ng
and G, together in the upper righX of G; and the lower leftO of G, and deleting

the X and O at issue. Now by connecting th¢ in the lower row of G, to the O

in the upper row ofG1, and proceeding similarly in the columns we get that the grid
corresponds to the front projection afi#L,. Again, a quasi-isomorphismise; IS
given with the help of holomorphic triangles. A similar argument as in the proof of
Lemma3.4 shows that under the isomorphism induced/fy; on the homologies, the
element 43 (L1), A3 (L)) is mapped to\S (Ly#L,).

™~

\

pd

™

L\

T
0E

NS
ad

I L~ ~ L

front hemisphere rear hemisphere

Figure 7: Isotoping to obtain a grid diagram

4 Proof of Theorem1.4

One way of distinguishing transverse knots in a given knot type is to prove thabtheir
invariants are different. This, however, cannot be done straightforwardly as the vector
spacem:? does not canonically correspond to a knot. So in order to prove that two
elements are different, we have to show that there is no isomorphi@fcarrying
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one to the other. More explicitly, it is enough to see that there is no such isomorphism
induced by a sequence of Heegaard moves. For instance, if we show that one element
is 0, while the other is not, we can be certain that they are different. This is used in the
proof of Theorem.4.

Proof of Theorem1.4 Ng, Ozswath and Thurston14] showed that the knot type
1013, contains transversely non-isotopic representatlvesnd L, with equal self-
linking number. They proved the&(Ll) is zero in H/FT<(m(10132)) while §(L2) is

not. In the following we will prove that the knot types'¥#)3, are transversely
non-simple. By the unigueness of prime decomposition of kng}sthese are
indeed different knot types. Thus this list provides infinitely many examples of
transversely non-simple knots. The two transversely non isotopic representatives
of #1013, are #L, and Li#(# !Ly). Using the formula slj#L,) = sl(L)) +
sl(L}) + 1 for the self-linking numbers we have slig) = nsl(Lz) + (n — 1) =
sl(Ly) + (n — 1)sl(L2) + (n — 1) = sl(Li## 'Lo)). We use Corollaryl.2 to dis-
tinguish the transverse isotopy types ofL# and Ll#‘(#n 1L,). There is an iso-
morphism fromHFK(m(lOlgz)) ® HFK(#n Im(10;3)) to HFK(#”m(lOlgz)) mapping
f(L1) ® 6 1Ly) = 0 to G(Ll#(#-n 1L,)), thus it is zero. Similarly, there is an
isomorphism mapping(L,) ® 0(#1Ly)) # 0 to §(Lo#(# ~1L,)), thus by induction

on n it does not vanish.
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