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Transversely Non-Simple Knots

VERA VÉRTESI

By proving a connected sum formula for the Legendrian invariantλ+ in knot Floer
homology we exhibit infinitely many transversely non-simple knot types.

57M27, 57M25, 57R17; 57R58

1 Introduction

The study of Legendrian and transverse knots is central in contact geometry. A Legen-
drian knot with a given knot type has two classical invariants: its Thurston-Bennequin
number and its rotation number. The problem of classifying Legendrian knots up to
Legendrian isotopy naturally leads to the question whether these invariants classify
Legendrian knots. A knot type is called Legendrian simple if any two realizations of
it with equal classical invariants are Legendrian isotopic. For transverse knots there
is only one classical invariant, the self-linking number. Similarly, the knot types for
which transverse realizations are classified by the self-linking number are called trans-
versely simple. The unknot [4], torus knots and the figure-eight knot [6] were proved
to be both Legendrian and transversely simple. By constructing a new invariant for
Legendrian knots, Chekanov [3] showed that not all knots are Legendrian simple, in
particular he proved that the knot 52 is not Legendrian simple. Later many other
Legendrian non-simple knots were detected by Epstein, Fuchs and Meyer [5], and by
Ng [13]. The case for transverse knots turned out to be harder. Birman and Menasco
[1], and Etnyre and Honda [9] constructed families of transversely non-simple knots
using braid and convex surface theory. Recently Ng, Ozsváth and Thurston [14] gave
such examples using the Legendrian invariant in knot Floer homology.

Heegaard Floer homologŷHF(Y), HF−(Y) defined by Ozsv́ath and Szab́o [17] are
invariants for three-manifolds. The construction was extended [16] to give the invari-
antsĤFK(Y,K), HFK−(Y,K) for null-homologous knotsK ⊂ Y via doubly pointed
Heegaard diagrams. Using Heegaard diagrams with multiple basepoints the invariants
were generalized for links [15]. Multiply pointed Heegaard diagrams turned out to be
extremely useful in the case of knots as well, and led to the discovery of a combinatorial
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version of knot Floer homologies through grid diagrams [12, 11]. This version pro-
vided a natural way to define invariantsλ+ andλ− of Legendrian andθ for transverse
knots in the three-sphere [18].

From hereon if not stated otherwise every (Legendrian or transverse) knot is oriented
and will be considered in the standard contact three-sphere. Letm(K) denote the mirror
of a knot. In this paper we will prove

Theorem 1.1 Let L1 and L2 be (oriented) Legendrian knots of topological type K1

and K2 . Then there is an isomorphism

HFK−(m(K1))⊗Z2[U] HFK−(m(K2)) → HFK−(m(K1#K2))

which maps λ+(L1) ⊗ λ+(L2) to λ+(L1#L2). Similar statement holds for the λ− -
invariant.

Corollary 1.2 Let L1 and L2 be (oriented) Legendrian knots of topological type K1

and K2 . Then there is an isomorphism

ĤFK(m(K1))⊗Z2 ĤFK(m(K2)) → ĤFK(m(K1#K2))

which maps λ̂+(L1) ⊗ λ̂+(L2) to λ̂+(L1#L2). Similar statement holds for the λ̂− -
invariant.

Similar results hold for theθ -invariant of transverse knots:

Corollary 1.3 Let T1 and T2 be transverse knots of topological type K1 and K2 .
Then there are isomorphisms

HFK−(m(K1))⊗Z2[U] HFK−(m(K2)) → HFK−(m(K1#K2))

and
ĤFK(m(K1))⊗Z2 ĤFK(m(K2)) → ĤFK(m(K1#K2))

which map θ(T1)⊗θ(T2) to θ(T1#T2) and θ̂(T1)⊗ θ̂(T2) to θ̂(T1#T2), respectively.

As an application of the above result we prove:

Theorem 1.4 There exist infinitely many transversely non-simple knots.

Similar statement follows from the main result of [8], see also [10] and [1].

The paper is organized as follows. In Section2 we recall the definitions and collect
the basic facts about Legendrian and transverse knots, knot Floer homology, and the
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Legendrian and transverse invariant. In Section3 we introduce spherical grid diagrams
and prove Theorem1.1. In Section4 we use the results of Section3 to prove Theorem
1.4.

Acknowledgements:I would like to thank Peter Ozsváth and Andŕas Stipsicz for their
guidance and help during the course of this work. This work was done while I visited
Columbia University, I am grateful for their hospitality. I also wish to thank John
Baldwin and Taḿas Terpai for pointing out mistakes in an earlier version of the paper.
This work was supported by NSF grant number FRG-0244663 and OTKA 67867 and
67870.

2 Preliminaries

2.1 Legendrian and transverse knots

A Legendrian knot Lin R3 (or in S3 = R3∪{∞}) endowed with the standard contact
form dz− ydx is an oriented knot along which the formdz− ydx vanishes identically.
Legendrian knots are determined by their front projection to thexz-plane; a generic
projection is smooth in all but finitely many cusp points, has no vertical tangents and
at each crossing the strand with smaller slope is in the front. Note that if (x, z) is the
standard positive basis in the plane, then in order to have the standard orientation on
R3 the y axis points into the page. By changing the parts with vertical tangents to
cusps and adding zig-zags, a generic smooth projection of a knot can be arranged to be
of the above type. Thus any knot can be placed in Legendrian position. But this can be
done in many different ways up to Legendrian isotopy. For example, by adding extra
zig-zags in the front projection we obtain a different Legendrian representative. This
method is calledstabilization. Adding a downward (upward) cusp is called positive
(negative) stabilization. (Here and throughout the paper we use the conventions of
[7].) There are two classical invariants for Legendrian knots defined as follows. By
pushing off the knot in the∂

∂z direction we obtain theThurston-Bennequin framing
of the Legendrian knot. Comparing this to the Seifert framing we get theThurston-
Bennequin numbertb(L). Therotation numberr(L) is the winding number ofTL with
respect to a trivialization of the contact planes alongL that extends to a Seifert surface.

A transverse knotin S3 with the standard contact structure is a knot along which the
contact formdz− ydx never vanishes. Any transverse knot is naturally endowed with
an orientation, the one along which the contact form is positive. Again, every knot
can be placed in transverse position by translating its Legendrian realization in the
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Figure 1: Connected sum of two Legendrian knots

± ∂
∂y direction. The resulting transverse knot is called thetransverse push offof the

Legendrian knot. A push off is called positive if the orientation of the knot agrees
with the natural orientation of the transverse knot and called negative otherwise. A
Legendrian knot is aLegendrian approximationof its positive push off. Two transverse
knots are transversely isotopic if and only if their Legendrian approximations have
common negative stabilizations. By pushing off the transverse knotT in a direction
of a vector field in the contact planes that extends to a nonzero vectorfield to a Seifert-
surface ofT we get T′ . The self-linking numbersl(T) is the linking of T with its
push-offT′ . The self-linking number of a push off can be deduced from the classical
invariants of the Legendrian knot: sl(L±) = tb(L)∓ r(L).

A knot is calledLegendrian simple(or transversely simple) if any two Legendrian
(transverse) realizations of it with equal Thurston-Bennequin and rotation (self-linking)
number(s) are isotopic through Legendrian (transverse) knots.

As it is explained in [8], there is a well-defined notion of the connected sum of two
Legendrian or transverse knots inS3, which comes from connected summing the two
S3 ’s the knots are sitting in. This process can be described in terms of the front
projection as it is shown by Figure1.

2.2 Knot Floer homology with multiple basepoints

Here we outline the basic definitions of knot Floer homologies with multiple basepoints,
originally defined by Ozsv́ath and Szab́o [15] and independently by Rasmussen [19].
Consider a knotK in an oriented, closed three-manifoldY. There is a self-indexing
Morse function withk minima andk maxima such thatK is made out of 2k flow lines
connecting all the index zero and index three critical points. Such a Morse function
gives rise to a Heegaard diagram (Σ, α, β ,w, z) for (Y,K) in the following way. Let
Σ = f−1(3

2) be a genusg surface. Theα-curvesα = {αi}g+k−1
i=1 are defined to be
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the circles ofΣ whose points flow down to the index one critical points. Similarly
β = {βi}g+k−1

i=1 are the curves with points flowing up to the index two critical points.
Finally let w = {wi}k

i=1 be the positive andz = {zi}k
i=1 the negative intersection

points ofK with Σ.

Consider the moduleCF−(Σ, α, β ,w) over the polynomial algebraZ2[U1, . . . ,Uk]
freely generated by the intersection points of the totally real submanifoldsTα =
α1 × · · · × αg+k−1 and Tβ = β1 × · · · × βg+k−1 of Symg+k−1(Σ). This module is
endowed with the differential

∂−x =
∑

y∈Tα∩Tβ

∑
φ∈π2(x,y)
µ(φ)=1

∣∣∣∣M(φ)
R

∣∣∣∣ U
nw1(φ)
1 · · ·Unwk(φ)

k y

where, as usual,π2(x, y) denotes the space of homotopy classes of Whitney disks
connectingx to y, M(φ) denotes the moduli space of pseudo-holomorphic repre-
sentatives ofφ, the Maslov indexµ(φ) denotes its formal dimension andnp(φ) =
#{φ−1(p× Symg+k−2(Σ))} is the local multiplicity ofφ at p. Let

(1)
(

ĈF(Σ, α, β ,w), ∂̂
)

=
(

CF−(Σ, α, β ,w)
(U1 = 0)

,
[
∂−

])
.

The chain-homotopy type of the above complexes are invariants ofY in the following
sense:

Theorem 2.1 (Ozsváth-Szabó, [15]) Let Y be a closed oriented three-manifold.
Consider the Heegaard diagrams (Σ1, α1, β1,w1) and (Σ2, α2, β2,w2) for Y with
|w1| = k1 and |w2| = k2 . Assuming k1 ≥ k2 the complexes CF−(Σ1, α1, β1,w1) and
CF−(Σ2, α2, β2,w2) are chain-homotopy equivalent as Z2[U1, . . . ,Uk1] -modules.
Here the latter complex is endowed with the Z2[U1, . . . ,Uk1] -module structure by
defining the action of Uk2, . . . ,Uk1 to be identical. Similar statement holds for the
ĈF-theory, moreover the chain-homotopy equivalences form a commutative diagram
with the factorization map of (1).

Hereafter we assume that our underlying three-manifold is the three-sphere. Note that
in this case the homology ofCF−(Σ, α, β ,w) is HF−(S3) = Z2[U]. The relative
Maslov-grading of two intersection pointsx, y ∈ Tα∩Tβ is defined byM(x)−M(y) =
µ(φ)−2

∑
nwi (φ), whereφ ∈ π2(x, y) is any homotopy class fromx to y. We extend

this relative grading to the whole module byM(Ua1
1 · · ·Uak

k x) = M(x)−2(a1+· · ·+ak).
For S3, the grading can be lifted to an absolute grading by fixing the grading of the
generator ofHF−(S3) = Z2[U] at 0.
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Note that so far we made no reference to the basepointsz. The relative Alexander
grading is defined byA(x)−A(y) =

∑
nzi (φ)−

∑
nwi (φ), where againφ can be chosen

to be any homotopy class inπ2(x, y). This relative grading can be uniquely lifted to an
absolute Alexander grading which satisfies

∑
TA(x) = ∆K(T)(1− T)n−1 (mod 2),

where∆K(T) is the symmetrized Alexander polynomial. We can extend the Alexander
grading to the module byA(Ua1

1 · · ·Uak
k x) = A(x) − (a1 + · · · + ak). As the local

multiplicities of pseudo-holomorhic discs are non-negative, we obtain filtered chain
complexesCFK−(Σ, α, β ,w, z) and ĈFK(Σ, α, β ,w, z), that are invariants of the
knot:

Theorem 2.2 (Ozsváth–Szabó, [15]) Let K be an oriented knot. Consider the Hee-
gaard diagrams (Σ1, α1, β1,w1, z1) and (Σ2, α2, β2,w2, z2) for K with |w1| =
|z1| = k1 and |w2| = |z2| = k2 . Assuming k1 ≥ k2 the filtered complexes
CFK−(Σ1, α1, β1,w1, z1) and CFK−(Σ2, α2, β2,w2, z2) are filtered chain-homotopy
equivalent as Z2[U1, . . . ,Uk1] -modules. Here the latter complex is endowed with the
Z2[U1, . . . ,Uk1] -module structure by defining the action of Uk2, . . . ,Uk1 to be iden-
tical. Similar statement holds for the ĈFK-theory, moreover the chain homotopy
equivalences form a commutative diagram with the factorization map of (1).

As it is easier to work with, we usually consider the associated graded objects of
the filtered chain complexes and denote their homologies by HFK− . In particular
HFK−(Σ, α, β ,w, z) is the homology of the complex (CFK−(Σ, α, β ,w, z), ∂−0 ),
where

∂−0 x =
∑

y∈Tα∩Tβ

∑
φ∈π2(x,y)
nz1(φ)+···+nzk(φ)=0
µ(φ)=1

∣∣∣∣M(φ)
R

∣∣∣∣ U
nw1(φ)
1 · · ·Unwk(φ)

k y.

The Ui ’s for different i act chain-homotopically, so on the homology level allUi act
identically. This observation endowsHFK−(Σ, α, β ,w, z) with a Z2[U]-structure,
by defining theU action to be the the action of any of theUi ’s. Then Theorem2.2
translates:

Theorem 2.3 (Oszváth–Szabó, [15]) Let K be an oriented knot. Consider the Hee-
gaard diagrams (Σ1, α1, β1,w1, z1) and (Σ2, α2, β2,w2, z2) for K . Then the knot
Floer homologies HFK−(Σ1, α1, β1,w1, z1) and HFK−(Σ2, α2, β2,w2, z2) are iso-
morphic as Z2[U] -modules. Similar statement holds for the ĤFK-theory, moreover
the isomorphisms form a commutative diagram with the factorization map of (1).

Knot Floer homology satisfies a Künneth-type formula for connected sums:
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Theorem 2.4 (Ozsváth–Szabó, [15]) Let K1 and K2 be oriented knots in S3 described
by the Heegaard diagrams (Σ1, α1, β1,w1, z1) and (Σ2, α2, β2,w2, z2). Let w ∈ w1

and z∈ z2 . Then

(1)
(
Σ1#Σ2, α1 ∪ α2, β1 ∪ β2, (w1 − w) ∪ w2, z1 ∪ (z2 − z)

)
is a Heegaard di-

agram for K1#K2 . Here the connected sum Σ1#Σ2 is taken in the regions
containing w ∈ Σ1 and z∈ Σ2;

Let |w1| = |z1| = k1 and |w2| = |z2| = k2 . Both complexes CFK−(Σ1, α1, β1,w1, z1)
and CFK−(Σ2, α2, β2,w2, z2) are Z2[U1, . . . ,Uk1,V1, . . . ,Vk2] -modules with the el-
ements U1, . . . ,Uk1 acting trivially on the latter and V1, . . . ,Vk2 acting trivially on the
former complex. With these conventions in place we have

(2) CFK− (
Σ1, α1, β1,w1, z1

)
⊗U1=V1CFK− (

Σ2, α2, β2,w2, z2
)

is filtered chain
homotopy equivalent to

CFK− (
Σ1#Σ2, α1 ∪ α2, β1 ∪ β2, (w1 − w) ∪ w2, z1 ∪ (z2 − z)

)
;

(3) HFK−(K1#K2) is isomorphic to HFK−(K1)⊗HFK−(K2) and this isomorphism
can be given by x1 ⊗ x2 7→ (x1, x2) on the generators.

Similar statement holds for the ĈFK-theory, moreover the chain homotopy equiva-
lences form a commutative diagram with the factorization map of (1).

2.3 Grid diagrams

As it was observed in [12, 11], knot Floer homology admits a completely combinatorial
description via grid diagrams. Agrid diagram G is a k × k square grid placed on
the plane with some of its cells decorated with anX or an O and containing exactly
one X and O in each of its rows and columns. Such a diagram naturally defines an
oriented link projection by connecting theO’s to theX’s in each row and theX’s to the
O’s in the columns and letting the vertical line to overpass at the intersection points.
For simplicity we will assume that the corresponding link is a knotK . There are
certain moves of the grid diagram that do not change the (topological) knot type [18].
These arecyclic permutationof the rows or columns,commutationof two consecutive
rows (columns) such that theX and theO from one row (column) does not separate
the X and theO from the other row (column) and(de)stabilizationwhich is defined
as follows. A square in the grid containing anX (O) can be subdivided into four
squares by introducing a new vertical and a new horizontal line dividing the row and
the column that contains that square. By replacing theX (O) by oneO (X) and two
X’s (O’s) in the diagonal of the new four squares and placing the twoO’s (X’s) in the
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Figure 2: Stabilization of typeX :NW

subdivided row and column appropriately, we get a new grid diagram which is called
the stabilization of the original one. The inverse of stabilization is destabilization.
There are eight types of (de)stabilization:O : SW, O : SE, O : NW, O : NE, X : SW,
X :SE, X :NW andX :NE, where the first coordinate indicates which symbol we started
with and the second shows the placement of the unique new symbol. A stabilization
of type X :NW is depicted on Figure2.

Placing the grid on a torus by identifying the opposite edges of the square grid we obtain
a Heegaard diagram with multiple basepoints for (S3,K). Here thew ’s correspond to
the O’s, thez’s to theX’s, and theα -curves to the horizontal lines and theβ -curves
to the vertical lines. As each region of this Heegaard diagram is a square, it is“nice”
in the sense defined in [20]. Thus boundary maps can be given by rectangles. This
observation led to a completely combinatorial description of knot Floer homology
[12, 11] in the three-sphere.

2.4 Legendrian and transverse invariants on grid diagrams

Consider a grid diagramG. It describes not only a knot projection but also a front
projection of a Legendrian realization of its mirrorm(K), as follows. Rotate the grid
diagram by 45◦ clockwise, reverse the over- and under crossings and turn the corners
into cusps or smooth them as appropriate. Legendrian Reidemeister moves correspond
to certain grid moves giving the following result:

Proposition 2.5 (Ozsváth–Szabó–Thurston, [18]) Two grid diagrams represent the
same Legendrian knot if and only if they can be connected by a sequence of cyclic
permutation, commutation, and (de)stabilization of types X : NW, X : SE, O : NW and
O:SE.
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Moreover stabilizations of typeX : NE or O : SW of the grid diagram correspond to
negative stabilization of the knot, yielding

Proposition 2.6 (Ozsváth–Szabó–Thurston, [18]) Two grid diagram represent the
same transverse knot if and only if they can be connected by a sequence of cyclic
permutation, commutation, and (de)stabilization of types X : NW, X : SE, X : NE,
O:NW, O:SEand O:SW.

Consider a grid diagramG for a Legendrian knotL of knot typeK . Pick the upper
right corner of every cell containing anX. This gives a generator ofCFK−(m(K))
denoted byx+(G). Since there is no positive rectangle starting atx+(G), it is a cycle
defining an elementλ+(G) in HFK−(m(K)). Similarly one can definex−(G) and
λ−(G) by taking the lower left corners of the cells containingX’s. These elements are
proved to be independent of the grid moves that preserve the Legendrian knot type,
giving an invariant of the Legendrian knotL:

Theorem 2.7 (Ozsváth–Szabó–Thurston, [18]) Consider two grid diagrams G1 and
G2 defining the same oriented Legendrian knot. Then there is a quasi-isomorphism of
the graded chain complexes CFK− taking x+(G1) to x+(G2) and x−(G1) to x−(G2).

One can understand the transformation ofx+(G) andx−(G) under positive and negative
stabilization:

Theorem 2.8 (Ozsváth–Szabó–Thurston, [18]) Let L be an oriented Legendrian knot,
denote by L+ its positive and by L− its negative stabilization. Then

(1) There is a quasi-isomorphism of the corresponding graded complexes taking
x+(L) to x+(L+) and Ux−(L) to x−(L+);

(2) There is a quasi-isomorphism of the corresponding graded complexes taking
Ux+(L) to x+(L−) and x−(L) to x−(L−).

It follows from [7] that the Legendrian knots with transversely isotopic positive push
offs admit common negative stabilizations. This principle provides a well defined
invariant for transverse knots: ifL is a Legendrian approximation ofT then define
θ(T) = λ+(L).

Theorem 2.9 (Ozsváth–Szabó–Thurston, [18]) For any two grid diagrams G1 and
G2 of Legendrian approximations of the transverse knot T there is quasi-isomorphism
of the corresponding graded chain complexes inducing a map on the homologies that
takes θ(G1) to θ(G2).
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3 Proof of Theorem1.1

The Legendrian invariant can be thought of in two different ways, depending on the
version of Floer homology we work with. The one introduced in subsection2.4 is in
the combinatorial Heegaard Floer homology. Once the grid is placed on the torus we
get a Heegaard diagram and thus there is a natural identification of the combinatorial
Heegaard Floer complex with the holomorphic Heegaard Floer complex [11]. Under
this identification the previously defined invariant has a counterpart in the original,
holomorphic Heegaard Floer homology. We will use the same notation for both. In
the next subsection we introduce yet another invariant for Legendrian knots.

3.1 Legendrian invariant on spherical Heegaard diagrams

A k× k grid diagramG of a Legendrian knotL of topological typeK can also be
placed on the 2-sphere in the following way. LetS2 = {(x, y, z) ∈ R3 : |(x, y, z)| = 1}
and define the circles̃α = {α̃i}k−1

i=1 as the intersection ofS2 with the planesAi =
{(x, y, z) ∈ R3 : z = i

k −
1
2} ( i = 1, . . . , k − 1); similarly define β̃ = {β̃i}k−1

i=1
as the intersection ofS2 with the planesBi = {(x, y, z) ∈ R3 : x = i

k −
1
2} ( i =

1, . . . , k− 1). Call F = {(x, y, z) ∈ R3 : |(x, y, z)| = 1, y ≥ 0} the front hemisphere,
and R = {(x, y, z) ∈ R3 : |(x, y, z)| = 1, y ≤ 0} the rear hemisphere. Then there is
a grid on both the front and on the rear hemisphere. We place theX’s and theO’s
on the front hemisphere in the way they were placed on the original gridG. After
identifying theO’s with w̃ = {w̃i}k

i=1 and theX’s with z̃ = {̃zi}k
i=1 this defines a

Heegaard diagram (S2, α̃, β̃ , w̃, z̃) with multiple basepoints for (S3,K). A spherical
grid diagram for the trefoil knot is shown by Figure4.

Let L be a Legendrian knot inS3. To define the spherical Legendrian invariantλS
+(L)

we will use a grid diagram that have anX in its upper right corner. This can always be
arranged by cyclic permutation, but in the following we will need a slightly stronger
property:

Lemma 3.1 For any Legendrian knot there exists a grid diagram representing it which
contains an X in its upper right corner and an O in its lower left corner.

Proof Consider any grid diagram describing the Legendrian knotL. As it is illustrated
on Figure3, we can obtain a suitable diagram as follows. First do a stabilization of
typeX :NE and then do a stabilization of typeO:NE on the newly obtainedO. Lastly,
by cyclic permutation we can place the lowerX introduced in the first stabilization to
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the upper right corner of the diagram. Notice that theO on the upper right of thisX
will be automatically placed to the lower left corner. According to Proposition2.5the
Legendrian type of the knot is fixed under these moves, thus the statement follows.

cyclic
permutation

X :NE O :NE

Figure 3: Grid moves

Suppose, thatG is a grid diagram having anX in its upper right corner. Form a spher-
ical grid diagram as above. DefinexS

+(L) as the generator ofCFK−(S2, α̃, β̃ , w̃, z̃)
consisting of those intersection points on the front hemisphere that occupy the upper
right corner of each region marked with anX. Note that theX in the upper right
corner has no such corner. On Figure4 the elementxS

+ is indicated for the trefoil knot.
Similarly to the toroidal case we have:

α1

α2

α3

α4

β1
β2 β3

β4

α1

α2

α3

α4

β1

β2
β3

β4

front hemisphere rear hemisphere

Figure 4: Spherical grid diagram for the trefoil knot

Lemma 3.2 The element xS
+(L) is a cycle in (S2, α̃, β̃ , w̃, z̃).

Proof We will show that for anyy there is no positive discψ ∈ π2(xS
+, y) with

µ(ψ) = 1. As the diagramCFK−(S2, α̃, β̃ , w̃, z̃) is “nice” in the sense of [20] the
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elementsxS
+ andy differ either in one coordinate andD(ψ) is a bigon or they differ

in two coordinates andD(ψ) is a rectangle. In any case,D(ψ) contains anX which
means it is not counted in the boundary map.

The homology class ofxS
+ , denoted byλS

+(G), turns out to be an invariant ofL (i.e.
it is independent of the choice of the grid diagram, and the way it is placed on the
sphere). This can be proved directly through grid moves, but instead we show:

Theorem 3.3 Consider a grid diagram for the Legendrian knot L in S3 having
an X in its upper right corner. Then there is a filtered quasi-isomorphism ψ :
CFK−(T2, α, β ,w, z) → CFK−(S2, α̃, β̃ , w̃, z̃) of the corresponding toroidal and
spherical Heegaard diagrams which maps x+(L) to xS

+(L).

In the proof we will need the notion of Heegaard triples, which we will briefly describe
here. (For a complete discussion see [17].) Consider a pointed Heegaard triple
(Σ, α, β , γ , z). The pairs (Σ, α, β , z), (Σ, β , γ , z) and (Σ, α, γ , z) define the three-
manifoldsYαβ , Yγβ andYαγ , respectively. There is a map fromCF−(Σ, α, β , z) ⊗
CF−(Σ, β , γ , z) to CF−(Σ, α, γ , z) given on a generatorx⊗ y by∑

v∈Tα∩Tγ

∑
u∈π2(x,y,v)
nz(u)=0
µ(u)=0

|M(u)|v

whereπ2(x, y, v) is the set of homotopy classes of triangles connectingx, y to v;
maps from a triangle to Symg+k−1(Σ) sending the edges of the triangle toTα ,Tβ

and Tγ , M(u) is the moduli space of pseudo-holomorphic representatives of the
homotopy classu. This gives a well-defined map on the homologiesHF− . When
γ can be obtained fromβ by Heegaard moves then the manifoldYβγ is #gS1 × S2

and HF−(#gS1 × S2) is a freeZ2[U]-module generated by 2g-elements. Denote its
top-generator byΘ−

βγ . The same definition gives a map on the filtered chain complexes

CFK− . The mapCFK−(Yαβ) → CFK−(Yαγ) sendingx to the image ofx ⊗ Θ−
βγ

defines a quasi-isomorphism of the chain complexes.

Proof of theorem3.3 From a toroidal grid diagram one can obtain a spherical one by
first sliding everyβ -curve overβ1 to obtainβ ′ and sliding everyα-curve overα1 to
obtain α ′ , and then destabilize the diagram atα1 andβ1. Thus we will construct the
quasi-isomorphism by the compositionψ = ψdestab◦ ψα ◦ ψβ , where

ψβ =
∑

y∈Tα∩Tβ′

∑
u∈π2(x+(L),Θ−,y)
nz(u)=0
µ(u)=0

|M(u)|y
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with Θ− ∈ Tβ ∩ Tβ′ being the top generator ofHF−(T2, β , β′ , z) = HF−(S1 × S2)
andψα defined similarly. Note that in the case of the sliding there is also a “closest
point” map denoted by′ for the sliding of theβ -curves and by′′ for the sliding of the
α-curves. We claim:

Lemma 3.4 ψβ(x+) = x′+ .

Lemma 3.5 ψα(x′+) = (x′+)′′ .

Here we just include the proof of Lemma3.4; Lemma3.5follows similarly.

Proof of Lemma 3.4 Figure5 shows a weakly admissible diagram for the slides of
theβ -curves.

β1 β2 β3 β4 β5

α1

α2

α3

α4

α5

β′
1β′

2

β′
3

β′
4

β′
5

Figure 5: Handleslides

Claim 1 The Heegaard triple (T2, α, β , β′ , z) of Figure 5 is weakly admissible.

Proof Let Pβiβ′i β1 ( i > 1) denote the domain bounded byβi , β′i and β1 and con-
taining no basepoint. SimilarlyPβ1β

′
1

denotes the domain bounded byβ1 andβ′1 and
containing no basepoint. These domains form a basis for the periodic domains of
(T2, β , β′ , z) and as all have domains with both positive and negative coefficients we
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can see that (T2, β , β′ , z) is weakly admissible. Consider a triply periodic domainP .
If there is noα-curve in its boundary, then it is a periodic domain of (T2, β , β′ , z),
and by the previous observation we are done. SoP must contain anα-curve in its
boundary. To ensure it does not contain anX, there must be some vertical curve, either
from β or β′ , in the boundary. At the intersection point of the horizontal and vertical
lines the domain must change sign, concluding the argument.

The grey area in Figure5 indicates a domain of a canonical triangleu0 connecting
x+(L),Θ− andx′+(L); by the Riemann mapping theorem there is exactly one map with
that domain. We claim that this is the only map that is encountered inψβ . For this, let
u ∈ π2(x+(L),Θ−, y) be a holomorphic triangle withµ(u) = 0 andnz(u) = 0.

Claim 2 There exists a periodic domain Pββ′ of (T2, β , β′ , z) such that ∂(D(u) −
D(u0)−Pββ′)|β = ∅. Thus (D(u)−D(u0)−Pββ′)|β is a domain in (T2, α, β′ , z),
representing an element v in π2(x′+, y) with Maslov index µ(v) = µ(u) − µ(u0) −
µ(Pββ′) = 0.

Proof As nz(u) = 0 andx′+(L) is in the upper right corner of theX’s, the domain
of any triangle must containD(u0). Consequently∂D(u)|βi is an arc containing the
small partD(u0) ∩ βi and some copies of the wholeβi . By subtractingD(u0) and
sufficiently many copies of the periodic domainsPβiβ′i β1 we obtain a domain with no
boundary component onβi . Doing the same process for everyi > 1 and then by
subtracting somePβ1β

′
1

we can eliminate everyβi from the boundary.

Claim 3 There is no positive disc in π2(x′+, y).

Proof This follows similarly to Lemma3.2.

Claim 4 None of the regions of (T2, α, β′ , z) can be covered completely with the
periodic domains of (T2, β , β′ , z) and D(u0).

Proof The periodic domains are the linear combinations of{Pβi ,β′i ,β1}k
i=2∪{Pβ1,β

′
1,
},

and those cannot cover the domains of (T2, α, β′ , z).

Putting these together, we have thatD(u) − D(u0) − Pββ′ has a negative coefficient,
which gives a negative coefficient inD(u) as well, contradicting the fact thatu was
holomorphic. This proves Lemma3.4.
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Note that by assuming that there is anX in the upper right corner of the grid diagram
we assured that the intersection pointx+ containsα1 ∩ β1, and that point remained
unchanged during the whole process. Thus by destabilizing atα1 and β1 we get
Theorem3.3.

front hemisphere rear hemisphere

Figure 6: Connected Sum

Proof of Theorem1.1 Consider two Legendrian knotsL1 andL2 of topological types
K1 andK2. Note that once we obtain the result forλS

+ we are done. Indeed, passing
from the toroidal diagram to the spherical one, the invariantsλ+(L1) andλ+(L2) are
mapped toλS

+(L1) andλS
+(L2), respectively. Knowing thatλS

+(L1)⊗λS
+(L2) is mapped

to λS
+(L1#L2) and passing back to the toroidal diagram, there is an isomorphism that

maps this toλ+(L1#L2). So the combination of these arguments prove Theorem1.1.

Consider the grid diagramsG1 andG2 corresponding toL1 andL2 admitting the condi-
tions of Lemma3.1. These grids define the spherical grid diagrams (S2, α1, β1,w1, z1)
and (S2, α2, β2,w2, z2). Let z∈ z1, w ∈ w2 be the basepoints corresponding to theX
in the upper right corner of the first diagram and theO in the lower left corner of the sec-
ond diagram. Form the connected sum of (S2, α1, β1,w1, z1) and (S2, α2, β2,w2, z2)
at the regions containingz and w to obtain a Heegaard diagram with multiple base-
points (S2, α1 ∪ α2, β1 ∪ β2,w1 ∪ (w2 − {w}), (z1 − {z} ∪ z2)) of (S3,L1#L2). By
2.4the map

ψconnsum: HFK−(S2,α1,β1,w1, z1)⊗ HFK−(S2,α2,β2,w2, z2) →
HFK−(S2,α1 ∪α2,β1 ∪ β2,w1 ∪ (w2 − {w}), (z1 − {z}) ∪ z2)
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defined on the generators asx1⊗ x2 7→ (x1, x2) is an isomorphism. Thus the image of
λS

+(L1)⊗ λS
+(L2) is (λS

+(L1), λS
+(L2)).

Figure6 shows the resulting Heegaard diagram. From this diagram of the connected
sum one can easily obtain a spherical grid diagram by isotoping every curve inα1

to intersect the curves inβ2 and every curve inα2 to intersect the curves inβ1 as
shown on Figure7. Indeed, the resulting diagram is a grid obtained by patchingG1

and G2 together in the upper rightX of G1 and the lower leftO of G2 and deleting
the X and O at issue. Now by connecting theX in the lower row ofG2 to the O
in the upper row ofG1, and proceeding similarly in the columns we get that the grid
corresponds to the front projection ofL1#L2. Again, a quasi-isomorphismψisot is
given with the help of holomorphic triangles. A similar argument as in the proof of
Lemma3.4shows that under the isomorphism induced byψisot on the homologies, the
element (λS

+(L1), λS
+(L2)) is mapped toλS

+(L1#L2).

front hemisphere rear hemisphere

Figure 7: Isotoping to obtain a grid diagram

4 Proof of Theorem1.4

One way of distinguishing transverse knots in a given knot type is to prove that theirθ̂ -
invariants are different. This, however, cannot be done straightforwardly as the vector
spaceĤFK does not canonically correspond to a knot. So in order to prove that two
elements are different, we have to show that there is no isomorphism ofĤFK carrying
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one to the other. More explicitly, it is enough to see that there is no such isomorphism
induced by a sequence of Heegaard moves. For instance, if we show that one element
is 0, while the other is not, we can be certain that they are different. This is used in the
proof of Theorem1.4.

Proof of Theorem1.4 Ng, Ozsv́ath and Thurston [14] showed that the knot type
10132 contains transversely non-isotopic representativesL1 and L2 with equal self-
linking number. They proved that̂θ(L1) is zero in ĤFK(m(10132)) while θ̂(L2) is
not. In the following we will prove that the knot types #n10132 are transversely
non-simple. By the uniqueness of prime decomposition of knots [2], these are
indeed different knot types. Thus this list provides infinitely many examples of
transversely non-simple knots. The two transversely non isotopic representatives
of #n10132 are #nL2 and L1#(#n−1L2). Using the formula sl(L′1#L′2) = sl(L′1) +
sl(L′2) + 1 for the self-linking numbers we have sl(#nL2) = nsl(L2) + (n − 1) =
sl(L1) + (n − 1)sl(L2) + (n − 1) = sl(L1#(#n−1L2)). We use Corollary1.2 to dis-
tinguish the transverse isotopy types of #nL2 and L1#(#n−1L2). There is an iso-
morphism fromĤFK(m(10132))⊗ ĤFK(#n−1m(10132)) to ĤFK(#nm(10132)) mapping
θ̂(L1) ⊗ θ̂(#n−1L2)) = 0 to θ̂(L1#(#n−1L2)), thus it is zero. Similarly, there is an
isomorphism mappinĝθ(L2) ⊗ θ̂(#n−1L2)) 6= 0 to θ̂(L2#(#n−1L2)), thus by induction
on n it does not vanish.
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