Knots and contact structures

Vera Vértesi

Contact structures

Knots in contact 3–manifolds

Appendix

Knots and contact structures

Vera Vértesi

wera@szit.bme.hu

2009

Thanks for P. Massot and S. Schönenberger for some of the pictures

Thermodynamics

E	internal energy
Т	temperature
5	entropy
Р	pressure
V	volume

First Law of Thermodynamics

$$dE = \delta Q - \delta W$$

(Q = processed heat, W = work on its surroundings) for a reversible process $\delta Q = T dS$, $\delta W = P dV$

$$dE = TdS - PdV$$

Since E, S and V are thermodynamical functions of a state, the above is true non-reversible processes too.

Knots and contact structures

Vera Vértesi

Contact structures

origin definition tight vs. overtwisted

Knots in contact 3–manifolds

Thermodynamics – geometric setup

Define the 1-form:

$$\alpha = dE - TdS + PdV$$

States of the gas are on integrals of ker α .

How many independent variables are there? = What is the maximal dimension of an integral submanifold?

$$\alpha \wedge (d\alpha)^2 = dE \wedge dT \wedge dS \wedge dP \wedge dV$$

$$(d\alpha = -dT \wedge dS + dP \wedge dV \neq 0)$$

 \Rightarrow Max dimensional integral manifolds are 2 dimensional.

Deduce state equations for ...

- ideal gases;
- ... van der Waals gases.

Knots and contact structures

Vera Vértesi

Contact structures

origin definition tight vs. overtwisted

Knots in contact 3–manifolds

Contact structures - definition

Contact structure

on a (2n + 1)-manifold M is a "maximally nonintegrable" hyperplane distribution ξ in the tangent space of M.

Locally: $\xi = \ker \alpha$ $(\alpha \in \Omega_1(M))$ "maximally nonintegrable" $\Leftrightarrow \alpha \wedge (d\alpha)^n \neq 0$

Standard contact structure On $\mathbb{R}^{2n+1} = \{(x_1, \dots, x_n, y_1, \dots, y_n, z)\} \xi_{st} = \ker \alpha$

$$\alpha_{\rm st} = dz + \sum_{i=0}^{n} x_i dy_i$$

 α is contact: $(d\alpha = \sum_{i=0}^{n} dx_i \wedge dy_i)$

$$\alpha \wedge (d\alpha)^n = 2^n dz \wedge dx_1 \wedge dy_1 \wedge \cdots \wedge \wedge dx_n \wedge dy_n \neq 0$$

Darboux's theorem

Every contact manifold locally looks like $(\mathbb{R}^{2n+1}, \xi_{st})$.

Knots and contact structures

Vera Vértesi

Contact structures

origin definition tight vs. overtwisted

Knots in contact 3—manifolds

Contact structures - origin

- thermodynamics;
- odd dimensional counterparts of symplectic manifolds;
- classical mechanics, contact element (Sophus Lie, Elie Cartan, Darboux);
- Hamiltonian dynamics;
- geometric optics, wave propagation (Huygens, Hamilton, Jacobi);
- Natural boundaries of symplectic manifolds.

Knots and contact structures

Vera Vértesi

Contact structures

origin definition tight vs. overtwisted

Knots in contact 3—manifolds

Contact structures – applications

- ► (Eliashberg) New proof for Cerf's Theorem: Diff(S³)/Diff(D⁴) = 0;
- (Akbulut–Gompf) Topological description of Stein domains;
- (Ozsváth–Szabó) HF detects the genus of a knot;
- (Ghiggini, Juhász, Ni) HFK detects fibered knots;
- (Kronheimer-Mrowka) First step to the Poincaré conjecture: Every nontrivial knot in S³ has property P;
- (Kronheimer–Mrowka) Knots are determined by their complement;
- (Kronheimer-Mrowka, Ozsváth-Szabó) The unknot, trefoil and the figure eight knot are determined by their surgery.

Knots and contact structures

Vera Vértesi

Contact structures

origin definition tight vs. overtwisted

Knots in contact 3—manifolds

Contact structures on 3-manifolds

Standard contact structure on \mathbb{R}^3

Contact structure (n=1)

on a 3-manifold Y is a "maximally nonintegrable" plane distribution ξ in the tangent space of Y.

"maximally nonintegrable" \Leftrightarrow it rotates (positively) along any curve tangent to ξ

Darboux's theorem

 $\xi = \ker(dz + xdy) \\ = \langle \frac{\partial}{\partial x}, x \frac{\partial}{\partial z} - \frac{\partial}{\partial y} \rangle$

Contact structures locally look like (\mathbb{R}^3, ξ_{st}) .

Knots and contact structures

Vera Vértesi

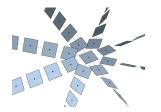
Contact structures

origin definition tight vs. overtwisted

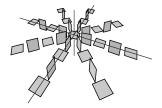
Knots in contact 3–manifolds

Examples

$$\xi_{\rm sym} = dz + r^2 d\vartheta = \langle \frac{\partial}{\partial r}, r^2 \frac{\partial}{\partial z} - \frac{\partial}{\partial \vartheta} \rangle$$



$$\xi_{\rm OT} = \ker(\cos r \, dz + r \sin r \, d\vartheta) = \langle \frac{\partial}{\partial r}, r \sin r \frac{\partial}{\partial z} - \cos r \frac{\partial}{\partial \vartheta} \rangle$$



Knots and contact structures

Vera Vértesi

Contact structures

origin definition tight vs. overtwisted

Knots in contact 3–manifolds

Equivalence of contact structures

Contact isotopy

Two contact structures are isotopic if one can be deformed to the other with an isotopy of the underlying space. $\exists \Psi_t : Y \to Y$, with $\Psi_0 = id$ and $(\Psi_1)_*(\xi_0) = \xi_1$

 $\xi_{\rm sym}$ and $\xi_{\rm st}$ are isotopic:

Knots and contact structures

Vera Vértesi

Contact structures

origin definition tight vs. overtwisted

Knots in contact 3—manifolds

Do all 3-manifolds admit contact structures?

Knots and contact structures

Vera Vértesi

Contact structures

origin definition tight vs. overtwisted

Knots in contact 3–manifolds

Do all 3-manifolds admit contact structures? Yes (Martinet)

several proof using different technics:

- (Martinet, 1971) surgery along transverse knots;
- (Thurston-Winkelnkemper, 1975) open books;
- (Gonzalo, 1978) branched cover;
- (Ding-Geiges-Stipsicz) surgery along Legendrian knots.

How many contact structures does a 3-manifold admit?

Knots and contact structures

Vera Vértesi

Contact structures

origin definition tight vs. overtwisted

Knots in contact 3—manifolds

Do all 3-manifolds admit contact structures? Yes (Martinet)

several proof using different technics:

- (Martinet, 1971) surgery along transverse knots;
- (Thurston-Winkelnkemper, 1975) open books;
- (Gonzalo, 1978) branched cover;
- (Ding-Geiges-Stipsicz) surgery along Legendrian knots.

How many contact structures does a 3-manifold admit?

 ∞

Lutz twist: Once a contact structure is found we can modify it in the neighborhood of an embedded torus.

Knots and contact structures

Vera Vértesi

Contact structures

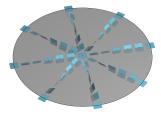
origin definition tight vs. overtwisted

Knots in contact 3–manifolds

Tight vs. overtwisted contact structures overtwisted disc

 $D \hookrightarrow Y$ such that D is tangent to ξ

$$\begin{aligned} \xi_{\rm OT} &= \ker(\cos r \, dz + r \sin r \, d\vartheta) \\ &= \langle \frac{\partial}{\partial r}, r \sin r \frac{\partial}{\partial z} - \cos r \frac{\partial}{\partial \vartheta} \rangle \end{aligned}$$



Knots and contact structures

Vera Vértesi

Contact structures

origin definition tight vs. overtwisted

Knots in contact 3–manifolds

Appendix

ξ → *overtwisted* (⊇ overtwisted disc) *ξ* → *tight* (not overtwisted) Theorem (Eliashberg):

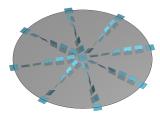
{overtwisted ctct structures}/isotopy \leftrightarrow {2-plane fields}/homotopy

⇒ tight contact structures are "interesting" geometric meaning: boundaries of complex/symplectic 4–manifolds

Tight vs. overtwisted contact structures overtwisted disc

 $D \hookrightarrow Y$ such that D is tangent to ξ along ∂D

$$\begin{split} \xi_{\rm OT} &= \ker(\cos r \, dz + r \sin r \, d\vartheta) \\ &= \langle \frac{\partial}{\partial r}, r \sin r \, \frac{\partial}{\partial z} - \cos r \, \frac{\partial}{\partial \vartheta} \rangle \end{split}$$



Knots and contact structures

Vera Vértesi

Contact structures

origin definition tight vs. overtwisted

Knots in contact 3—manifolds

Appendix

ξ \rightarrow overtwisted (\supseteq overtwisted disc) ξ \rightarrow tight (not overtwisted) Theorem (Eliashberg):

 $\{\texttt{overtwisted ctct structures}\}/\texttt{isotopy} \leftrightarrow \{\texttt{2-plane fields}\}/\texttt{homotopy}$

⇒ tight contact structures are "interesting" geometric meaning: boundaries of complex/symplectic 4–manifolds

Do all 3-manifolds admit tight contact structures?

Knots and contact structures

Vera Vértesi

Contact structures

origin definition tight vs_overtwisted

Knots in contact 3–manifolds

Do all 3-manifolds admit tight contact structures?

• (Eliashberg) S^3 admits a unique tight contact structure: ξ_{st} ;

Knots and contact structures

Vera Vértesi

Contact structures

origin definition tight vs. overtwisted

Knots in contact 3–manifolds

Do all 3-manifolds admit tight contact structures?

- (Eliashberg) S³ admits a unique tight contact structure: ξ_{st}; but:
- ► (Etnyre-Honda)-Σ(2, 3, 5), the Poincaré homology sphere with reverse orientation does not admit tight contact structure;
- ► (Lisca-Stipsicz) there exist ∞ many 3-manifold with no tight contact structure.

Knots and contact structures

Vera Vértesi

Contact structures

origin definition tight vs. overtwisted

Knots in contact 3–manifolds

Do all 3-manifolds admit tight contact structures?

- (Eliashberg) S³ admits a unique tight contact structure: ξ_{st}; but:
- ► (Etnyre–Honda)-Σ(2, 3, 5), the Poincaré homology sphere with reverse orientation does not admit tight contact structure;
- ► (Lisca-Stipsicz) there exist ∞ many 3-manifold with no tight contact structure.

How many tight contact structures does a 3-manifold admit?

Knots and contact structures

Vera Vértesi

Contact structures

origin definition tight vs. overtwisted

Knots in contact 3–manifolds

Do all 3-manifolds admit tight contact structures?

- (Eliashberg) S³ admits a unique tight contact structure: ξ_{st}; but:
- ► (Etnyre-Honda)-Σ(2, 3, 5), the Poincaré homology sphere with reverse orientation does not admit tight contact structure;
- ► (Lisca-Stipsicz) there exist ∞ many 3-manifold with no tight contact structure.

How many tight contact structures does a 3-manifold admit? Characterization done on:

- (Giroux, Honda) Lens spaces;
- (Honda) circle bundles over surfaces;
- (Ghiggini, Ghiggini–Lisca–Stipsicz, Wu, Massot) some Seifert fibered 3–manifolds.

Knots and contact structures

Vera Vértesi

Contact structures

origin definition tight vs. overtwisted

Knots in contact 3–manifolds

Methods for classification

How can we prove tightness?

- fillability;
- Legendrian knots.

How can we distinguish contact structures?

- homotopical data;
- contact invariant from HF-homologies (Seifert fibered 3-manifolds);
- embedded surfaces;

if we know the contact structure on the surface, then it is also known in a neighborhood of the surface

How the contact structure on a surface can be encoded?

- characteristic foliation;
- on convex surfaces a multicurve is enough.

embedded curves.

Knots and contact structures

Vera Vértesi

Contact structures

origin definition tight vs. overtwisted

Knots in contact 3—manifolds

Knots in contact 3-manifolds

Legendrian knot

is a knot L whose tangents lie in the contact planes:

$$TL \in \xi$$
 or $\alpha(TL) = 0$

We have already seen Legendrian knots:

- an oriented plane field is a contact structure, if it "rotates" along Legendrian foliations..
- the boundary of an OT disc is Legendrian.
- ξ is tangent to D along $\partial D \Leftrightarrow \xi$ does not "twist" as we move along ∂D

Knots and contact structures

Vera Vértesi

Contact structures

Knots in contact 3–manifolds

invariants standard contact structure classification Legendrian simple knots

Classical Invariants

Thurston-Bennequin number

tb(L) = lk(L, L')

where L' is a push off L' of L in the transverse direction;

If Σ a Seifert surface of L (i.e. $\partial \Sigma = L$), then:

Knots and contact structures

Vera Vértesi

Contact structures

Knots in contact 3–manifolds

invariants

standard contact structure classification Legendrian simple knots

. . . .

Appendi>

$$tb_{\Sigma}(L) = \operatorname{lk}(L, L') = \#(L \cap \Sigma)$$

Note: $D \text{ is OT} \Leftrightarrow tb_D = 0$

▶ Jump back to the proof

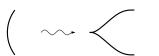
Rotation number rot(L) is a relative Euler number of ξ on Σ w.r.t. TL Knots in $(S^3, \xi_{\rm st})$

Recall: $\xi = \ker(dz + x dy)$ $TK \subset \xi \iff x = -\frac{dz}{dy} \neq \infty$

Claim:

Any knot can be put in Legendrian position.

Proof:



Knots and contact structures

Vera Vértesi

Contact structures

Knots in contact 3–manifolds

invariants

standard contact structure

classification Legendrian simple knots

(1,1,1)

Knots in $(S^3, \xi_{\rm st})$

Recall: $\xi = \ker(dz + x dy)$ $TK \subset \xi \iff x = -\frac{dz}{dy} \neq \infty$

Claim:

Any knot can be put in Legendrian position.

Proof:

Knots and contact structures

Vera Vértesi

Contact structures

Knots in contact 3–manifolds

invariants

standard contact structure

classification Legendrian simple knots

(1,1,1)

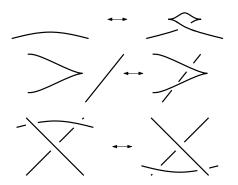
Legendrian isotopy

Legendrian isotopy

lsotopy through Legendrian knots.

Legendrian Reidemeister moves

Legendrian isotopic knots are related by the following moves:



Knots and contact structures

Vera Vértesi

Contact structures

Knots in contact 3–manifolds

invariants

standard contact structure

classification Legendrian simple knots

(1,1,1)

Are they Legendrian isotopic?

Legendrian unknots

Knots and contact structures

Vera Vértesi

Contact structures

Knots in contact 3–manifolds

invariants

standard contact structure

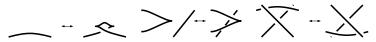
classification Legendrian simple knots

(1,1,1)

Appendi>

Which ones are Legendrian isotopic?

Remember:

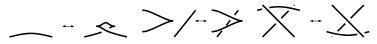


Are they Legendrian isotopic?

Legendrian unknots

Which ones are Legendrian isotopic?

Remember:



 $A \cong B \checkmark$

Knots and contact structures

Vera Vértesi

Contact structures

Knots in contact 3–manifolds

invariants

standard contact structure

classification Legendrian simple knots

111

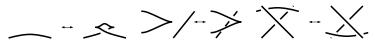
Appendi>

Are they Legendrian isotopic?

Legendrian unknots

Which ones are Legendrian isotopic?

Remember:



 $A \cong B \checkmark$ and $C \cong D$:

Knots and contact structures

Vera Vértesi

Contact structures

Knots in contact 3–manifolds

invariants

standard contact structure

classification Legendrian simple knots

.....

Appendi:

rotation number:

er: >

for the Legendrian unknots:

Knots and contact structures

Vera Vértesi

Contact structures

Knots in contact 3–manifolds

invariants

standard contact structure

classification Legendrian simple knots

111

The two definition agree in $(S^3, \xi_{st} = dz + xdy)$

 $\mathbf{\mathbf{N}}$

The "new definition"

=3-0-2=1

Knots and contact structures

Vera Vértesi

Contact structures

Knots in contact 3–manifolds

invariants

standard contact structure

classification Legendrian simple knots

1.1.1

The two definition agree in $(S^3, \xi_{st} = dz + xdy)$

 $\mathbf{\mathbf{N}}$

The "new definition"

=3-0-2=1

The "old definition"

$$tb_{\Sigma}(L) = lk(L, L') = #(L \cap \Sigma)$$

where L' is a push off in the transverse direction and Σ is a Seifert surface of L.

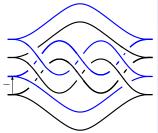
Knots and contact structures Vera Vértesi

standard contact structure The two definition agree in $(S^3, \xi_{\rm st} = dz + xdy)$

The "old definition"

$$\textit{tb}_{\Sigma}(\textit{L}) = \mathrm{lk}(\textit{L},\textit{L}') = \#(\textit{L} \cap \Sigma)$$

where L' is a push off in the transverse direction and Σ is a Seifert surface of L. $\frac{\partial}{\partial z}$ is a transverse direction:



Knots and contact structures

Vera Vértesi

Contact structures

Knots in contact 3-manifolds

invariants

standard contact structure

classification Legendrian simple knots

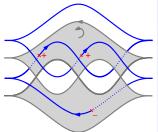
1.1.1

The two definition agree in $(S^3, \xi_{st} = dz + xdy)$

The "old definition"

$$\textit{tb}_{\Sigma}(\textit{L}) = \mathrm{lk}(\textit{L},\textit{L}') = \#(\textit{L} \cap \Sigma)$$

where L' is a push off in the transverse direction and Σ is a Seifert surface of L. $\frac{\partial}{\partial z}$ is a transverse direction: tb = 1 + 1 - 1 = 1



Knots and contact structures

Vera Vértesi

Contact structures

Knots in contact 3–manifolds

invariants

standard contact structure

classification Legendrian simple knots

1.1.1

Appendi>

The two definitions agree in general $\sqrt{}$

A new smooth knot invariant

tb can be decreased: $tb(L_{\pm}) = tb(L) - 1$ $rot(L_{\pm}) = rot(L) \pm 1$

Definition:

K is a smooth knot type, then:

 $\overline{tb}(K) = \max\{tb(L) : L \text{ is Legendrian repr. of } K\}$

Bennequin inequality:

 Σ is a (genus g) Seifert surface for a Legendrian knot L, then: $tb(L) + |rot(L)| \leq -\chi(\Sigma)$

(S^3, ξ_{st}) is tight. If L is the unknot then $tb(L) + |rot(L)| \le -\chi(D) = -1$, thus $tb(L) \le -1$. So $tb(L) \ne 0$

Knots and contact structures

Vera Vértesi

Contact structures

Knots in contact 3–manifolds

invariants

standard contact structure

classification Legendrian simple knots

Appendi:

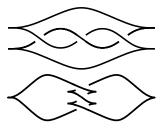
 \overline{tb} distinguishes mirrors. Right and left-handed-trefoils

Bounds for the Thurston Bennequin number The Seifert surface of the trefoil is a punctured torus, thus

$$tb(L) + |rot(L)| \leq -\chi(\Sigma) = 1$$

the right handed trefoil realizes this bound $(\overline{tb} = 1)$:

but the left handed trefoil does not. $(\overline{tb} = -6)$



Knots and contact structures

Vera Vértesi

Contact structures

Knots in contact 3-manifolds

invariants

standard contact structure

classification Legendrian simple knots

Annendi

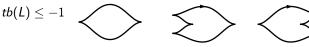
Classification of Legendrian unknots

 ${\sf Legendrian\ isotopy} \Rightarrow$

smoothly isotopy;

▶ tb ''=''.

We have seen:

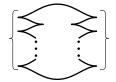


Theorem (Eliashberg-Fraser):

For any pair

$$\{(t,r):t+|r|\leq -1 \ \& \ r\equiv t \mod 2\}$$

there is exactly one Legendrian unknot with tb = t and rot = r



Knots and contact structures

Vera Vértesi

Contact structures

Knots in contact 3–manifolds

invariants standard contact structure

classification

Legendrian simple knots

 $(\cdot,\cdot)_{i\in I}$

Appendi»

Proof on the "Algebraic Geometry and Differential Topology Seminar" this Friday

Classification of Legendrian knots

For the unknot we had: tb "=" & rot "=" ⇔ Legendrian isotopic

Definition:

A knot type is called *Legendrian simple* if *tb* and *rot* is enough to classify its Legendrian representations.

Legendrian simple knots:

- (Eliashberg-Fraser) unknot;
- (Etnyre-Honda) torus knots, figure eight knot;

•

Chekanov's example:

First example for a Legendrian nonsimple knot: the $\mathbf{5}_2$ knot

Knots and contact structures

Vera Vértesi

Contact structures

Knots in contact 3–manifolds

invariants standard contact structure

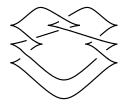
Legendrian simple knots

.....

Appendi>

Some nonsimple knot types

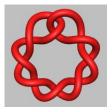
Checkanov's example:



tb = 1 and rot = 0

Other nonsimple knot types:

- (Epstein-Fuchs-Meyer) twist knots;
- ► Ng
- Ozsváth–Szabó–Thurston



Knots and contact structures

Vera Vértesi

Contact structures

Knots in contact 3–manifolds

invariants standard contact structure

Legendrian simple knots

. . . .

Further classification results

Classification of nonsimple knot types

- ▶ (Etnyre–Honda) Can classify Legendrian realizations of K₁#K₂ in terms of the classification of the Legendrian realizations of L₁ and L₂
- ▶ (Etnyre-Honda) (2,3)-cable of the (2,3) torus-knot;
- (Etnyre–Ng-V) Classification of Legendrian twist knots (work in progress).

Legendrian Twist knots with maximal tb

- (Chekanov, Epstein–Fuchs–Meyer):
 n are known to be different
- ► (Etnyre–Ng-V) There are exactly $\begin{bmatrix} \frac{(2n+1)}{2} + 1)^2}{2} \end{bmatrix}$ different Legendrian representations (work in progress).

Knots and contact structures

Vera Vértesi

Contact structures

Knots in contact 3–manifolds

invariants standard contact

classification

Legendrian simple knots

1.1.1

Knots and contact structures

Vera Vértesi

Contact structures

Knots in contact 3–manifolds

invariants standard contact structure classification Legendrian simple knots

...

Appendix

Thanks for your attention!

Equivalent characterizations of contact structures

(Y,ξ) is contact iff locally:

- ξ is totally nonintegrable;
- $\xi = \ker \alpha$, where $\alpha \in \Omega^1(Y)$ and $\alpha \wedge d\alpha \neq 0$;
- ξ rotates (positively) along a Legendrian foliation;

- ξ rotates (positively) along any Legendrian foliation;
- ξ is isotopic to (\mathbb{R}^3, ξ_{st}) ;
- ξ is isotopic to $(\mathbb{R}^3, \xi_{sym})$;

Knots and contact structures

Vera Vértesi

Contact structures

Knots in contact 3—manifolds

Property P

Surgery

cut out a tubular neighborhood of Kglue back along a diffeomorphism $\phi: \mathcal{T}^2 o \mathcal{T}^2$

such a map is determined by $\phi(\mu)=
ho\mu'+q\lambda'$

The surgery is then called $\frac{p}{q}$ -surgery

Property P

K has Property P if surgery along K cannot give a counterexample for the Poincaré Conjecture.

Fact (Lickorish, Wallace)

Any 3-manifold can be obtained from S^3 by surgery along a link.

Knots and contact structures

Vera Vértesi

Contact structures

Knots in contact 3–manifolds

Lutz twist

Lutz twist

We can change ξ along a knot $T \pitchfork \xi$: ξ is standard along T: on $\nu(T)$

$$\xi = \ker(\cos(\frac{\pi}{2}r)dt + r\sin(\frac{\pi}{2}r)d\varphi)$$

Change ξ on $\nu(T)$ to:

$$\xi' = \ker(\cos(\pi - \frac{3\pi}{2}r)dt + r\sin(\pi - \frac{3\pi}{2}r)d\varphi)$$

Knots and contact structures

Vera Vértesi

Contact structures

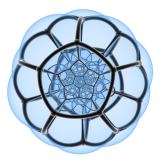
Knots in contact 3—manifolds

Jump back to the classification

Poincaré homology sphere

from the dodecahedron:

Glue each pair of opposite faces of the dodecahedron by using the minimal clockwise twist.



a factor of SO(3)

with the rotational symmetries of the dodecahedron (A_5)

▶ Jump back to the applications

Knots and contact structures

Vera Vértesi

Contact structures

Knots in contact 3—manifolds

Convex surfaces

Knots and contact structures

Vera Vértesi

Contact structures

Knots in contact 3–manifolds