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Thermodynamics

E

T

S

P

V

internal energy
temperature
entropy
pressure
volume

First Law of Thermodynamics

dE = �Q − �W
(Q = processed heat, W = work on its surroundings) for a
reversible process �Q = TdS , �W = PdV

dE = TdS − PdV

Since E , S and V are thermodynamical functions of a state, the
above is true non-reversible processes too.
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Thermodynamics � geometric setup

De�ne the 1�form:

� = dE − TdS + PdV

States of the gas are on integrals of ker�.

How many independent variables are there?

= What is the maximal dimension of an integral submanifold?

� ∧ (d�)2 = dE ∧ dT ∧ dS ∧ dP ∧ dV

(d� = −dT ∧ dS + dP ∧ dV ∕= 0)

⇒ Max dimensional integral manifolds are 2 dimensional.

Deduce state equations for . . .

▶ . . . ideal gases;

▶ . . . van der Waals gases.
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Contact structures � de�nition

Contact structure
on a (2n + 1)�manifold M is a �maximally nonintegrable�
hyperplane distribution � in the tangent space of M.

Locally: � = ker� (� ∈ Ω1(M))
�maximally nonintegrable� ⇔ � ∧ (d�)n ∕= 0

Standard contact structure
On ℝ2n+1 = {(x1, . . . , xn, y1, . . . , yn, z)} �st = ker�

�st = dz +
n∑

i=0

xidyi

� is contact: (d� =
∑n

i=0
dxi ∧ dyi )

� ∧ (d�)n = 2ndz ∧ dx1 ∧ dy1 ∧ ⋅ ⋅ ⋅ ∧ ∧dxn ∧ dyn ∕= 0

Darboux's theorem
Every contact manifold locally looks like (ℝ2n+1, �st).
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Contact structures � origin

▶ thermodynamics;

▶ odd dimensional counterparts of symplectic manifolds;

▶ classical mechanics, contact element (Sophus Lie, Elie
Cartan, Darboux);

▶ Hamiltonian dynamics;

▶ geometric optics, wave propagation (Huygens, Hamilton,
Jacobi);

▶ Natural boundaries of symplectic manifolds.
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Contact structures � applications

▶ (Eliashberg) New proof for Cerf's Theorem:
Di�(S3)/Di�(D4) = 0;

▶ (Akbulut�Gompf) Topological description of Stein domains;

▶ (Ozsváth�Szabó) HF detects the genus of a knot;

▶ (Ghiggini, Juhász, Ni) HFK detects �bered knots;

▶ (Kronheimer�Mrowka) First step to the Poincaré conjecture:
Every nontrivial knot in S3 has property P;

▶ (Kronheimer�Mrowka) Knots are determined by their
complement;

▶ (Kronheimer�Mrowka, Ozsváth�Szabó) The unknot, trefoil
and the �gure eight knot are determined by their surgery.
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Contact structures on 3�manifolds

Contact structure (n=1)
on a 3�manifold Y is a �maximally nonintegrable� plane
distribution � in the tangent space of Y .

�maximally nonintegrable� ⇔ it rotates (positively) along any
curve tangent to �

Standard contact structure on ℝ3

� = ker(dz + xdy)
= ⟨ ∂

∂x , x
∂
∂z − ∂

∂y ⟩ z  

x

y

Darboux's theorem
Contact structures locally look like (ℝ3, �st).
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Examples

�sym = dz + r 2d# = ⟨ ∂
∂r
, r 2 ∂

∂z
− ∂

∂#
⟩

�OT = ker(cos rdz+r sin rd#) = ⟨ ∂
∂r
, r sin r ∂

∂z
−cos r ∂

∂#
⟩
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Equivalence of contact structures

Contact isotopy
Two contact structures are isotopic if one can be deformed to the
other with an isotopy of the underlying space. ∃Ψt : Y → Y ,
with Ψ0 = id and (Ψ1)∗(�0) = �1

�sym and �st are isotopic:
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Classi�cation of contact structures

Do all 3�manifolds admit contact structures?

Yes (Martinet)

several proof using di�erent technics:

▶ (Martinet, 1971) surgery along transverse knots;

▶ (Thurston�Winkelnkemper, 1975) open books;

▶ (Gonzalo, 1978) branched cover;

▶ (Ding�Geiges�Stipsicz) surgery along Legendrian knots.

How many contact structures does a 3�manifold admit?

∞
Lutz twist: Once a contact structure is found we can modify it in
the neighborhood of an embedded torus.
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Classi�cation of contact structures
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Tight vs. overtwisted contact structures

overtwisted disc
D ↪→ Y such that D is tangent
to �

along ∂D

�OT = ker(cos rdz + r sin rd#)
= ⟨ ∂∂r , r sin r ∂

∂z − cos r ∂
∂# ⟩

overtwisted ( ⊇ overtwisted disc)

�

11ccccccccccccccccccc

--[[[[[[[[[[[[[[[[[[[

tight (not overtwisted)

Theorem (Eliashberg):
{overtwisted ctct structures}/isotopy↔ {2�plane �elds}/homotopy

⇒ tight contact structures are �interesting�
geometric meaning: boundaries of complex/symplectic
4�manifolds



Knots and contact
structures

Vera Vértesi

Contact structures

origin
de�nition
tight vs. overtwisted

Knots in contact
3�manifolds

Appendix

Tight vs. overtwisted contact structures
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4�manifolds



Knots and contact
structures

Vera Vértesi

Contact structures

origin
de�nition
tight vs. overtwisted

Knots in contact
3�manifolds

Appendix

Classi�cation of tight contact structures

Do all 3�manifolds admit tight contact structures?

▶ (Eliashberg) S3 admits a unique tight contact structure: �st;

but:

▶ (Etnyre�Honda)−Σ(2, 3, 5), the Poincaré homology sphere
with reverse orientation does not admit tight contact
structure;

▶ (Lisca�Stipsicz) there exist ∞ many 3�manifold with no
tight contact structure.

How many tight contact structures does a 3�manifold admit?

Characterization done on:

▶ (Giroux, Honda) Lens spaces;

▶ (Honda) circle bundles over surfaces;

▶ (Ghiggini, Ghiggini�Lisca�Stipsicz, Wu, Massot) some
Seifert �bered 3�manifolds.
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Methods for classi�cation

How can we prove tightness?

▶ �llability;

▶ Legendrian knots.

How can we distinguish contact structures?

▶ homotopical data;

▶ contact invariant from HF-homologies (Seifert �bered
3�manifolds);

▶ embedded surfaces;
if we know the contact structure on the surface, then it is
also known in a neighborhood of the surface

How the contact structure on a surface can be encoded?

▶ characteristic foliation;
▶ on convex surfaces a multicurve is enough.

▶ embedded curves.
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Knots in contact 3�manifolds

Legendrian knot
is a knot L whose tangents lie in the contact planes:

TL ∈ � or �(TL) = 0

We have already seen Legendrian knots:

▶ an oriented plane �eld is a contact structure, if it �rotates�
along Legendrian foliations..

▶ the boundary of an OT disc is Legendrian.

� is tangent to D along ∂D ⇔ � does not �twist� as we move
along ∂D
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Classical Invariants

Thurston-Bennequin number

tb(L) = lk(L, L′)

where L′ is a push o� L′ of L in the
transverse direction;

If Σ a Seifert surface of L
(i.e. ∂Σ = L), then:

tbΣ(L) = lk(L, L′) = #(L ∩ Σ)

Note:
D is OT ⇔ tbD = 0

Jump back to the proof

Rotation number
rot(L) is a relative Euler number of � on Σ w.r.t. TL
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Knots in (S3, �st)

Recall:
� = ker(dz + xdy)

TK ⊂ � ⇐⇒ x = − dz
dy
∕=∞

Claim:
Any knot can be put in Legendrian position.

Proof:



Knots and contact
structures

Vera Vértesi

Contact structures

Knots in contact
3�manifolds

invariants
standard contact
structure
classi�cation
Legendrian simple
knots
. . .

Appendix

Knots in (S3, �st)

Recall:
� = ker(dz + xdy)

TK ⊂ � ⇐⇒ x = − dz
dy
∕=∞

Claim:
Any knot can be put in Legendrian position.

Proof:



Knots and contact
structures

Vera Vértesi

Contact structures

Knots in contact
3�manifolds

invariants
standard contact
structure
classi�cation
Legendrian simple
knots
. . .

Appendix

Legendrian isotopy

Legendrian isotopy
Isotopy through Legendrian knots.

Legendrian Reidemeister moves
Legendrian isotopic knots are related by the following moves:
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Are they Legendrian isotopic?

Legendrian unknots

A B C D

Which ones are Legendrian isotopic?
Remember:

A ∼= B
√

and C ∼= D:
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Classical invariants in (S3, �st)

Thurston-Bennequin invariant:

tb(L) = (#( )−#( ))−#( )

rotation number:
rot(L) = #( )−#( ))

for the Legendrian unknots:

tb(A) = −1

rot(A) = 0

tb(C) = −2 tb(D) = −2tb(B) = −1

rot(B) = 0 rot(C) = −2 rot(D) = −2
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The two de�nition agree in (S3, �st = dz + xdy)

The �new de�nition�
tb(L) = (#( )−#( ))−#( )

=3-0-2=1

The �old de�nition�

tbΣ(L) = lk(L, L′) = #(L ∩ Σ)

where L′ is a push o� in the transverse
direction and Σ is a Seifert surface of L.
∂
∂z is a transverse direction:
tb = 1 + 1− 1 = 1

The two de�nitions agree in general.
√
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A new smooth knot invariant

tb can be decreased:

tb(L±) = tb(L)− 1

rot(L±) = rot(L)± 1

+

−

De�nition:
K is a smooth knot type, then:

tb(K ) = max{tb(L) : L is Legendrian repr. of K}

Bennequin inequality:
Σ is a (genus g) Seifert surface for a Legendrian knot L, then:

tb(L) + ∣rot(L)∣ ≤ −�(Σ)

(S3, �st) is tight.
If L is the unknot then tb(L) + ∣rot(L)∣ ≤ −�(D) = −1, thus
tb(L) ≤ −1. So tb(L) ∕= 0
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tb distinguishes mirrors.

Right and left-handed-trefoils

Bounds for the Thurston Bennequin number
The Seifert surface of the trefoil is a punctured torus, thus

tb(L) + ∣rot(L)∣ ≤ −�(Σ) = 1

the right handed trefoil realizes
this bound (tb = 1):

but the left handed trefoil does
not. (tb = −6)
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Classi�cation of Legendrian unknots

Legendrian isotopy ⇒ ▶ smoothly isotopy;

▶ rot �=�;

▶ tb �=�.

We have seen:
tb(L) ≤ −1

tb = −1

rot = 0

tb = −2tb = −2

rot = −2 rot = 2

· · ·

Theorem (Eliashberg-Fraser):

For any pair

{(t, r) : t + ∣r ∣ ≤ −1 & r ≡ t mod 2}
there is exactly one Legendrian unknot
with tb = t and rot = r

kl

Proof on the �Algebraic Geometry and Di�erential Topology Seminar� this Friday
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Classi�cation of Legendrian knots
For the unknot we had:
tb �=� & rot �=� ⇔ Legendrian isotopic

De�nition:
A knot type is called Legendrian simple if tb and rot is enough to
classify its Legendrian representations.

Legendrian simple knots:

▶ (Eliashberg-Fraser) unknot;

▶ (Etnyre-Honda) torus knots, �gure eight knot;

▶ . . .

Chekanov's example:

First example for a Legendrian nonsimple knot:
the 52 knot
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Some nonsimple knot types

Checkanov's example:

tb = 1 and rot = 0

Other nonsimple knot types:

▶ (Epstein�Fuchs�Meyer) twist knots;

▶ Ng

▶ Ozsváth�Szabó�Thurston
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Further classi�cation results

Classi�cation of nonsimple knot types

▶ (Etnyre�Honda) Can classify Legendrian realizations of
K1#K2 in terms of the classi�cation of the Legendrian
realizations of L1 and L2

▶ (Etnyre�Honda) (2, 3)-cable of the (2, 3) torus-knot;

▶ (Etnyre�Ng-V) Classi�cation of Legendrian twist knots
(work in progress).

Legendrian Twist knots with maximal tb

▶ (Chekanov, Epstein�Fuchs�Meyer):
∼ n are known to be di�erent

▶ (Etnyre�Ng-V) There are exactly⌈
( (2n+1)

2 +1)2

2

⌉
di�erent Legendrian

representations (work in progress).

k l
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Equivalent characterizations of contact structures

(Y , �) is contact i� locally:

▶ � is totally nonintegrable;

▶ � = ker�, where � ∈ Ω1(Y ) and � ∧ d� ∕= 0;

▶ � rotates (positively) along a Legendrian foliation;

▶ � rotates (positively) along any Legendrian foliation;

▶ � is isotopic to (ℝ3, �st);

▶ � is isotopic to (ℝ3, �sym);

Jump back to 3-dimensional contact structures
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Property P

Surgery

cut out a tubular neighborhood of K

glue back along a di�eomorphism � : T 2 → T 2

such a map is determined by �(�) = p�′ + q�′

The surgery is then called p
q
-surgery

K

µ

λ

Property P
K has Property P if surgery along K cannot give a
counterexample for the Poincaré Conjecture.

Fact (Lickorish, Wallace)
Any 3�manifold can be obtained from S3 by surgery along a link.

Jump back to the applications
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Lutz twist

Lutz twist
We can change � along a knot T ⋔ �:

� is standard along T :

on �(T )

� = ker(cos(
�

2
r)dt+r sin(

�

2
r)d')

Change � on �(T ) to:

�′ = ker(cos(�− 3�

2
r)dt+r sin(�− 3�

2
r)d')

Jump back to the classi�cation
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Poincaré homology sphere

from the dodecahedron:
Glue each pair of opposite faces of the dodecahedron by using
the minimal clockwise twist.

a factor of SO(3)
with the rotational symmetries of the dodecahedron (A5)

Jump back to the applications
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Convex surfaces
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